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Abstract

We present a new procedure which allows a coherent state (CS) quantization of any set with a measure.
It is manifest through the replacement of classical observables by CS quantum observables, which acts
on a Hilbert space of prescribed dimension N . The algebra of CS quantum observables has the finite
dimension N2.

The application to the 2-sphere provides a family of inequivalent CS quantizations, based on the spin
spherical harmonics (the CS quantization from usual spherical harmonics appears to give a trivial issue
for the cartesian coordinates). We compare these CS quantizations to the usual (Madore) construction
of the fuzzy sphere. The difference allows us to consider our procedures as the constructions of new
type of fuzzy spheres. The very general character of our method suggests applications to construct fuzzy
versions of a variety of sets.

1 Some ideas on quantization

A classical description of a set of data, say X, is usually carried out by considering sets of real or complex
functions on X. Depending on the context (data handling, signal analysis, mechanics. . . ) the set X will
be equipped with a definite structure (topological space, measure space, symplectic manifold. . . ) and the
set of functions on X which will be considered as classical observables must be restricted with regard to
the structure on X; for instance, signals should be square integrable with respect to the measure assigned
to set X.

How to provide instead a “quantum description” of the same set X? As a first characteristic, the
latter replaces - this is a definition - the classical observables by quantum observables, which do not
commute in general. As usual, these quantum observables will be realized as operators acting on some
Hilbert space H, whose projective version will be considered as the set of quantum states. This Hilbert
space will be constructed as a subset in the set of functions on X.

The advantage of the coherent states (CS) quantization procedure, in a standard sense [1, 2, 3] as
in recent generalizations [4] and applications [5] is that it requires a minimal significant structure on X,
namely the only existence of a measure µ(dx), together with a σ-algebra of measurable subsets. As a
measure space, X will be given the name of an observation set in the present context, and the existence of
a measure provides us with a statistical reading of the set of measurable real or complex valued functions
on X: computing for instance average values on subsets with bounded measure. The quantum states
will correspond to measurable and square integrable functions on the set X, but not all square integrable
functions are eligible as quantum states. The construction of H is equivalent to the choice of a class of
eligible quantum states, together with a technical condition of continuity. This provides a correspondence
between classical and quantum observables by defining a generalization of the so-called coherent states.

Although the procedure appears mathematically as a quantization, it may also be considered as a
change of point of view for looking at the system, not necessarily a path to quantum physics. In this
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sense, it could be called a discretization or a regularization [6]. It shows a certain resemblance with
standard procedures pertaining to signal processing, for instance those involving wavelets, which are
coherent states for the affine group transforming the half-plane time-scale into itself [7, 8]. In many
respects, the choice of a quantization appears here as the choice of a resolution to look at the system.

As is well known, some aspects of (ordinary) quantum mechanics may be seen as a non commuta-
tive version of the geometry of the phase space, where position and momentum operators do not commute.
It appears as a general fact that the quantization of a “set of data” makes a fuzzy (non commutative)
geometry to emerge [9]. We will show explicitly how the CS quantization of the ordinary sphere leads to
its fuzzy geometry.

In Section 2 we present a construction of coherent states which is very general and encompasses most
of the known constructions, and we derive from the existence of a CS family what we call CS quantization.
The latter extends to various situations the well-known Klauder-Berezin quantization. The formalism
is illustrated with the standard Glauber-Klauder-Sudarshan coherent states and the related canonical
quantization of the classical phase space of the motion on the real line.

In Section 3, we apply the formalism to the sphere S2 by using orthonormal families of spin spherical
harmonics (σYjm)−j6m6j [10, 11, 12]. For a given σ such that 2σ ∈ Z and j such that 2|σ| 6 2j ∈ N there
corresponds a continuous family of coherent states and the subsequent 2j+1-dimensional quantization of
the 2-sphere. For a given j, we thus get 2j + 1 inequivalent quantizations, corresponding to the possible
values of σ. Note that the classical Gilmore-Perelomov-Radcliffe case [13, 14, 15] correspond to the
particular value σ = j. On the other hand, the case σ = 0 is proved to be singular in the sense that it
leads to a null quantization of the cartesian coordinates of the 2-sphere.

The section 4 establishes the link between the CS quantization approach to the 2-sphere and the
Madore construction [9, 16] of the fuzzy sphere. We examine there the question of equivalence between
the two procedures. Note that a construction of the fuzzy sphere based on Perelomov coherent states has
already been carried out by Grosse and Pres̆najder [17]. They proceed to a covariant symbol calculus à

la Berezin with its corresponding ⋆-product. However, their approach is different of ours.
The appendices give an exhaustive set of formulas, particularly concerning the spin spherical har-

monics, needed for a complete description of our CS approach to the 2-sphere.

2 Coherent states

2.1 The construction

The (classical) system to be quantized is considered as a set of data, X = {x ∈ X}, assumed to be
equipped with a measure µ defined on a σ-field B. We consider the Hilbert spaces L2

K(X,µ) (K = R or C)
of real or complex functions, with the usual Hermitian inner product 〈f | g〉. The quantization is defined
by the choice of a closed subspace H of L2

K(X, dµ). The only requirements on H, in addition to be an
Hilbert space, amount to the following technical conditions:

• For all ψ ∈ H and all x, ψ(x) is well defined (this is of course the case whenever X is a topological
space and the elements of H are continuous functions)

• the linear map (“evaluation map”)

δx : H → K (1)

ψ 7→ ψ(x)

is continuous with respect to the topology of H, for almost all x.

The last condition is realized as soon as the space H is finite dimensional since all the linear forms
are continuous in this case. We see below that some other examples can be found.

As a consequence, using the Riesz theorem, there exists, for almost all x, an unique element px ∈ H
(a function) such that

〈px | ψ〉 = ψ(x). (2)

We define the coherent states as the normalized vectors corresponding to px written in Dirac notation:

| x 〉 ≡ | px 〉
[N (x)]

1
2

where N (x) ≡ 〈px | px〉. (3)

One can see at once that, for any ψ ∈ H:

ψ(x) = [N (x)]
1
2 〈x | ψ〉. (4)
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As a consequence, one obtains the following resolution of the identity of H which is at the basis of the
whole construction:

IdH =

∫
| x 〉〈 x | N (x) µ(dx). (5)

Note that

φ(x) =

∫

X

√
N (x) N (x′) 〈x|x′〉 φ(x′)µ(dx′), ∀φ ∈ H. (6)

Hence, H is a reproducing Hilbert space with kernel

K(x, x′) =
√
N (x) N (x′) 〈x |x′〉, (7)

and the latter assumes finite diagonal values (a.e.), K(x, x) = N (x), by construction. Note that this
construction yields an embedding of X into H and one could interpret | x 〉 as a state localized at x once
a notion of localization has been properly defined on X.

In view of (5) the set {| x 〉} is called a frame for H. This frame is said to be overcomplete when the
the vectors {| x 〉} are not linearly independent [18, 19].

We define a classical observable over X in a loose way as a function f : X 7→ K (R or C). As a matter
of fact we will not retain a priori the usual requirements on f like to be real valued and smooth with
respect to some topology defined on X.

To any such function f , we associate the quantum observable over H through the map:

f 7→ Af ≡
∫

X

N (x) µ(dx) f(x) | x 〉〈 x | . (8)

The operator corresponding to a real function is Hermitian by construction. Hereafter, we will also use
the notation f̃ for Af .

The existence of the continuous frame {| x 〉} enables us to carry out a symbolic calculus à la Berezin-
Lieb [2, 20]. To each linear, self-adjoint operator (observable) O acting on H, one associates the lower
(or covariant) symbol

Ǒ(x) ≡ 〈 x | O | x 〉, (9)

and the upper (or contravariant) symbol (not necessarily unique) Ô such that

O =

∫

X

N (x) µ(dx) Ô(x) | x 〉〈 x | . (10)

Note that f is an upper symbol of Af .
The technical conditions and the definition of coherent states can be easily expressed when we have

a Hilbertian basis of H. Let (φn)n∈I such a basis, the technical condition is equivalent to

∑

n

|φn(x)|2 <∞ a.e. (11)

The coherent state is then defined by

|x〉 = 1

(N (x))
1
2

∑

n

φ∗
n(x) φn with N (x) =

∑

n

|φn(x)|2.

To a certain extent, the quantization scheme exposed here consists in adopting a certain point of view in
dealing with X, determined by the choice of the space H. This choice specifies the admissible quantum
states and the correspondence “classical observables versus quantum observables” follows.

2.2 The standard coherent states

Let us illustrate the above construction for the dynamics of a particle moving on the real line. This
leads to the well-known Klauder-Glauber-Sudarshan coherent states [21] and the subsequent so-called
canonical quantization (with a slight difference of notation). The construction can be easily extended
to the dynamics of the particle in a flat higher dimensional spacetime. The observation set X is the
classical phase space R2 ≃ C = {z = 1√

2
(q + ip)} (in complex notations) of a particle with one degree of

freedom. The symplectic form identifies with i
2
dz ∧ dz̄ ≡ d2z, the Lebesgue measure of the plane. Here

we adopt the Gaussian measure on X, µ(dz) = 1
π
e−|z|2 d2z.
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The quantization of X is hence achieved by a choice of polarization (in the language of geometric
quantization): the selection, in L2(X, dµ), of the Hilbert subspace H defined as the so-called Fock-
Bargmann space of all antiholomorphic entire functions that are square integrable with respect to the
Gaussian measure.

The Hilbertian basis is given by the functions φn(z) ≡ z̄n
√
n!

, the normalized powers of the conjugate

of the complex variable z. Thus, since
∑

n
|z|2
n!

= e|z|
2

, the coherent states read

|z〉 = e−
|z|2

2

∑

n

zn√
n!
|n〉, (12)

where |n〉 stands for ϕn, and one easily checks the normalization and unity resolution:

〈z |z〉 = 1,
1

π

∫

C

|z〉〈z| d2z = IdH. (13)

Note that the reproducing kernel is simply given by K(z, z′) = ezz̄
′

.
Quantum operators acting on H are yielded by using (8). We thus have for the most basic one,

a ≡ Az =
1

π

∫

C

z |z〉〈z| d2z =
∑

n

√
n+ 1 |n〉〈n+ 1|, (14)

which appears as the lowering operator, a|n〉 = √n |n− 1〉. Its adjoint a† is obtained by replacing z by z̄
in (14), and we get the factorization N = a†a for the number operator, together with the commutation
rule [a, a†] = IdH. Also note that a† and a realize on H as multiplication operator and derivation
operator respectively, a†f(z) = zf(z), af = df/dz. From q = 1√

2
(z + z̄) et p = 1√

2i
(z − z̄), one easily

infers by linearity that q and p are upper symbols for 1√
2
(a+ a†) ≡ Q and 1√

2i
(a− a†) ≡ P respectively.

In consequence, the (essentially) self-adjoint operators Q and P obey the canonical commutation rule
[Q,P ] = iIdH, and for this reason fully deserve the name of position and momentum operators of the
usual (Galilean) quantum mechanics, together with all localization properties specific to the latter.

3 Quantizations of the 2-sphere

3.1 The 2-sphere

We now apply our method to the quantization of the observation set X = S2, the unit 2-sphere. This is
not to be confused with the quantization of the phase space for the motion on the two-sphere (i.e.quantum
mechanics on the two-sphere, see for instance [22], [23], [24]). A point of X is denoted by its spherical
coordinates, x = (θ, φ). Through the usual embedding in R3, we may see x as a point (xi) ∈ R3 obeying∑3
i=1(x

i)2 = 1. We adopt on S2 the normalized measure µ(dx) = sin θ dθ dφ/4π, proportional to the
SO(3)-invariant measure, which is also the surface element.

We know that µ is a symplectic form, with the canonical coordinates q = φ, p = − cos θ. This allows
to see S2 itself as the phase space for the theory of (classical) angular momentum. In this spirit, we will
be able to interpret our procedure as the construction of families of spin coherent states including the
Gilmore-Perelomov-Radcliffe (hereafter, GPR) ones [15]. Also, our construction will take advantage of
the group action of SO(3) on S2 embedded in R3. This three-dimensional group acts as isometries in
R3, as rotations in S2. However, we emphasize again that our quantization procedure is based on the
only existence of a measure, and may be used in the absence of metric or symplectic structure.

3.2 The CS quantization of the 2-sphere

3.2.1 The Hilbert space and the coherent states

At the basis of the CS quantization procedure is the choice of a finite dimensional Hilbert space, which is
a subspace of L2(S2), and which carries a UIR of the group SU(2). We write its dimension 2j + 1, with
j integer or semi-integer. Although it could have appeared natural to choose this space as V j , the linear
span of ordinary spherical harmonics Yjm, this choice would not allow to consider half-integer values of j.
Moreover, it happens that the quantization so obtained gives trivial results for the cartesian coordinates.
Namely, the quantum counterparts of the cartesian coordinates (or, equivalently, the spherical harmonics
Y1m) are identically zero. Thus we are led to define H on a general setting as the linear span of spin
spherical harmonics (hereafter SSH’s).

4
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3.2.2 The spin spherical harmonics

We define H = Hσj as the vector space spanned by the spin spherical harmonics σYjµ ∈ L2(S2), where
−j ≤ σ, µ ≤ j, and σ is fixed in this range. Note that σ and j are both integer or semi-integer. The spin
spherical harmonics (SSH’s) were first introduced in [10] (see also [12] and [11] for their main properties).
In view of their importance in the context of the present work, they are comprehensively described in
Appendix A. The special case σ = 0 corresponds to the ordinary spherical harmonics

0Yjm = Yjm.

A CS quantization is defined after a choice of values for j and σ, that we consider as fixed in the
sequel. With the usual inner product of L2(S2), the SSH’s provide an ON basis (σYjµ)µ=−j...j of Hσj
(hereafter the SSH basis).

The Hilbert space Hσj carries the 2j+1-dimensional UIR of SU(2) (see Appendix A). The generators
of SU(2) in this representation can be taken as those corresponding to the three rotations around the
orthogonal axes of x1, x2, x3. They are called the “spin” angular momentum operators (SAMOs, to be
distinguished from the usual angular momentum operators Ji), and will be written as Λσja . Hereafter,
the index a = 1, 2, 3 will refer to the three spatial directions. We have Λ0j

a = Ja, the usual angular
momentum operators. As usual, we define Λσjǫ = Λσj1 + ǫ i Λσj2 , ǫ = ±1. All these generators obey the
usual commutation relations of the group SU(2). They act on the ON basis as

Λσj3 σYjµ = µ σYjµ, Λσjǫ σYjµ = aǫ(j, µ) σYjµ+ǫ, (15)

where the aǫ(j, µ), given in (71,72), are the same as for the usual angular momentum operators Ja.
The SSH basis allows to identify Hσj with C2j+1:

σYjµ ; | µ 〉 →֒ (0, . . . , 0, 1, 0, . . . , 0)t with µ = −j,−j + 1, . . . , j , (16)

where the 1 is at position µ and the superscript t denotes the transpose. By construction we have the
Hilbertian orthonormality relations:

〈µ | ν 〉 ≡
∫

X

µ(dx) σY
∗
jµ(x) σYjν(x) = δµν . (17)

The CS construction presented in Sect. (2.1) leads to the following class of coherent states

| x 〉 =| θ, φ 〉 = 1√
N (x)

j∑

µ=−j
σY

∗
jµ(x) | µ 〉; | x 〉 ∈ H, (18)

with

N (x) =

j∑

µ=−j
|σ Yjµ(x) |2= 2j + 1

4π
.

For σ = ±j, they reduce to the spin coherent states [13, 14, 15].

3.2.3 Operators

We call Oσj ≡ End(Hσj) the space of linear operators (endomorphisms) acting on Hσj . This is a complex
vector space of dimension (2j + 1)2 and an algebra for the natural composition of endomorphisms. The
SSH basis allows to write a linear endomorphism of Hσj (i.e., an element of Oσj) in a matrix form. This
provides the algebra isomorphism

Oσj ; Mat2j+1,

the algebra of complex matrices of order 2j + 1, equipped with the matrix product.
The projector | x 〉〈x | is a particular linear endomorphism of Hσj , i.e., an element of Oσj . Being

Hermitian by construction, it may be seen as an Hermitian matrix of order 2j + 1, i.e., an element of
Herm2j+1 ⊂ Mat2j+1. Note that Herm2j+1 and Mat2j+1 have respective (complex) dimensions (j +
1) (2j + 1) and (2j + 1)2.

We have resolution of identity and normalization by construction:

∫

S2

µ(dx) N (x) | x 〉〈 x |= Id, 〈 x | x 〉 = 1.
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3.2.4 Observables

According to the prescription (8), the CS quantization associates to the classical observable f : S2 7→ C

the quantum observable

f̃ ≡ Af =

∫
µ(dx) f(x) N (x) | x 〉〈x |

=

j∑

µ,ν=−j

∫
µ(dx) f(x) [σYjµ(x)]

∗
σYjν(x) | µ 〉〈 ν | . (19)

This operator is an element of Oσj ∼ End(Hσj) ; Mat(2j+1). Of course its existence is submitted to
the convergence of (19) in the weak sense as an operator integral. The expression above gives directly
its expression as a matrix in the SSH basis, with matrix elements f̃µν :

f̃ =

j∑

µ,ν=−j
f̃µν | µ 〉〈 ν | with f̃µν =

∫
µ(dx) f(x) σY

∗
jµ(x) σYjν(x). (20)

When f is real-valued, the corresponding matrix belongs to Herm(2j+1). Also, we have f̃∗ = (f̃)†

(matrix transconjugate), where we have used the same notation for the operator and the associated
matrix.

3.2.5 The usual spherical harmonics as classical observables

An usual spherical harmonics Yℓm is a particular classical observable and, as such, may be quantized.
The quantization procedure associates to Yℓm the operator Ỹℓm. The details of the computation are
given in Appendix A and the result is given in Subsection 7.13, Eq. (91). We hence obtain the matrix

elements of Ỹℓm in the SSH basis:

[
Ỹℓm

]
µν

= (−1)σ−µ (2j + 1)

√
(2ℓ+ 1)

4π

(
j j ℓ
−µ ν m

)(
j j ℓ
−σ σ 0

)
, (21)

in terms of the 3j-symbols. This generalizes the formula (2.7) of [25]. This expression is a real quantity.
Any function f on the 2-sphere with reasonable properties (continuity, integrability...) may be ex-

panded in spherical harmonics as

f =
∞∑

ℓ=0

ℓ∑

m=−ℓ
fℓm Yℓm, (22)

from which results the corresponding expansion of f̃ . However, the 3j-symbols are non zero only when
a triangular inequality is satisfied. This implies that the expansion is cut at a finite value, giving

f̃ =

2j∑

ℓ=0

ℓ∑

m=−ℓ
fℓm Ỹℓm. (23)

This relation means that the (2j+1)2 observables (Ỹℓm)ℓ62j, −ℓ6m6ℓ provide a second (SH) basis of Oσj .
The fℓm are the components of the matrix f̃ ∈ Oσj in this basis.

3.3 The spin angular momentum operators

3.3.1 Action on functions

The Hilbert space Hσj carries a unitary irreducible representation of the group SU(2) with generators
Λσja (the SAMOs), which belong to Oσj . Their action is given in (70-71-72). Explicit calculations shown
in the appendix (see 98) give the crucial relations:

x̃a = K Λσja , with K ≡ σ

j(j + 1)
. (24)

We see here the peculiarity of the ordinary spherical harmonics (σ = 0) as an ON basis for the
quantization procedure: they would lead to a trivial result for the quantized version of the cartesian
coordinates! On the other hand, the quantization based on the GPR spin coherent states yields the
maximal value: K = 1/(j + 1). Hereafter we assume σ 6= 0.

6
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3.3.2 Action on operators

The SU(2) action on Hσj induces the following canonical (infinitesimal) action on Oσj = End(Hσj):
Lσja : 7→ Lσja A ≡ [Λσja , A] (the commutator) (25)

here expressed through the generators.

We prove in Appendix A, (104), that Lσja Ỹℓm = J̃aYℓm , from which it results:

Lσj3 Ỹℓm = m Ỹℓm and (Lσj)2Ỹℓm = ℓ (ℓ+ 1) Ỹℓm.

We recall that the (Ỹℓm)ℓ62j form a basis of Oσj . The relations above make Ỹℓm appear as the unique
(up to a constant) element of Oσj that is common eigenvector to Lσj3 and (Lσj)2, with eigenvalues m

and ℓ (ℓ+ 1) respectively. This implies by linearity that for all f such that f̃ makes sense

Lσja f̃ = J̃af and (Lσj)2f̃ = J̃2f.

4 Link with the fuzzy sphere

4.1 The construction of the fuzzy sphere

Let us first recall an usual construction of the fuzzy sphere (see for instance [9] p.148), that we slightly
modify to make the correspondence with the CS quantization. It starts from the decomposition of any
smooth function f ∈ C∞(S2) in spherical harmonics,

f =

∞∑

ℓ=0

ℓ∑

m=−ℓ
fℓm Yℓm. (26)

Let us denote by V ℓ the (2ℓ+ 1)-dimensional vector space generated by the Yℓm, at fixed ℓ.
Through the embedding of S2 in R3, any function in S2 can be seen as the restriction of a function

on R3 (that we write with the same notation), and under some mild conditions such functions are
generated by the homogeneous polynomials in R3. This allows us to express (26) in a polynomial form
in R3:

f(x) = f(0) +
∑

(i1)

f(i) x
i + ...+

∑

(i1i2...iℓ)

f(i1i2...iℓ) x
i1 xi2 ...xiℓ + ..., (27)

where each sum subtends a V ℓ and involves all symmetric combinations of the ik indices, each varying
from 1 to 3. This gives, for each fixed value of ℓ, 2ℓ + 1 coefficients f(i1i2...iℓ) (ℓ fixed), which are those
of a symmetric traceless 3× 3× .... × 3 (ℓ times) tensor.

The fuzzy sphere with 2j + 1 cells is usually written Sfuzzy,j, with j an integer or semi-integer. Here,
our slightly modified procedure leads to a different fuzzy sphere that we write σSfuzzy,j. We detail the
steps of its standard definition.

1. We consider a 2j+1 dimensional irreducible unitary representation (UIR ) of SU(2). The standard
construction considers the vector space V j of dimension 2j + 1, on which the three generators of
SU(2) are expressed as the usual (2j + 1) × (2j + 1) Hermitian matrices Ja. Here we will make a
different choice, namely the three SAMOs Λj , which correspond to the choice of the representation
space Hσj (instead of V j in the usual construction). Since they obey the commutation relations of
SU(2),

[Λσja ,Λ
σj
b ] = i ǫabc Λσjc , (28)

the usual procedure may be applied. As we have seen, Hσj can be realized as the Hilbert space
spanned by the spin spherical harmonics {σYjµ}µ=−j...j , with the usual inner product. The latter
provide the SSH (ON) basis.

Since the standard derivation of all properties of the fuzzy sphere rest only upon the abstract
commutation rules (28), nothing but the representation space changes if we adopt the representation
space H instead of V .

2. The operators Λσja belong to Oσj , and have a Lie algebra structure, through the skew products
defined by the commutators. But the symmetrized products of operators provide a second algebra
structure, that we write Oσj , at the basis of the construction of the fuzzy sphere: these symmetrized
products of the Λσja , up to power 2j, generate the algebra Oσj (of dimension (2j+ 1)2) of all linear
endomorphisms of Hσj , exactly like the ordinary Ja do in the original Madore construction. This
is the standard construction of the fuzzy sphere, with the Ja and V j replaced by Λσja and Hσj .

7
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3. The construction of the fuzzy sphere (of radius r) is defined by associating an operator f̂ in Oσj
to any function f . Explicitly, this is done by first replacing each coordinate xi by the operator

x̂a ≡ κ Λσja ≡
r Λσja√
j(j + 1)

, (29)

in the above expansion (27) of f (in the usual construction, this would be Ja instead of Λσja ). Next,
we replace in (27) the usual product by the symmetrized product of operators, and we truncate the
sum at index ℓ = 2j. This associates to any function f an operator f̂ ∈ Oσj .

4. The vector space Mat2j+1 of (2j+1)× (2j+1) matrices is linearly generated by a number (2j+1)2

of independent matrices. According to the above construction, a basis of Mat2j+1 can be taken
as all the products of the Λσja up to power 2j + 1 (which is necessary and sufficient to close the
algebra).

5. The commutative algebra limit is restored by letting j go to the infinity while parameter κ goes to
zero and κj is fixed to κj = r.

The geometry of the fuzzy sphere Sfuzzy,j is thus constructed after making the choice of the algebra
of the matrices of the representation, with their matrix product. It is taken as the algebra of operators,
which generalize the functions. The rank (2j + 1) of the matrices invites us to view them as acting as
endomorphisms in an Hilbert space of dimension (2j+1). This is exactly what allows the coherent states
quantization introduced in the previous section.

4.2 Operators

We have defined the action on Oσj :
Lσja A ≡ [Λσja , A].

The formula (27) expresses any function f of V ℓ as the reduction to S2 of an homogeneous polynomials
homogeneous of order ℓ:

f =
∑

α,β,γ

fα,β,γ (x1)α (x2)β (x3)γ ; α+ β + γ = ℓ.

The action of the ordinary momentum operators J3 and J2 is straightforward. Namely,

J3f =
∑

α,β,γ

fα,β,γ (−i)
[
β(x1)α+1 (x2)β−1 (x3)γ − α(x1)α−1 (x2)β+1 (x3)γ

]
,

and similarly for J1 and J2.
On the other hand, we have by definition

f̂ =
∑

α,β,γ

fα,β,γ S
(
(x̂1)α (x̂2)β (x̂3)γ

)
, (30)

where S(·) means symmetrization. Recalling x̂a = κ Λσja , and using (28), we apply the operator Lσj3 to
this expression:

Lσj3 f̂ ≡ [Λσj3 , f̂ ] =
∑

α,β,γ

fα,β,γ
[
Λσj3 , S

(
x̂1
α
x̂2
β
x̂3
γ
)]
. (31)

We prove in appendix B that the commutator of the symmetrized is the symmetrized of the commu-
tator. Then, using the identity

[J,AB · · ·M ] = [J, A] B · · ·M +A [J,B] · · ·M + · · ·+ AB · · · [J,M ],

which results easily (by induction) from [J,AB] = [J,A] B + A [J, B], it follows that

Lσj3 f̂ ≡ [Λσj3 , f̂ ] =
∑

α,β,γ

fα,β,γ
(
iα x̂1

α−1
x̂2
β+1

x̂3
γ − iβ x̂1

α+1
x̂2
β−1

x̂3
γ
)
. (32)

We thus have proven
Lσj3 f̂ = Ĵ3f.

Similar identities hold for Lσj1 , Lσj2 and thus for (Lσj)2.
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coherent states Madore-like
fuzzy sphere fuzzy sphere

Hilbert space H = Hσj = span(σYjµ) ⊂ L2(S2)

endomorphisms O = Oσj = EndHσj

spin angular momentum
operators Λσj

a ∈ O

observables f̃ ∈ Oσj ; x̃a = K Λσj
a f̂ ∈ Oσj ; x̂a = κ Λσj

a

action of angular momentum Lσj
a f̃ ≡ [Λσj

a , f̃ ] = J̃a f Lσj
a f̂ ≡ [Λσj

a , f̂ ] = Ĵa f

correspondence Ỹℓm = C(ℓ) Ŷℓm

Table 1: Coherent state quantization of the sphere is compared to the standard construction of the fuzzy
sphere through correspondence formula.

It results that Ŷℓm appears as an element of Oσj which is a common eigenvector of Lσj3 , with value
m, and of (Lσj)2, with value ℓ(ℓ+ 1). Since we have proved above that such an element is unique (up to

a constant), it results that each Ŷℓm ∝ Ỹℓm. Thus, the Ŷℓm’s, for ℓ ≤ j, −j ≤ m ≤ j form a basis of Aj .
Then, the Wigner-Eckart theorem (see 7.15) implies that Ỹℓm = C(ℓ) Ŷℓm, where the proportionality

constant C(ℓ) does not depend on m (what can also be checked directly).
These coefficients can be calculated directly, after remarking that

Ŷℓℓ ∝ (Λ+)ℓ ∝ (x̂1 + i x̂2)ℓ.

In fact,

Ŷℓℓ = a(ℓ) (x̂1 + i x̂2)ℓ; a(ℓ) =

√
(2ℓ+ 1)!

2ℓ+1
√
π ℓ!

.

We obtain

C(ℓ) = 2ℓ
(−1)j+σ−2 ℓ (2 j + 1)

κℓ

√
(2j − ℓ)!

(2j + ℓ+ 1)!

(
j j ℓ
−σ σ 0

)
.

5 Discussion

We thus have two families of quantization of the sphere.

• The usual construction of the fuzzy sphere, which depends on the parameter j. This parameter
defines the “size” of the discrete cell.

• The present construction coherent states which makes use of coherent states and which depends on
two parameters, j and σ 6= 0.

These two quantizations may be formulated as involving the same algebra of operators (quantum ob-
servables) O, acting on the same Hilbert space H (see Table 1). Note that H and O are not the Hilbert
space and algebra usually involved in the usual expression of the fuzzy sphere (when we consider them
as embedded in the space of functions of the spheres, and of operators acting on them), but they are
isomorphic to them, and nothing is changed.

The difference lies in the fact that the quantum counterparts, f̃ and f̂ of a given classical observable
f differ in both approaches. Thus, the CS quantization really differs from the usual fuzzy sphere quan-
tization. This raises the question iof whether the CS quantization is or is not a construction of a new
type offuzzy sphere. It results from the calculations above that all properties of the usual fuzzy sphere
are shared by the CS quantized version. The only point to be checked is if it gives the sphere manifold
in some classical limit. The answer is positive as far as the classical limit is correctly defined. Simple
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calculations show that it is obtained as the limit j 7→ ∞, σ 7→ ∞, provided that the ratio σ/j tends to a
finite value. Thus, one may consider that the CS quantization leads to a one parameter family of fuzzy
spheres if we impose relations of the type σ = j − σ0, for fixed σ0 > 0 (for instance).

6 Conclusion

We have proposed a general quantization procedure which applies to any measurable set X. It proceeds
from the choice of an Hilbert space H of prescribed dimension. We have presented in details an imple-
mentation of this procedure (non necessarily unique) from an explicit family of coherent states, which
realizes a natural embedding of X into H.

We have applied this CS procedure to the sphere S2. We started from a natural basis linked to the
UIR’s of the group SU(2): for any value of j and σ, we chose the Hilbert space Hσj , which carries a UIR

of SU(2). Our CS construction associates, to any classical observable f ∈ L2, a quantum observable f̃ ,
which belong to the algebra of endomorphisms Oσj ≡ End(Hσj). On the other hand, we also followed
the usual fuzzy sphere construction (with 2j + 1 cells), by replacing the coordinates by operators acting

on the same Hilbert space. This allowed us to associate a fuzzy observable f̂ to any classical observable
f . Those form the algebra of operators acting on the fuzzy sphere.

For the particular classical observables provided by the ordinary spherical harmonics, we have shown
that the CS quantum observable and the fuzzy observable coincide up to a constant, Ŷℓm = C(ℓ) Ỹℓm,

and the explicit value of this constant has been given. However, in general, f̃ differs from f̂ , although the
correspondence is easy established from the relation above, through a development in the usual spherical
harmonics.

Thus, the CS quantization procedure really differs from the construction of the usual fuzzy sphere.
Although they share the same algebra of quantum observables, acting on the same Hilbert space, the CS
quantum observables f̃ and the fuzzy one, f̂ , associated to the same classical observable f differ. And
there is no way to make them coincide, since the CS quantization with σ = 0 leads to trivial results.

Our discussion in (5) allows us to consider our CS quantization procedure as a construction of a new
type of fuzzy sphere, with properties differing from the standard one. It shares most of the properties of
the usual fuzzy sphere, but appears more economic in the sense that
- it does not require a group action on the space to be quantized;
- it does not require an initial expansion of the functions into spherical harmonics.

Applications of procedures of this type to the sphere have appeared in different contexts. For instance,
a similar procedure is carried out in [6] in order to achieve a regularization of a membrane, with surface
S2, by a mapping of functions to matrices, similar to the one presented here. Despite analog mathematics,
the procedure there is not seen as a quantization and, according to the author, the regularized theory
still requires a further quantization. Similar regularization exists for surfaces of arbitrary genius, and
it would be interesting to apply the CS procedure in these cases. Also, it should not be difficult to
explore cases with more dimensions, and in particular S3. This offers possibilities to construct new fuzzy
versions of these spaces. Moreover, authors in [25] have given a description of the fuzzy sphere in terms
of SU(2) spin networks. Since the latter play an important role in the canonical quantization of general
relativity, this suggests that the application of the CS procedure to the quantization of gravity or to
various geometries, compact or non-compact [26] could be fruitful, a program that we start to explore.
Furthermore, the universality of the CS procedure would allow explicit constructions of spin networks
associated to different groups, in particular SU(3). Since it has claimed that the latter could be of
importance for quantum gravity, this reveals to be a promising field of research also.

7 Appendix A: Spin spherical harmonics

7.1 SU(2)-parameterization

SU(2) ∋ ξ =

(
ξ0 + iξ3 −ξ2 + iξ1
ξ2 + iξ1 ξ0 − iξ3

)
. (33)

In bicomplex angular coordinates,

ξ0 + iξ3 = cosωeiψ1 , ξ1 + iξ2 = sinωeiψ2 (34)

0 6 ω 6
π

2
, 0 6 ψ1, ψ2 < 2π. (35)

10

ha
l-0

01
05

28
8,

 v
er

si
on

 1
 - 

10
 O

ct
 2

00
6



and so

SU(2) ∋ ξ =

(
cosωeiψ1 i sinωeiψ2

i sinωe−iψ2 cosωe−iψ1

)
, (36)

in agreement with Talman [27].

7.2 Matrix elements of SU(2)-UIR

Dj
m1m2

(ξ) = (−1)m1−m2 [(j +m1)!(j −m1)!(j +m2)!(j −m2)!]
1/2×

×
∑

t

(ξ0 + iξ3)
j−m2−t

(j −m2 − t)!
(ξ0 − iξ3)j+m1−t

(j +m1 − t)!
(−ξ2 + iξ1)

t+m2−m1

(t+m2 −m1)!

(ξ2 + iξ1)
t

t!
, (37)

in agreement with Talman. With angular parameters the matrix elements of the UIR of SU(2) are given
in terms of Jacobi polynomials [28] by:

Dj
m1m2

(ξ) = e−im1(ψ1+ψ2)e−im2(ψ1−ψ2)im2−m1

√
(j −m1)!(j +m1)!

(j −m2)!(j +m2)!
×

× 1

2m1
(1 + cos 2ω)

m1+m2
2 (1− cos 2ω)

m1−m2
2 P

(m1−m2,m1+m2)
j−m1

(cos 2ω), (38)

in agreement with Edmonds [29] (up to an irrelevant phase factor).

7.3 Orthogonality relations and 3j-symbols

Let us equip the SU(2) group with its Haar measure :

µ(dξ) = sin 2ω dω dψ1 dψ2, (39)

in terms of the bicomplex angular parametrization. Note that the volume of SU(2) with this choice of
normalization is 8π2. The orthogonality relations satisfied by the matrix elements Dj

m1m2
(ξ) reads as:

∫

SU(2)

Dj
m1m2

(ξ)
(
Dj′

m′
1m

′
2
(ξ)
)∗

µ(dξ) =
8π2

2j + 1
δjj′δm1m

′
1
δm2m

′
2
. (40)

in connection with the reduction of the tensor product of two UIR’s of SU(2), we have the following
equivalent formula involving the so-called 3 − j symbols (proportional to Clebsch-Gordan coefficients),
in the Talman notations :

Dj
m1m2

(ξ)Dj′

m′
1m

′
2
(ξ) =

∑

j′′m′′
1m

′′
2

(2j′′ + 1)

(
j j′ j′′

m1 m′
1 m′′

1

)(
j j′ j′′

m2 m′
2 m′′

2

) (
Dj′′

m′′
1m

′′
2
(ξ)
)∗
, (41)

∫

SU(2)

Dj
m1m2

(ξ)Dj′

m′
1m

′
2
(ξ)Dj′′

m′′
1m

′′
2
(ξ)µ(dξ) = 8π2

(
j j′ j′′

m1 m′
1 m′′

1

)(
j j′ j′′

m2 m′
2 m′′

2

)
. (42)

One of the multiple expressions of the 3 − j symbols (in the convention that there are all real) is given
by:

(
j j′ j′′

m m′ m′′

)
=(−1)j−j

′−m′′
[
(j + j′ − j′′)!(j − j′ + j′′)!(−j + j′ + j′′)!

(j + j′ + j′′ + 1)!

]1/2

×
∑

s

(−1)s
[(j +m)!(j −m)!(j′ +m′)!(j′ −m′)!(j′′ +m′′)!(j′′ −m′′)!]

1/2

s!(j′ +m′ − s)!(j −m− s)!(j′′ − j′ +m+ s)!(j′′ − j −m′ + s)!(j + j′ − j′′ − s)!
(43)
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7.4 Spin spherical harmonics

The spin spherical harmonics, as functions on the 2-sphere S2 are defined as follows:

σYjµ(r̂) =

√
2j + 1

4π

[
Dj
µσ (ξ (Rr̂))

]∗
= (−1)µ−σ

√
2j + 1

4π
Dj

−µ−σ (ξ (Rr̂)) (44)

=

√
2j + 1

4π
Dj
σµ

(
ξ† (Rr̂)

)
, (45)

where ξ (Rr̂) is a (nonunique) element of SU(2) which corresponds to the space rotation Rr̂ which brings
the unit vector ê3 to the unit vector r̂ with polar coordinates :

r̂ =





x1 = sin θ cosφ,
x2 = sin θ sinφ,
x3 = cos θ.

(46)

We immediately infer from the definition (44) the following properties:

(σYjµ(r̂))
⋆ = (−1)σ−µ −σYj−µ(r̂), (47)

µ=j∑

µ=−j
|σYjµ(r̂)|2 =

2j + 1

4π
. (48)

Let us recall here the correspondence (homomorphism) ξ = ξ(R) ∈ SU(2)↔R ∈ S0(3) ≃ SU(2)/Z2 :

r̂
′ = (x′

1, x
′
2, x

′
3) = R · r̂←→ (49)

(
ix′

3 −x′
2 + ix′

1

x′
2 + ix′

1 −ix′
3

)
= ξ

(
ix3 −x2 + ix1

x2 + ix1 −ix3

)
ξ†. (50)

In the particular case of (44) the angular coordinates ω,ψ1, ψ2 of the SU(2)-element ξ (Rr̂) are constrained
by

cos 2ω =cos θ, sin 2ω = sin θ, so 2ω = θ, (51)

ei(ψ1+ψ2) =ieiφ so ψ1 + ψ2 = φ+
π

2
. (52)

Here we should pay a special attention to the range of values for the angle φ, depending on whether j
and consequently σ and m are half-integer or not. If j is half-integer, then angle φ should be defined
mod (4π) whereas if j is integer, it should be defined mod (2π).

We still have one degree of freedom concerning the pair of angles ψ1, ψ2. We leave open the option
concerning the σ-dependent phase factor by putting

i−σeiσ(ψ1−ψ2) def
= eiσψ, (53)

where ψ is arbitrary. With this choice and considering (37) we get the expression of the spin spherical
harmonics in terms of φ, θ/2 and ψ:

σYjµ(r̂) = (−1)σeiσψeiµφ
√

2j + 1

4π

√
(j + µ)!(j − µ)!

(j + σ)!(j − σ)!
×

×
(

cos
θ

2

)2j∑

t

(−1)t
(
j − σ
t

)(
j + σ

t+ σ − µ

)(
tan

θ

2

)2t+σ−µ
, (54)

= (−1)σeiσψeiµφ
√

2j + 1

4π

√
(j + µ)!(j − µ)!

(j + σ)!(j − σ)!
×

×
(

sin
θ

2

)2j∑

t

(−1)j−t+µ−σ
(
j − σ
t− µ

)(
j + σ
t+ σ

)(
cot

θ

2

)2t+σ−µ
, (55)

which are not in agreement with the definitions of Newman and Penrose [10], Campbell [12] (note there
is a mistake in the expression given by Campbell, in which a cos θ

2
should read cot θ

2
), and Hu and White
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[30]. Besides presence of different phase factors, the disagreement is certainly due to a different relation
between the polar angle θ and the Euler angle.

Now, considering (38), we get the expression of the spin spherical harmonics in terms of the Jacobi
polynomials, valid in the case in which µ± σ > −1:

σYjµ(r̂) = (−1)µeiσψ
√

2j + 1

4π

√
(j − µ)!(j + µ)!

(j − σ)!(j + σ)!
×

× 1

2µ
(1 + cos θ)

µ+σ
2 (1− cos θ)

µ−σ
2 P

(µ−σ,µ+σ)
j−µ (cos θ) eiµφ. (56)

For other cases, it is necessary to use alternate expressions based on the relations [28]:

P (−l,β)
n (x) =

(
n+β
l

)
(
n
l

)
(
x− 1

2

)l
P

(l,β)
n−l (x), P

(α,β)
0 (x) = 1. (57)

Note that with σ = 0 we recover the expression of the normalized spherical harmonics :

0Yjm(r̂) = Yjm(r̂) = (−1)m
√

2j + 1

4π

√
(j −m)!(j +m)!

1

j! 2m
(sin θ)mP

(m,m)
j−m (cos θ) eimφ

=

√
2j + 1

4π

√
(j −m)!

(j +m)!
Pmj (cos θ)eimφ (58)

since we have the following relation between associated Legendre polynomials and Jacobi polynomials

P
(m,m)
j−m (z) = (−1)m2m(1− z2)−

m
2

j!

(j +m)!
Pmj (z), (59)

for m > 0. We recall also the symmetry formula

P−m
j (z) = (−1)m

(j −m)!

(j +m)!
Pmj (z). (60)

Our expression of spherical harmonics is rather standard, in agreement with Arkfen [31, 32]1

7.5 Transformation laws

We consider here the transformation law of the spin spherical harmonics under the rotation group. From
the relation

RRtRr̂ = Rr̂ (61)

for any R ∈ SO(3), and from the homomorphism ξ(RR′) = ξ(R)ξ(R′) between SO(3) and SU(2), we
deduce from the definition (44) of the spin spherical harmonics the transformation law

σYjµ(
tR · r̂) =

√
2j + 1

4π
Dj
σµ

(
ξ† (RtR·r̂)

)
=

√
2j + 1

4π
Dj
σµ

(
ξ†
(tRRr̂

))

=

√
2j + 1

4π
Dj
σµ

(
ξ† (Rr̂) ξ (R)

)
=

√
2j + 1

4π

∑

ν

Dj
σν

(
ξ† (Rr̂)

)
Dj
νµ (ξ (R))

=
∑

ν

σYjν(r̂) D
j
νµ (ξ (R)) , (62)

as expected if we think to the special case (σ = 0) of the spherical harmonics.
Given a function f(x) on the sphere S2 belonging to the 2j + 1-dimensional Hilbert space Hσj and a

rotation R ∈ SO(3), we define the rotation operator Dσj(R) for that representation by
(
Dσj(R)f

)
(x) = f(R−1 · x) = f(tR · x). (63)

Thus, in particular, (
Dσj(R) σYjµ

)
(r̂) = σYjµ(

tR · r̂). (64)

The generators of the three rotations R(a), a = 1, 2, 3, around the three usual axes, are the angular
momentum operator in the representation. When σ = 0, we recover the usual SHs, and these generators
are the usual angular momentum operators J i (short notation for J

(j)
i ) for that representation. In the

general case σ 6= 0, we call them Λ
(σj)
a . We study their properties below.

1Sometimes (e.g., Arfken 1985 [31]), the Condon-Shortley phase (−1)m is prepended to the definition of the spherical
harmonics. Talman adopted this convention.
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7.6 Infinitesimal transformation laws

Recalling that the components Ja = −i ǫabc xb ∂c of the ordinary angular momentum operator are given
in spherical coordinates by:

J3 = −i∂φ, (65)

J+ = J1 + iJ2 = eiφ (∂θ + i cot θ partialφ) ,

J− = J1 − iJ2 = −e−iφ (∂θ − i cot θ partialφ) .

We have introduced the “spin” angular momentum operators:

Λσj3 = J3 = −i∂φ, (66)

Λσj+ = Λσj1 + i Λσj2 = J+ + σ csc θ eiφ, (67)

Λσj− = Λσj1 − i Λσj2 = J− + σ csc θ e−iφ. (68)

They obey the expected commutation rules,

[Λσj3 ,Λσj± ] = ±Λσj± , [Λσj+ ,Λσj− ] = 2Λσj3 . (69)

These operators are the infinitesimal generators of the action of SU(2) on the spin spherical harmonics:

Λσj3 σYjµ = µ σYjµ (70)

Λσj+ σYjµ =
√

(j − µ)(j + µ+ 1) σYjµ+1 (71)

Λσj− σYjµ =
√

(j + µ)(j − µ+ 1) σYjµ−1. (72)

7.7 Integrals and 3j-symbols

Specifying the equation (40) to the spin spherical harmonics lead to the following orthogonality relations
which are valid for j integer (and consequently σ integer).

∫

S2
σYjµ(r̂) (σYj′ν(r̂))

∗ µ(dr̂) = δjj′δµν , (73)

We recall that in the integer case, the range of values assumed by the angle φ is 0 6 φ < 2π. Now, if
we consider half-integer j (and consequently σ), the range of values assumed by the angle φ becomes

0 6 φ < 4π. The integral above has to be carried out on the “doubled” sphere S̃2 and an extra

normalization factor equal to
1√
2

is needed in the expression of the spin spherical harmonics.

For a given integer σ the set { σYjµ, −∞ 6 µ 6∞, j > max (0, σ,m)} form an orthonormal basis of
the Hilbert space L2(S2). Indeed, at µ fixed so that µ± σ > 0, the set

{√
2j + 1

4π

√
(j − µ)!(j + µ)!

(j − σ)!(j + σ)!

1

2µ
(1 + cos θ)

µ+σ
2 (1− cos θ)

µ−σ
2 P

(µ−σ,µ+σ)
j−µ (cos θ), j > µ

}

is an orthonormal basis of the Hilbert space L2([−π, π], sin θ dθ). The same holds for other ranges of
values of µ by using alternate expressions like (57) for Jacobi polynomials. Then it suffices to view
L2(S2) as the tensor product L2([−π, π], sin θ dθ)

⊗
L2(S1). Similar reasoning is valid for half-integer σ.

Then, the Hilbert space to be considered is the space of “fermionic” functions on the doubled sphere S̃2,
i.e. such that f(θ, φ+ 2π) = −f(θ, φ).

Specifying the equation (41) to the spin spherical harmonics leads to

σYjµ(r̂) σ′Yj′µ′(r̂) =
∑

j′′µ′′σ′′

√
(2j + 1)(2j′ + 1)(2j′′ + 1)

4π
×

×
(
j j′ j′′

µ µ′ µ′′

)(
j j′ j′′

σ σ′ σ′′

)
(σ′′Yj′′µ′′ (r̂))∗ . (74)
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We easily deduce from (74) the following integral involving the product of three spherical spin harmonics
(in the integer case, but analog formula exists in the half-integer case) and with the constraint that
σ + σ′ + σ′′ = 0:

∫

S2
σYjµ(r̂) σ′Yj′µ′(r̂) σ′′Yj′′µ′′ (r̂)µ(dr̂) =

√
(2j + 1)(2j′ + 1)(2j′′ + 1)

4π
×

×
(
j j′ j′′

µ µ′ µ′′

)(
j j′ j′′

σ σ′ σ′′

)
. (75)

Note that this formula is independent of the presence of a constant phase factor of the type eiσψ in the
definition of the spin spherical harmonics because of the a priori constraint σ + σ′ + σ′′ = 0. On the
other hand, we have to be careful in applying Eq. (75) because of this constraint, i.e. since it has been
derived from Eq. (74) on the ground that σ′′ was already fixed at the value σ′′ = −σ − σ′. Therefore,
the computation of ∫

S2
σYjµ(r̂) σ′Yj′µ′(r̂) σ′′Yj′′µ′′ (r̂)µ(dr̂)

for an arbitrary triplet (σ, σ′, σ′′) should be carried out independently.

7.8 Important particular case : j = 1

In the particular case j = 1, we get the following expressions for the spin spherical harmonics:

σY10(r̂) = eiσψ
√

3

4π

1√
(1 + σ)!(1− σ)!

(
cot

θ

2

)σ
cos θ, (76)

σY11(r̂) = −eiσψ
√

3

4π

1√
2(1 + σ)!(1− σ)!

(
cot

θ

2

)σ
sin θ eiφ, (77)

σY1−1(r̂) = (−1)σe−iσψ
√

3

4π

1√
2(1 + σ)!(1− σ)!

(
tan

θ

2

)σ
sin θ e−iφ. (78)

For σ = 0, we recover familiar formula connecting spherical harmonics to components of vector on the
unit sphere:

Y10(r̂) =

√
3

4π
cos θ =

√
3

4π
z, (79)

Y11(r̂) = −
√

3

4π

1√
2

sin θeiφ = −
√

3

4π

x+ iy√
2
, (80)

Y1−1(r̂) =

√
3

4π

1√
2

sin θe−iφ =

√
3

4π

x− iy√
2
. (81)

7.9 Another important case : σ = j

For σ = j, due to the relations (57), the spin spherical harmonics reduce to their simplest expressions :

jYjµ(r̂) = (−1)jeijψ
√

2j + 1

4π

√√√√
(

2j

j + µ

)(
cos

θ

2

)j+µ (
sin

θ

2

)j−µ
eiµφ. (82)

They are precisely the states which appear in the construction of the Perelomov coherent states. Other-
wise said, the Perelomov CS [15] and related quantization are just particular cases of our approach.

7.10 Spin coherent states

For a given pair (j, σ), we define the family of coherent states in the 2j + 1-dimensional Hilbert space
Hσj :

| x 〉 =| θ, φ 〉 = 1√
N (x)

j∑

µ=−j
σY

∗
jµ(x) | σjµ 〉; | x 〉 ∈ Hσj , (83)
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with

N (x) =

j∑

µ=−j
| σYjµ(x) |2= 2j + 1

4π
.

For σ = j, these coherent states identify to the so-called spin or atomic or Bloch coherent states [15].
But, for a given j and two different σ 6= σ′, the corresponding families are distinct because they live in
different Hilbert spaces of same dimension 2j + 1. This is due to the fact that the map between the two
orthonormal sets is not unitary, since we should deal with expansions like:

σYjµ =
∑

j′µ′

Mj′µ′,jµ(σ
′, σ) σ′Yj′µ′ , (84)

where

Mj′µ′,jµ(σ
′, σ) =

∫

S2

(σ′Yj′µ′(r̂))∗ σYjµ(r̂)µ(dr̂) = [j′jσ′σµ] δµµ′ , (85)

the (non-trivial!) coefficient [j′jσ′σµ] being to be determined and forcing the sum to run on values of j′

different of j.

7.11 Covariance properties of spin CS

The definition of the rotation operator Dσj(R) was given in (63). Starting from a CS | x 〉, let us consider
the coherent state with rotated parameter R·x. Due to the transformation property (62), the invariance
of N (x) and the unitarity of Dj , we find:

|R · x〉 = 1√
N (x)

j∑

µ=−j
σY

∗
jµ(

tR · x) | σjµ 〉

=
1√
N (x)

j∑

µ,µ′=−j
σY

∗
jµ′(x)

(
Dj
µ′µ

(
ξ
(
R−1)))⋆ | σjµ 〉

=
1√
N (x)

j∑

µ′=−j
σY

∗
jµ′(x)

j∑

µ=−j
Dj
µµ′ (ξ (R)) | σjµ 〉

= Dσj(R) | x 〉, (86)

where the Dσj have been defined in (63).
Hence, we get the (standard) covariance property of the spin CS:

Dσj(R)|R−1 · x〉 =| x 〉. (87)

7.12 Spin CS quantization

A classical observable on X is a function f : X 7→ C. To any such function f , we associate the operator
Af in Hσj through the map:

f 7→ Af ≡
∫

X

f(x) | x 〉〈x | N (x)µ(dx). (88)

Occasionally we might use the notation f̃ for Af .
In terms of its matrix elements in the basis of spin harmonics, this operator reads:

Af =

j∑

µ,µ′=−j

∫

X

f(x) σY
∗
jµ(x) σYjµ′(x) | σjµ 〉〈σjµ′ | µ(dx) ≡

j∑

µ,µ′=−j
[Af ]µµ′ | σjµ 〉〈σjµ′ | . (89)

7.13 Spin CS quantization of spin spherical harmonics

The quantization of an arbitrary spin harmonics νYkn yields an operator in Hσj whose (2j+1)× (2j+1)
matrix elements are given by the following integral resulting from (89):
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[
ν Ỹkn

]
µµ′

=

∫

X
σY

∗
jµ(x) σYjµ′(x) νYkn(x) µ(dx)

=

∫

X

(−1)σ−µ−σYj−µ(x) σYjµ′(x) νYkn(x)µ(dx). (90)

As asserted above, it is only when ν − σ + σ = 0, i.e. when ν = 0, that the integral (90) is given in
terms of a product of two 3j-symbols as follows:

[
Ỹkn

]
µµ′

=

∫

X
σY

∗
jµ(x) σYjµ′(x) Ykn(x)µ(dx)

=

∫

X

(−1)σ−µ −σYj−µ(x) σYjµ′(x)Ykn(x)µ(dx)

= (−1)σ−µ(2j + 1)

√
(2k + 1)

4π

(
j j k
−µ µ′ n

)(
j j k
−σ σ 0

)
. (91)

7.14 Checking quantization in the simplest case : j = 1

With the notations of the text, we find for the matrix elements of the CS quantized versions of the above
spherical harmonics:

[
Ỹ10

]
mn

= σ

√
3

4π

1

j(j + 1)
mδmn, (92)

[
Ỹ11

]
mn

= −σ
√

3

4π

1

j(j + 1)

√
(j − n)(j + n+ 1)

2
δmn+1, (93)

[
Ỹ1−1

]
mn

= σ

√
3

4π

1

j(j + 1)

√
(j + n)(j − n+ 1)

2
δmn−1. (94)

Comparing with the actions (70), (71), (72) of the spin angular momentum on the spin-σ spherical
harmonics, we have the identification:

Ỹ10 = σ

√
3

4π

1

j(j + 1)
Λ3, (95)

Ỹ11 = −σ
√

3

8π

1

j(j + 1)
Λ+, (96)

Ỹ1−1 = σ

√
3

8π

1

j(j + 1)
Λ−. (97)

Hence, we can conclude on the following identification between quantized versions of the components
of the vector on the unit sphere and the components of the spin angular momentum operator:

x̃ =
σ

j(j + 1)
Λ1, (98)

ỹ =
σ

j(j + 1)
Λ2, (99)

z̃ =
σ

j(j + 1)
Λ3. (100)

7.15 Rotational covariance properties of operators

By construction, the operators ν̃Ykn acting on Hσj are tensorial irreducible. Indeed, under the action
of the representation operator Dσj(R) in Hσj , due to (87), the rotational invariance of the measure and
N (x), and (62), they transform as:
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Dσj(R) ν̃Ykn Dj(R−1) =

∫

X
νYkn(x) | R · x 〉〈R · x | N (x)µ(dx)

=

∫

X
νYkn(R−1 · x) | x 〉〈x | N (x)µ(dx)

=
∑

n′

Dk
n′n (ξ (R))

∫

X
νYkn′(x) | x 〉〈 x | N (x)µ(dx)

=
∑

n′

ν̃Ykn′ Dk
n′n (ξ (R)) . (101)

Therefore, the Wigner-Eckart theorem [29] tells us that the matrix elements of the operator ν̃Ykn

with respect to the SSH basis
{
σỸjm

}
are given by:

[
ν Ỹkn

]
mm′

= (−1)j−m
(

j j k
−m m′ n

)
K(ν, σ, j, k). (102)

Note that the presence of the 3j symbol in (102) implies the selection rules n+m′ = m and the triangular
rule 0 6 k 6 2j. The proportionality coefficient K can be computed directly from (90) by choosing therein
suitable values of m,m′.

On the other hand, we have by definition (62,64)

∑

n′

νYkn′ Dk
n′n (ξ (R)) = Dνk(R) νYkn.

Thus, from the formula above,

Dσj(R) ν̃Ykn Dj(R−1) = ˜Dνk(R) νYkn.

In the special case ν = 0,

Dσj(R) ỸknDj(R−1) = ˜D0k(R) Ykn. (103)

This has the infinitesimal version (see xxx), for the three rotations Ri,

[Λ
(σj)
i , Ỹkn ] =

˜
J

(k)
i Ykn. (104)

Appendix B: Symmetrization of the commutator

One intends to show that
S ([J3, J

α1
1 Jα2

2 Jα3
3 ]) = [J3, S (Jα1

1 Jα2
2 Jα3

3 )],

where Ji is a representation of so(3).
Let us make a first comment on the symmetrization :

S(Jα1
1 Jα2

2 Jα3
3 ) =

1

l!

∑

σ∈Sl

Jiσ(1)
. . . Jiσ(l)

,

where l = α1 + α2 + α3. The terms of the sum are not all distinct, since the exchange of, e.g., two J1

gives the same term: each term appears in fact α1!α2!α3! times, so that there are l!/(α1!α2!α3!) distinct
terms. This is the number of sequences of length l, with values in {1, 2, 3}, where there are αi occurrences
of the value i (for i = 1, 2, 3). One denotes this set as Uα1,α2,α3 . After grouping of identical terms, one
obtains :

S(Jα1
1 Jα2

2 Jα3
3 ) =

α1!α2!α3!

l!

∑

u∈Uα1,α2,α3

Ju1 . . . Jul
,

where all the terms of the summation are now different.
Let us now calculate S ([J3, J

α1
1 Jα2

2 Jα3
3 ]). First, we write

[J3, J
α1
1 Jα2

2 Jα3
3 ] = [J3, J

α1
1 ]Jα2

2 Jα3
3︸ ︷︷ ︸

A

+ Jα1
1 [J3, J

α2
2 ]Jα3

3︸ ︷︷ ︸
B

,
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with

A =

α1∑

k=1

J1 . . . J1︸ ︷︷ ︸
k−1 terms

J2 J1 . . . J1︸ ︷︷ ︸
α1−k terms

Jα2
2 Jα3

3 .

The different terms in A give the same symmetrized. Thus,

S(A) = α1S
(
Jα1−1

1 Jα2+1
2 Jα3

3

)

= α1
(α1 − 1)!(α2 + 1)!α3!

l!

∑

u∈Uα1−1,α2+1,α3

Ju1 . . . Jul
.

Similarly, for B,

S(B) = −α2
(α1 + 1)!(α2 − 1)!α3!

l!

∑

u∈Uα1+1,α2−1,α3

Ju1 . . . Jul
.

Now we calculate

I = [J3, S(Jα1
1 Jα2

2 Jα3
3 )]

=
α1!α2!α3!

l!

∑

u∈Uα1,α2,α3

l∑

k=1

Ju1 . . . Juk−1 [J3, Juk
]Juk+1 . . . Jul

.

The sum splits in two parts, according to the value of uk = 1 or 2.

I = A′ +B′,

with

A′ =
α1!α2!α3!

l!

∑

u∈Uα1,α2,α3

∑

k|uk=1

Ju1 . . . Juk−1J2Juk+1 . . . Jul
,

and

B′ = −α1!α2!α3!

l!

∑

u∈Uα1,α2,α3

∑

k|uk=2

Ju1 . . . Juk−1J1Juk+1 . . . Jul
.

Let us examine the constituents of A′. There are of the form Ju1 . . . Jul
with u ∈ Uα1−1,α2+1,α3 .

Their number is l!/(α1!α2!α3!)×α1, but they are not all different. Each monomial is issued from a term
where a J1 has been transformed into a J2. Since there are α2 + 1 occurrences of J2 in each term, each
monomial appears α2 + 1 times. We now group these identical terms :

A′ =
α1!α2!α3!

l!
(α2 + 1)

∑

?

Ju1 . . . Jul
.

It remains to determine the definition set of the summation. Let us first estimate the number of its
terms, namely

N =
l!

α1!α2!α3!

α1

α2 + 1
=

l!

(α1 − 1)!(α2 + 1)!α3!
.

This is the number of elements in Uα1−1,α2+1,α3 . On the other hand, all the elements of Uα1−1,α2+1,α3

appear. In the contrary case, the retransformation of a J2 into a J1 would provide some elements
not appearing in I , which cannot be. It results that the sum comprises exactly all symmetrized of
Jα1−1

1 Jα2+1
2 Jα3

3 . Thus,

A′ =
α1!α2!α3!

l!
(α2 + 1)

∑

u∈Uα1−1,α2+1,α3

Ju1 . . . Jul

= α1
(α1 − 1)!(α2 + 1)!α3!

l!

∑

u∈Uα1−1,α2+1,α3

Ju1 . . . Jul

= S(A).

The application of the same treatment to B′ leads to the proof.
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