
16th November 2004- Last modification: 30th August 2005

Termination orders for 3-dimensional rewriting
Yves Guiraud1

Abstract: This paper studies3-polygraphs as a framework for rewriting on two-dimen-
sional words. A translation of term rewriting systems into3-polygraphs with explicit re-
source management is given, and the respective computational properties of each system
are studied. Finally, a convergent3-polygraph for the (commutative) theory ofZ/2Z-vector
spaces is given. In order to prove these results, it is explained how to craft a class of termi-
nation orders for3-polygraphs.

Outline

This paper starts with the introductory section 1 on equational theories and term rewriting systems.
It gives notations and graphical representations that are used in the sequel. Then, it focuses on one
major restriction of term rewriting, namely the fact that it cannot provide convergent presentations for
commutativeequational theories: equational theories that contain a commutative binary operator.

Section 2 studies the resource management operations of permutation, erasure and duplication: they
are implicit and global in term rewriting and it is sketched there how to make them explicit. However,
the framework for rewriting in algebraic structures needs to be extended to include this change; section 3
proposes3-polygraphs to fulfill this role. Here, these objects, introduced in [Burroni 1993], are used as
equational presentations of a special case of2-categories: MacLane’s product categories, called PROs,
for short, in [MacLane 1965].

These first three sections do not introduce new material, but focus on the notations, representations,
terminology and philosophy of this paper. Then section 4 gives some relations between term rewriting
systems and3-polygraphs: a translation from the former to the latter is built and some properties are
given. The main result of the section is the proof of a conjecture from [Lafont 2003]: any left-linear
convergent term rewriting system can be translated into a convergent3-polygraph.

To prove some of these results, one needs new tools, in adequation with the more complicated struc-
ture of polygraphs. In particular, section 5 introduces a recipe to build termination orders for them.
Section 6 consists in the application of this technique to prove some termination results of section 4.
Finally, section 7 applies the same technique to prove the termination of the3-polygraph L(Z2) which
was introduced in [Lafont 2003] and, since then, was already known to be a confluent presentation of
the equational theory ofZ/2Z-vector spaces. It is therefore the first known convergent presentation of a
commutative equational theory.

1Institut de mathématiques de Luminy, Marseille, France -guiraud@iml.univ-mrs.fr

1

1. Equational theories and term rewriting systems

1 Equational theories and term rewriting systems

Universal algebra provides different types of objects in order to modelize algebraic structures. Among
them areequational theories: these are presentations by generators (oroperators) and relations (orequa-
tions, equalities). As an example, the equational theory ofmonoidsis a pair(Σ, E0) consisting of the
signatureΣ (a set of operators) and the familyE0 of equations given by:

Σ = { µ : 2 → 1, η : 0 → 1 } ,

E0 =
(

µ(µ(x, y), z) = µ(x, µ(y, z)), µ(η, x) = x, µ(x, η) = x
)

.

Each operator has a finite number of inputs and of outputs. When each one has exactly one output, which
is the case here, the signature is said to bealgebraic. The given equational theory(Σ, E0) is said to be
the theory of monoidssince monoids are exactly sets endowed with a binary operation and a constant,
such that the operation is associative and admits the constant as a left and right unit.

The formal operations one can form on any set with a binary operation and a constant are called theterms
built from the signatureΣ. There exist numerous ways to build the setTΣ of such terms, and each one
gives a different representation for them. Two are used here, asyntacticone and adiagrammaticone.
For each one, a fixed countable setV is needed; its elements are calledvariables.

The classical representation of terms define them inductively with the following construction rules:
the first one states that each variable is a term; furthermore, the constantη is a term; then, for any two
termsu andv, the formal expressionµ(u, v) is a term.

The diagrammatic representation starts with the assignment, for each operator withn inputs, of an
arbitrarily chosen tree of height one withn leaves. For example, one can fix the following trees:

µ η

Then, the terms are all the trees one can build from these two generating trees and which leaves are
labelled with variables. As an example, the following figure pictures terms built from the signatureΣ,
with the two representations for each one:

µ(µ(x, y), µ(x, η))

x y z x
x x

x xy

µ(x, µ(y, z)) η µ(η, x) µ(x, x)

The equations from the theory of monoids generate equalities between terms that represent the same
operation, through arewriting process. Let us sketch how this works. For example, the following term
contains the tree-part of the associativity rule left-member, which has been greyed out:

x1 x2 x3

2

1. Equational theories and term rewriting systems

Hence, the associativity equation generates an equality between the chosen term and another. To deter-
mine which one, let us follow the following method, which consists of three steps: at first, the remaining
(black) part of the term is copied; then, in the space left empty, the other member of the rule is placed;
finally, the two parts obtained are joined (by dotted lines), according to the respective position of the
variables in each member of the equation. Concerning our example, this process is pictured as follows:

x1
x2 x3x1

x2 x3

Note that each variable appears once and in the same position in each member of the associativity rule,
so that the links are direct. When the second term is compacted, the following equality holds and is said
to be generated by the associativity equation:

x1x2 x3x1

=

x2 x3

In order to study the computational properties of these rewriting processes,term rewriting systemsare
useful; they can be defined as oriented equational theories. Indeed, such a rewriting system is defined
from an equational theory by keeping the same operators and replacing each equation by arewrite rule:
it is an oriented version of the equation, which can only be used in one way. As an example, starting
from the equational theory of monoids, one can form the term rewriting system(Σ, R0), whereΣ is still
the same algebraic signature made of a productµ and a unitη andR0 is the following set of three rules:

µ(µ(x, y), z) → µ(x, µ(y, z)), µ(η, x) → x, µ(x, η) → x.

Rewrite rules generatereductionsinstead of equalities, and a graph containing terms as vertices and re-
ductions as edges is called areduction graph. Some geometrical properties of reduction graphs are of
particular interest since they have consequences on computational properties of the rewriting process.
Among these geometrical properties, three are particularly studied:termination, confluenceandconver-
gence.

A rewriting systemterminatesif it contains no infinite length reduction paths such as:

u0 → u1 → u2 → . . . → un → un+1 → . . .

Intuitively, this means that the rewriting calculus must end after a finite time, whatever the input is. This
is formalized by the following consequence of termination: every termu has at least onenormal formû;
this means that̂u is a term such that there exists a finite reduction path fromu to û (denoted byu ։ û)
andû is irreducible (no rule can apply on it).

3

1. Equational theories and term rewriting systems

A rewriting system isconfluentif, whenever there exist three termsu, v and w such thatu ։ v

andu ։ w, then there exists a fourth termt such thatv ։ t andw ։ t. Intuitively, this means
that choices made between two rules that can transform the same term do not have any consequence on
a potential final result; equivalently, this means that any term has at most one normal form.

Thus, one defines the last property: a rewriting system isconvergentwhen it is both terminating and
confluent. One immediate consequence is that any term has exactly one normal form. This property is
very useful for several purposes.

One of the most known is the following usage: let us assume that(Σ, E) is an equational theory and
that (Σ, R) is a rewriting system that is afinite convergent presentationof (Σ, R), which means that it
is a convergent rewriting system with a finite number of rules and such that two terms are equal in the
equational theory if and only if there exists a non oriented reduction path between these two terms in the
rewriting system. Then there exists a decision procedure to check if two termsu andv are equal or not.

Indeed, one computes their unique normal formsû andv̂. Note that this is where the finiteness con-
dition is useful: it allows one to check if a term is a normal form. Then the two normal formsû andv̂ are
compared:u andv are equal in the equational theory if and only ifû andv̂ are (synctactically) equal.

However, term rewriting systems have a major restriction in this field: there is a large class of equational
theories for which they cannot provide a convergent presentation. These are the commutative theories,
fairly frequent in algebra, which are equational theories with a commutative binary operator. As an ex-
ample, let us take a look at one of the simplest, namely the equational theory of commutative monoids. Its
signature is stillΣ; its setE1 of equations is made of the same three as the ones for monoids (associativity
and left and right units) plus the following one expressing the commutativity of the product:

µ(x, y) = µ(y, x).

From this theory, one can form a number of term rewriting systems, such as the one withΣ as signature
and with the following choiceR1 of orientations for equations:

µ(µ(x, y), z) → µ(x, µ(y, z)), µ(η, x) → x, µ(x, η) → x, µ(x, y) → µ(y, x).

Note that the last rule could have been chosen in the reverse direction, but it would not change the
following fact: this rule generates infinite reduction paths. Indeed, for any two termsu and v, the
commutativity rules generates:

µ(u, v) → µ(v, u) → µ(u, v) → µ(v, u) → . . .

The purpose of this paper is to provide a framework where some commutative equational theories admit
convergent presentations:3-polygraphs. Links between term rewriting systems and3-polygraphs are
studied and a new tool to prove termination is given and applied on some examples.

The equational theory that provides the main example here is the one ofZ/2Z-vector spaces: it has the
same operators as the previous ones (the binary product embodies the sum and the unit is the zero) and a
setE2 of five equations made of the four fromE1 (associativity, left and right units and commutativity)
plus the following fifth equation:

µ(x, x) = η.

4

2. Resource management operations

It expresses the fact that, in aZ/2Z-vector space, any element is its own opposite. This theory is prefered
to the theory of commutative monoids for two reasons. The first one is theoretical: any boolean algebra
has an underlyingZ/2Z-vector space, so that any convergent presentation forZ/2Z-vector spaces is a
first step towards one for boolean circuits. The second one concerns the application range of the tools
developped here: this fifth equation has some nasty computational effects and is thus important to en-
compass in the new framework, so that it can be used for other applications.

From the theory ofZ/2Z-vector spaces, the term rewriting system(Σ, R2) is built, whereR2 is the
following choice of orientations:

µ(µ(x, y), z) → µ(x, µ(y, z)), µ(η, x) → x, µ(x, η) → x, µ(x, y) → µ(y, x), µ(x, x) → η.

Note that this rewriting system is neither terminating nor confluent but will serve as a starting point to
build a convergent presentation. This transformation will start with the study of the so-calledresource
management operations. For further information on (term) rewriting systems, one can refer to [Baader
Nipkow 1998].

2 Resource management operations

Let us recall the last step of the term rewriting process: one has to draw links between two parts of a
term, according to the variables occuring in the corresponding rule. As mentionned earlier, the rewriting
example in section 1 is the simpliest case: indeed, the variables occur once each and in the same order
in each member of the associativity rule. However, if this is not the case, one has two use additional
operations before links are drawn: these operations are called theresource management operationsand
there are three of the kind,permutation, erasureandduplication.

Permutation is used, for example, when the commutativity rule is applied. Indeed, when in this case,
one has to use a permutation operation that will exchange the two grey subterms in any term such as the
following generic one:

x xy y

The second operation, erasure, is used in the following case, for example: let us consider a theory
containing a binary operator and a constant which is a right absorbing element. The following figure
displays a rule which expresses this property (on the right) together with a generic application of this
rule (on the left); this requires an intermediate operation that erases the grey subterm:

x

Finally, the last operation, called duplication, can occur in the following case: let us consider a theory
containing two binary operators, one of which is left-distributive with respect to the other. Then, when
applied, a rule that expresses this property (such as the one pictured on the right) requires the use of an

5

2. Resource management operations

operation that can duplicate the greymost subterm (and exchange one of its copies with another subterm,
but this is the already-encountered permutation):

2
x x xy yz z

1 2 1

Thus, in term rewriting, these three operations are bothimplicit (they are not specified by rules) and
global (they act immediately on subterms of any size). We are now going to sketch how one can make
them explicit and local: only the idea is given here, the full translation is postponed to section 4.

Let us start with the following observation: the use of the three resource management operations is spec-
ified both by the number of occurences and the order of appearance of each variable in each member
of a rewrite rule. Thus, in order to make these operations explicit, variables will be replaced by some
additional operators that will represent local permutations, erasers and duplicators; furthermore, rules
will guarantee the global behaviour of these local operators.

In order to give an idea of how the translation works, let us start with the study of this term, which
represents the operation(x, y, z) 7→ µ(µ(x, z), x):

xx z

Seen as an operation, it is the composite of(x, y, z) 7→ (x, z, x) followed by(x, y, z) 7→ µ(µ(x, y), z).
The first operation can be pictured as the following diagram (a shunter), since its action is to tell where
each of the three arguments goes in the term:

z

x x

x x x x

y yz

z

z

=

This diagram will be formalized as a composite of new operators and the term will be translated this way
(with some explanations below):

3

7−→
1 1

Variables in the term have been replaced by ordinals; indeed, we have seen that variables are just labels
corresponding to the first, second, third, etc. arguments taken by the corresponding operation. Hence,
they will be replaced by ordinals whenever it makes the translation clearer. The second remark is also
about variables, but in the translated diagram: they will always appear, after translation, in order: 1, 2, 3,
etc. Thus, they have no purpose anymore; they will therefore vanish, as in the diagram.

6

2. Resource management operations

Finally, let us see what operators will be added to the signature and sketch how to translate terms and
rules. One operator is added for each resource management operation: indeed, in order to formalize
our previous diagram, one must be able to exchange two arguments, erase one or duplicate another one.
Thus, we fix a (non-algebraic) signature∆ made of the following threeresource managementoperators:

δτ ε

Each one has a representation that makes explicit the operation one wishes it to embody. Some rules will
be added to ensure their global behaviour, but they will be given in section 4. For the moment, the only
thing we need to know is that these rules give the following interpretations to these three operators:

τ(x, y) = (y, x), ε(x) = (nothing), δ(x) = (x, x).

Now, let us sketch how terms are translated: first, the tree-part is copied; then and progressively, resource
management operators are added on the top of the copy, according to the variables that appear in the term.
The following figure gives four sample translations (the translating map is denoted byΦ thereafter):

Φ
1

1 1

2
2

3
3

1 12 3

7−→

7−→

7−→

7−→

Φ

Φ Φ

Then, let us see how to translate the five rules of our term rewriting system derived from the theory of
Z/2Z-vector spaces. Each rule is pictured in order (associativity, left and right units, commutativity and
self-inverse), has been given a name (A, L, R, C andS) and has its translation written just below:

→S→A

1 2 3 1 2 3

→C

1 12 2

→Φ(A) →Φ(C)→Φ(L) →Φ(R) →Φ(S)

1 1

→R

1 1
1 1

→L

Note that several cases may occur. For the first three rules, no resource management operator is added
during translation: these three rules arelinear (or left- andright-linear). When translated, the commu-
tativity rule has one operator added on its right side and none on its left side: it is a left-linear but not
right-linear rule. Finally, the self-inverse rule has one operator added on each of its members during
translation: it is neither left- nor right-linear.

7

3. Three-dimensional polygraphs

Some issues have now been arisen. The first one concerns the rules to be added in order both to describe
the behaviour of our local permutation, eraser and duplicator and to ensure the global coherence of these
local rules.

The next issue is about the respective computational properties of the starting term rewriting system
and of the rewriting system one gets as a result of making the resource management operations explicit.
These first two issues are adressed in section 4.

For the moment, we are concerned with a third issue: where does rewriting takes place now? Indeed,
starting from a term rewriting system, we have crafted another rewriting system which is not a term one,
and for two reasons. The first one is that its signature contains non-algebraic operators, that is operators
that do not have exactly one output (the resource management operators have zero or two outputs). The
second reason is that variables have been dropped to be replaced by these new operators: this is also a
step outside term rewriting. Hence, our new object is not a term rewriting system and section 3 recalls a
notion from [Burroni 1993] used to describe it.

3 Three-dimensional polygraphs

Like equational theories,3-polygraphsare useful objects in universal algebra, in the sense that they allow
one to present algebraic structures by generators and relations. However, they are far more general than
equational theories, and this has two consequences: on one hand, they can handle more general objects,
like the rewriting system sketched in section 2, or the structure of quantum groups; but, on the other
hand, their generality comes with an increase in the structural complexity: the development of new tools
is mandatory to prove termination, for example.

Polygraphs are genuine categorical objects but we prefer a diagrammatic definition here. For this paper,
a3-polygraph is made of a signature, that is a set of operators with a finite number of inputs and a finite
number of outputs, together with a family of rules: in fact, this is just a special case of3-polygraph,
one with only one0-cell and one1-cell. For the complete theory ofn-polygraphs, the interested reader
should check [Burroni 1993].

The operators are once again represented by fixed diagrams of size one, with as many free edges at
the top as the operator inputs and as many free edges at the bottom as the operator outputs. For example,
some usual diagram shapes are pictured here:

Some of them have already been encountered, some of the others are less algebraic: one has zero input
and output - it is usefull to describe Petri nets, see [Guiraud 2004] -, one has two inputs and zero output
- it is used together with its dual with zero input and two outputs to represent knots and tangles.

Here, the "terms" one considers are all the circuits one can build with all these elementary diagrams:
these are thePenrose diagrams(or circuits) one can build with the size one diagrams representing the
operators, such as:

8

3. Three-dimensional polygraphs

Each of these circuits has a finite number of inputs (on the top) and of outputs (on the bottom) but has no
variable. Furthermore, they need not be connected, as the three-inputs and three-outputs wire-only one.

These circuits, which are also called diagrams or arrows, have an algebraic structure. To explain it, let us
use the notationf : m → n to express thatf is a circuit withm inputs andn outputs. For any circuitf,
s(f) is its number of inputs andt(f) its number of outputs. The following constructions and properties
are valid for circuits:

- Let f : m → n andg : n → p. Then, one can connect each output off with the corresponding
input ofg, in the same order, to form a new circuit withm inputs andp outputs denoted byg ◦ f.

- This composition operation admits local units: a circuitf : m → n satisfiesf◦m = f andn◦f = f,
wherep is the wire-only circuit withp inputs andp outputs.

- Let f : m → n andg : p → q. Then, one can putf andg side by side to form a new circuit with
m + p inputs andn + q outputs, denoted byf ⊗ g.

- This product operation admits a bilateral neutral element: the empty circuit0 with no input nor
output, represented by an empty diagram.

- Finally, the composition and product are related by theexchange relations. They are given by the
following equality, that is required to hold for any two circuitsf : m → n andg : p → q:

(t(f) ⊗ g) ◦ (f ⊗ s(g)) = f ⊗ g = (f ⊗ t(g)) ◦ (s(f) ⊗ g).

Definition 3.1. A family C of circuits endowed with this structure⊗ and◦, satisfying the aforegiven unit
and exchange relations, is called aproduct category; the subset of circuits withm inputs andn outputs
is denoted byC(m,n). When the circuits ofC are freely built from a signatureΣ, this object is thefree
product category generated byΣ, denoted by〈Σ〉. ¨

Remark 3.2. Product categories, or PROs, were defined in [MacLane 1965]. An alternative definition
is: a product category is a strict monoidal category whose underlying monoid of objects is(N,+, 0),
the one of natural numbers with addition and zero. In [Guiraud 2004], such a category was called
a (monochromatic) operad, for this structure is a common generalization of many universal algebra
objects: May’s operads, Lawvere’s algebraic theories and MacLane’s PROs and PROPs.

Product categories are also a special case of2-monoidsor 2-categories with only one0-cell. A
generalization of this paper results should be possible, since circuit-like diagrams extend to general2-
cells. For this paper, we stick to MacLane’s product categories, but all this terminology will be made
clear in subsequent work.

A rewrite ruleon a product categoryC is a pairf → g of parallel arrows (they have the same number
of inputs and the same number of outputs). Such a rule generatesreductionson circuits: whenever an
arrowh containsf, the rule generates a reduction fromh to k, wherek is the same ash, except thatf
has been replaced byg. The fact thatf andg have the same number of inputs and the same number of
outputs ensures that one can connect the unchanged part of the circuit with the changed part, without
using implicit operations before.

9

4. From term rewriting to 3-polygraphs

Definition 3.3. A 3-polygraphis a pair(Σ, R) whereΣ is a signature andR is a family of rewrite rules
on 〈Σ〉.

One way to formalize the reduction relation generated by rules on a free product category〈Σ〉 is to define
contexts. We just explain here what they are, avoiding to dig further into the technical aspects, devel-
opped in [Guiraud 2004]. LetΣ be a signature. Then, acontexton 〈Σ〉 is a circuitc with a "hole" inside:
this hole has a finite number of inputs and of outputs where on can paste a circuitf with correponding
numbers of inputs and outputs; this pasting operation results in a circuit denoted byc[f]. Then, a rule
f → g generates a reduction from each circuitc[f], with c any context, to the circuitc[g].

Finally, given two product categoriesC andD, a product category functor fromC to D is a map which
sends each circuit ofC onto a circuit ofD with the same number of inputs and of outputs, and which
preserves identities, products and compositions. WhenC is the free product category〈Σ〉, then a classical
categorical argument tells us that any product category functorF : 〈Σ〉 → D is entirely and uniquely
given by the circuitsF(ϕ) in D, for every operatorϕ in Σ.

4 From term rewriting to 3-polygraphs

This section uses results from [Burroni 1993], presented in a slightly different way, in order to prove a
conjecture from [Lafont 2003]: this is theorem 4.6. This is the result that allows the definition 4.8 of
a translationΦ from any term rewriting system into a3-polygraph. Proposition 4.11 and theorem 4.12
give the respective computational properties of the term rewriting system and the3-polygraph.

In section 2, a3-polygraph has been built from the term rewriting system(Σ, R2), which presents the
equational theory ofZ/2Z-vector spaces. Its signature, denoted byΣc, is the one built fromΣ by addi-
tion of the three resource managment operatorsτ, δ andε from ∆. Its family of rules, denoted byΦ(R2),
consists of the translationsΦ(A), Φ(L), Φ(R), Φ(C) andΦ(S) of the five rules from the original term
rewriting system. This construction can be generalized to any term rewriting system but is still incom-
plete for the moment. It lacks two families of rules and this section starts with their description.

Let us fix an algebraic signatureΣ. The set of terms built on the signatureΣ and on some fixed countable
setV of variables is denoted byTΣ. Let us assume that the setV is endowed with a total order (given by
a bijection withN), so that the variables can be writtenx1, x2, x3, etc. For any termu, the notation♯u is
used for the greatest natural numberi such thatxi appears inu. Then, we defineTΣ(m, n) to be the set
of families(u1, . . . , un) of n terms such that♯ui ≤ m for everyi. Note that the setTΣ(m, 0) has only
one element, denoted by∗(m). The following operations provide the setTΣ with a product category
structure:

- If u = (u1, . . . , un) is in TΣ(m,n) andv = (v1, . . . , vp) is in TΣ(n, p), then their composite
v ◦ u is the family(w1, . . . , wp) where eachwi is built fromvi by replacing eachxj with uj.

- The identity ofn, for any natural numbern, is the family(x1, . . . , xn).

- The productu ⊗ v of u = (u1, . . . , un) in TΣ(m,n) and ofv = (v1, . . . , vq) in TΣ(p, q) is the
family (w1, . . . , wn+q) built that way: ifi lies between1 andn, thenwi is ui; otherwise,wi+n

is vi where eachxj has been replaced byxj+m.

10

4. From term rewriting to 3-polygraphs

Furthermore, this product category satisfies some additional properties. The first one is thatTΣ is a
cartesiancategory: seen as a strict monoidal category, the monoidal product⊗ is the functorial part of
a cartesian product. In our case and informally, this means that every circuitf : m → n is entirely and
uniquely determined byn circuitsm → 1, in the same way that any functionf : Xm → Xn, whereX is
a set, is entirely and uniquely determined byn functionsXm → X: its components. To check thatTΣ is
indeed cartesian, one uses a result from [Burroni 1993], restricted to our setting:

Theorem 4.1 (Burroni). A product categoryC is cartesian if and only if it contains three arrows:

ετ δ

Such that the two following families of equations hold:

1. The familyE∆, made of the following seven equations:

=

= = = =

==

2. The familyEΣ, made of three equations for each integern and each arrowf : n → 1 in C:

f
= = =

f f

f f

f

The following recursively defined arrows families(δn)n∈N and(τn,1)n∈N have been used:

=

n+1

n+1 n+1 n+1

n+1
n

nn

n

n

=

with the initial valuesδ0 = 0 andτ0,1 = 1.

Note that the following convention is now used in diagrams: generating operators are drawn with black
diagrams, while composite arrows are grey. The union of the two familiesE∆ andEΣ is denoted byE∆Σ.
Theorem 4.1 is not mandatory to get the following proposition but yields an easy proof of it:

Proposition 4.2. The product categoryTΣ is cartesian.

Proof. Let us start with the definition of the three arrows from theorem 4.1: the arrowτ is the pair
(x2, x1) of terms; the arrowδ is (x1, x1); finally, the arrowε is the empty family∗(1). Computations to
check the equations of theorem 4.1 are straightforward. ♦

11

4. From term rewriting to 3-polygraphs

The next step consists in the proof thatTΣ is the free cartesian category generated by the algebraic
signatureΣ. In order to prove this fact, one starts with another use of theorem 4.1:

Corollary 4.3 (of theorem 4.1). For every algebraic signatureΣ, the category〈Σc〉/E∆Σ is the free
cartesian category generated byΣ.

Hence, in order to prove thatTΣ is another version of the free cartesian category generated byΣ, it is
sufficient to prove that there exists an isomorphismΦ̂ : TΣ → 〈Σc〉/E∆Σ.

The signatureΣ is contained inTΣ: one defines an inclusioni which sends eachϕ : n → 1 from Σ

onto the termϕ(x1, . . . , xn). Hence, corollary 4.3 extendsi into a cartesian functorF from 〈Σc〉/E∆Σ

to TΣ: this functor sends eachϕ from Σ onto i(ϕ) andτ, δ andε respectively onto(x2, x1), (x1, x1)

and∗(1).
Conversely, let us consider an arrowf = (u1, . . . , un) in TΣ(m,n). Each termui can be writ-

ten ui = fi(y
i
1, . . . , y

i
ki

), with ki an integer,fi an arrow in〈Σ〉(ki, 1) and eachyi
j a variable from

{x1, . . . , xm}. Furthermore, this decomposition of terms is unique. Thus, the arrowf uniquely decom-
poses into:

f = (f1 ⊗ . . . ⊗ fn) ◦ (y1
1, . . . , y

n
kn

).

There remains to prove that every family(y1, . . . , yk) of variables in{x1, . . . , xm} can be uniquely
written (moduloE∆) with the three arrowsi(τ), i(δ) andi(ε). This can be done in two steps.

Let us define the sub-product categoryV of TΣ by restricting ourselves to families of variables: this
is T∅, where∅ denotes the signature with no operator. One also defines the cartesian categoryF

o of finite
setswith: the arrows ofFo(m,n) are in bijective correspondance with the functions from the finite set
[n] = {1, . . . , n} to [m]. Then:

Lemma 4.4. The cartesian categoriesV andF
o are isomorphic.

Proof. Let (y1, . . . , yn) be a family of variables taken in{x1, . . . , xm}. Then, there exists an unique
functionf∗ from [n] to [m] such thatyi = xf∗(i) for eachi. Let us fixθ(y1, . . . , yn) as the arrowf in F

o

that corresponds tof∗. Conversely, iff is an arrow inF
o(m, n): let us denote byf∗ the corresponding

function from[n] to [m]. Then one definesω(f) = (xf∗(1), . . . , xf∗(n)). There remains to check thatθ

andω are cartesian functors which are inverse one another, which is straightforward. ♦

The second step uses another result from [Burroni 1993]:

Theorem 4.5 (Burroni). The cartesian categoriesFo and〈∆〉/E∆ are isomorphic.

Hence, the cartesian categoriesV and〈∆〉/E∆ are isomorphic. Consequently, each family(y1, . . . , yk)

of variables taken in{x1, . . . , xn} corresponds to a unique arrow in〈∆〉/E∆. Furthermore, each arrowf
in TΣ(m,n) admits a unique decompositionf = fΣ ◦ f∆ with fΣ in 〈Σ〉 andf∆ in V.

Finally, one gets that the cartesian functorF from 〈Σc〉/E∆Σ to TΣ is an isomorphism. However, we
want an map fromTΣ to 〈Σc〉: let us find a convergent3-polygraph(Σc, R∆Σ) such that〈Σc〉/R∆Σ is
isomorphic to〈Σc〉/E∆Σ and use the unique normal form property.

A conjecture from [Lafont 2003] is proved:

Theorem 4.6. For any algebraic signatureΣ, the3-polygraph(Σc, R∆Σ) is convergent and〈Σc〉/R∆Σ

is isomorphic to the free cartesian category〈Σc〉/E∆Σ generated byΣ, where the family of rulesR∆Σ is
made of the following two subfamilies:

12

4. From term rewriting to 3-polygraphs

1. The familyR∆:

2. The familyRΣ given, for each integern and each operatorϕ in Σ(n, 1), by:

ϕ

ϕ

ϕ

ϕ ϕ

ϕ

ϕ

ϕ

Remark 4.7. Three families of verifications need to be done. The first one consists in checking that the
new rules are derivable fromE∆Σ, which is straightforward.

The second one is much more complicated: one needs to check that the3-polygraph terminates.
However, the structural complexity of polygraphs requires new techniques since the usual ones used in
rewriting do not work. One way to craft reduction orders for3-polygraphs is made explicit in section 5
and used in section 6 in order to prove the termination of(Σc, R∆Σ).

Finally, one needs to check that this3-polygraph is confluent. Here, this is equivalent to computing
all of its critical pairs and check that each one is confluent. Once again, the structural complexity of
polygraphs generates problems unknown with other kinds of rewriting theories. For example, a finite
3-polygraph can produce an infinite number of critical pairs; this is the case here. However, among these
critical pairs, some have properties that allow us to finally have only a finite number of computations to
do. Critical pairs of3-polygraphs need to be further studied and classified according to properties of this
kind; this will be addressed in subsequent work.

The present case is discussed in section 6 and fully studied in [Guiraud 2004].

From theorem 4.6, one concludes the existence of a mapΦ from TΣ to 〈Σc〉. Indeed, iff is an arrow
in the cartesian categoryTΣ, thenΦ(f) will be theR∆Σ-normal form of any representant in〈Σc〉 of the
arrow F(f) in the product category〈Σc〉/E∆Σ. This mapΦ, which could not be proved to exist until
theorem 4.6, allows the formal definition of the translation of terms into circuits.

13

4. From term rewriting to 3-polygraphs

Definition 4.8. For every termu in TΣ and for every integern ≥ ♯u, the termu can be seen as an
arrow un in TΣ(n, 1). One denotes byΦn(u) the arrowΦ(un) of 〈Σc〉 and byΦ(u) the particu-
lar caseΦ♯u(u). If α = (u, v) is a rewrite rule onTΣ, the notationΦ(α) is used for the rewrite
rule (Φ(u),Φ♯u(v)) on 〈Σc〉.

As an immediate consequence of the definition, one gets:

Lemma 4.9. For any algebraic signatureΣ, any termu in TΣ and any integern ≥ ♯u, the arrowΦn(u)

is a normal form for the resource management rulesR∆Σ.

The rest of this section is devoted to the comparison of a term rewriting system(Σ, R) with the 3-
polygraph(Σc, Rc), whereRc is the union of the familyR∆Σ of resource management rules and of the
family Φ(R) made of the translations byΦ of the rulesR.

Remark 4.10. Before stating the result, let us qualify byuniformizeda rule (u, v) on TΣ such that
u = f(y1, . . . , yk) with f an arrow in〈Σ〉 and (y1, . . . , yk) a family of variables with the following
property:y1 is x1; then, for eachi in {1, . . . , k − 1}, the variableyi+1 is either in{y1, . . . , yi}, or yi+1

is xp+1 if {y1, . . . , yi} = {x1, . . . , xp}.
Note that any rule onTΣ can be replaced by a uniquely defined uniformized rule that generates the

same reduction relation. Furthermore, if a left-linear rule is replaced by its uniformized rule, this one is
also left-linear.

Hence, for what follows, (left-linear) term rewriting systems can always be considered uniformized:
if they are not, they are replaced by their uniformized equivalent version, with no consequence on the
results.

This choice simplifies the translations: a rule(u, v) that is both left-linear and uniformized satisfies
u = f(x1, . . . , x♯u), with f an arrow in〈Σ〉, uniquely defined; hence, the translation byΦ of such au
is f and thus is an arrow of〈Σ〉.

Proposition 4.11. If (Σ, R) is a term rewriting system, then:

1. If the term rewriting system(Σ, R) terminates, so does the3-polygraph(Σc, Rc).

2. The translationΦ preserves the reduction steps generated by any left-linear ruleα, that is: for
any pair(u, v) of terms such thatu →α v and any integern ≥ ♯u, there exists an arrowf in 〈Σc〉
such that

Φn(u) →Φ(α) f ։R∆Σ
Φn(v).

Proof. Point 1 uses the technique to be introduced in section 5. Its proof is thus postponed until section 6.
Point 2 requires lengthy and cumbersome though intuitively simple computations that can be found in
[Guiraud 2004]. ♦

Theorem 4.12.A left-linear term rewriting system(Σ, R) terminates (resp. is confluent) if and only if its
associated3-polygraph(Σc, Rc) terminates (resp. is confluent).

Proof. Let us assume that the3-polygraph(Σc, Rc) terminates while the term rewriting system(Σ, R)

does not. Consequently, there exists some sequence(un)n∈N of terms inTΣ such thatun →R un+1 for
everyn. From 4.11, since every rule inR is left-linear, one concludes that, for everyk ≥ ♯u0:

Φk(u0) ։+
Rc Φk(u1) ։+

Rc · · · ։+
Rc Φk(un) ։+

Rc Φk(un+1) ։+
Rc · · ·

14

5. Termination orders for 3-polygraphs

where the notation։+
Rc stands for anon-emptyRc-reduction path. Such an infinite reduction path exis-

tence is denied by the termination of the3-polygraph(Σc, Rc), thus giving this property for(Σ, R). The
converse, which is true even if the term rewriting system is not left-linear, is still postponed to section 6.

Now, let us assume that the term rewriting system(Σ, R) is confluent. Let us consider a branching
(f, g, h) of (Σc, Rc): the arrowsf, g andh have the same finite number of inputs, saym, and the same
finite number of outputs, sayn, and satisfyf ։Rc g andf ։Rc h. Let us denote byπ the canonical
projection of〈Σc〉 onto TΣ. Then,π sends each off, g andh on families(f1, . . . , fn), (g1, . . . , gn)

and(h1, . . . , hn) of terms such that each one has variables in{x1, . . . , xm}. Moreover, for eachi, one
gets that the triple(fi, gi, hi) is a branching of(Σ, R). From confluence of this rewriting system, one
concludes the existence of a arrowki that closes this branching. Let us definek as the translation, byΦm,
in 〈Σc〉(m,n), of the family(k1, . . . , kn) of terms. Since(Σ, R) is left-linear, proposition 4.11 ensures
that this arrowk closes the branching(f, g, h).

Conversely, let us assume that the3-polygraph(Σc, Rc) is confluent. Let us consider a branching
(u, v, w) in (Σ, R); since this rewriting system is left-linear, this branching translates to a branching
(Φn(u),Φn(v),Φn(w)) in (Σc, Rc) for anyn ≥ ♯u. Since the3-polygraph is confluent, there exists
some arrowf in 〈Σc〉(n, 1) closing this branching. The projectionπ(f) is an arrow inTΣ(n, 1) and thus
corresponds to a term that closes the initial branching(u, v, w). ♦

Before considering what this result allows (or rather does not allow) us to conclude about our term rewrit-
ing system(Σ, R2) presenting the theory ofZ/2Z-vector spaces, there remains some termination results
to prove in the elapsed section. However, the intrinsic complexity of the polygraph structure prevents the
use of classical techniques; rather, the incoming section presents an adaptation to the particular case of
3-polygraph we consider of classical interpretation techniques used to craft termination orders for terms.

5 Termination orders for 3-polygraphs

In rewriting, one of the most used technique to prove termination is the following one: build areduction
order, which is a terminating strict order that is compatible with the term structure; then prove that this
order contains the rules. Hence any reduction path in the corresponding rewriting system yields a strictly
decreasing family for the reduction order: the fact that such families cannot be infinite ensures that there
cannot exist any infinite reduction path or, equivalently, that the rewriting system terminates.

In term rewriting, one easy way to build reduction orders is by means of aninterpretation. The
simpliest ones are: each termu such that♯u = n is sent to a functionu∗ from N

n to N (or any set
equipped with a terminating strict order). Then, one says thatu > v if eachn-uple of integers is sent
to a strictly greater integer byu∗ than byv∗. One easy way to computeu∗ for each termu is to fix ϕ∗

for each operatorϕ in the considered signature and to extend these values functorially. If one can prove
that eachϕ∗ is a strictly monotone map and thatf > g for each rulef → g, thenu > v whenever there
is a reduction fromu to v. Since the order onN is terminating, so is the order on functions: hence, the
considered term rewriting system terminates.

However, in the case of3-polygraphs, this classical interpretation technique does not yield reduction
orders in general. Indeed, it is not always possible to send each operatorϕ of the signature onto a strictly
monotone map: for example, the erasure operatorε will be sent to an function fromN to N

0, that is to a
single-element set: this function is unique and monotone, but not strictly. Consequently: even if a rule

15

5. Termination orders for 3-polygraphs

f →g satisfiesf∗ > g∗, then(εn ◦ f)∗ = (εn ◦ g)∗, with n the number of outputs of bothf andg.
One could also consider contravariant interpretations: hence,ε would be sent to a constant natural

numberε∗. But, in the most interesting3-polygraphs, such as the ones we are concerned with, there is a
constant operatorη which cannot be contravariantly sent to a strictly monotone map. The interpretation
technique must be adaptated to the polygraph structure in order to yield termination orders.

Here we are in front of a choice between two possible directions: the first one consists in interpreting
arrows into functions between objects equipped with a monoidal product, rather than a cartesian one,
such as vector spaces. But, when examined, this has led to horrendous computations that did not produce
any reduction order. Nonetheless, this trail is not to be forgotten and shall be reexamined when there is
a computational tool, adaptated to polygraphs.

The other path consists in using classical interpretations, both covariant and contravariant, as tools
to build a third interpretation: this one will give the desired reduction orders. Let us present images that
describe the intuition beneath the formalism. Each arrow in the considered product category is seen as
an electrical circuit whose elementary components are the operators it is built from, such as suggested by
the diagrammatic representation used. Then, a heat production value is associated to each circuit: each
of its inputs and outputs receives a current with a fixed intensity; hence there are two types of currents:
some are descending (they come from the inputs and propagate downwards to the outputs) and some are
ascending (they propagate upwards, from the outputs to the inputs).

The heat produced by a fixed circuit is calculated this way: an operator is arbitrarily chosen. Then,
currents are propagated through the other operators to the chosen one. This requires that choices have
been made for each operator: for each one, one must be able to compute the intensities of descending
currents transmitted when he knows the intensities of incoming descending current, and similarly with
ascending currents. When one knows the intensities of each current coming into the chosen operator,
one computes the heat it produces, according to values fixed in advance. Then, one repeats the same
procedure for each operator, and sums the results to get the heat produced by the considered circuit, for
the chosen current intensities.

Two circuits with the same number of inputs and the same number of outputs are compared this way:
if, for each family of (ascending and descending) current intensities, one produces more heat than the
other one, then the first one is said to be greater. The goal of this section is twofolds: firstly, to formalize
the objects required to compute such an order; secondly, to obtain sufficient conditions for this order to
be a reduction order.

Let us describe the required materials. The first one is the object where the interpretations take their
values: this will be a product category equipped with a strict order. In order to build it, one considers
(non-empty) ordered setsX andY to express the current intensities, one for descending currents, one for
ascending currents (for one of the applications to be described, two different sets of values are needed).
Then, a commutative monoidM will contain the possible values of heats; moreover, it is supposed to be
equipped with an order such that the addition is strictly monotone in both variables.

From the dataX, Y andM, one builds a somewhat weird product categoryO(X, Y,M) this way: an
arrow fromm to n in O(X, Y,M) is a triplef = (f∗, f

∗, [f]) consisting of threemonotonefunctions

f∗ : Xm → Xn, f∗ : Yn → Ym, [f] : Xm × Yn → M.

The identity ofn is the triplen = (Xn, Yn, 0) made from the identities ofXn andYn and the constant

16

5. Termination orders for 3-polygraphs

zero-function fromXn × Yn to M. Two arrowsf : m → n andg : n → p compose this way:(g ◦ f)∗
and(g ◦ f)∗ are respectively the compositesg∗ ◦ f∗ andf∗ ◦ g∗; for elements~x in Xm and~y in Yp, the
function[g ◦ f] is given by:

[g ◦ f](~x,~y) = [f](~x, g∗(~y)) + [g](f∗(~x),~y).

If f : m → n andg : p → q are two arrows inO(X, Y,M), then their product is given by:(f ⊗ g)∗ and
(f⊗g)∗ are respectivelyf∗⊗g∗ andf∗⊗g∗; if ~x, ~y,~x ′ and~y ′ are respectively elements ofXm, Yn, Xp

andYq, then[f ⊗ g] is given by:

[f ⊗ g](~x,~x ′,~y,~y ′) = [f](~x,~y) + [g](~x ′,~y ′).

Then one checks that these operations return monotone functions and that they satisfy the required equa-
tions, in order to get:

Lemma 5.1. The aforedefined objectO(X, Y,M) is a product category.

On top of this product category structure, a strict order relationÂ is defined on parallel arrows of
O(X, Y,M). If f andg are two arrows fromm to n, thenf Â g if, for any ~x in Xm and~y in Yn,
the following three inequalities hold:

f∗(~x) ≥ g∗(~x), f∗(~y) ≥ g∗(~y), [f](~x,~y) > [g](~x,~y).

Now, let us consider a signatureΣ. Let us asume that each operatorϕ : m → n in Σ is associated with
an arrow(ϕ∗, ϕ

∗, [ϕ]) : m → n in O(X, Y,M): this is the interpretation. For anyϕ, the monotone
functionsϕ∗, ϕ∗ and [ϕ] respectively express how the operator transmits descending and ascending
currents and how much heat it produces, according to the current intensities it receives.

Since〈Σ〉 is the free product category generated by the signatureΣ, the map sending eachϕ in Σ to
the triple(ϕ∗, ϕ

∗, [ϕ]) uniquely extends to a product category functorF from 〈Σ〉 to O(X, Y,M). This
means that one can computef∗, f∗ and[f] for any circuitf in 〈Σ〉, from the valuesϕ∗, ϕ∗ and[ϕ] given
for each operatorϕ in Σ and using the formulas for composition and product inO(X, Y,M).

The last step consists in usingF to get the orderÂ back fromO(X, Y,M) on〈Σ〉: for any two parallel
arrowsf andg in 〈Σ〉, thenf Â g is F(f) Â F(g).

Theorem 5.2. With the aforegiven notations and if the strict part of the order onM is terminating, then
the strict orderÂ constructed on〈Σ〉 is a reduction order.

Proof. One must check that the binary relationÂ built on 〈Σ〉 is antireflexive, transitive, terminating and
compatible with the product category structure. Let us assume thatf is an arrow in〈Σ〉(m,n) such that
f Â f; let us fix any elements~x and~y respectively in the non-empty setsXm andYn; then, by definition
of Â, one gets the following strict inequality inM:

[F(f)](~x,~y) > [F(f)](~x,~y).

However, this inequality cannot hold inM since> is the strict part of an order relation. The termination
is proved by a similar argument: any infinite and strictly decreasing sequence in〈Σ〉 yields, through the
non-emptyness ofX andY, at least one infinite strictly decreasing sequence inM, which existence is

17

6. Application 1: explicit resource management polygraphs

denied by the assumed termination of the strict part of its order. The transitivity comes from the ones of
the orders onX, Y andM. Finally, compatibility with the product category structure is checked through
computations which use the monotone quality of eachf∗, f∗ and [f] in O(X, Y,M), together with the
facts thatM is a commutative monoid andF is an product category functor. ♦

For concrete applications, presented in the next two sections, the following corollary will be used instead
of theorem 5.2:

Corollary 5.3. Let us consider a3-polygraph(Σ, R). Let us assume that there exist:

1. Two non-empty ordered setsX andY.

2. A commutative monoidM equipped with an order such that its strict part isterminatingand such
that the sum is strictly monotone in both variables.

3. For each operatorϕ in Σ(m,n), threemonotonefunctions:

ϕ∗ : Xm → Xn, ϕ∗ : Yn → Ym, [ϕ] : Xm × Yn → M.

If the strict orderÂ on arrows of〈Σ〉 built from these data, in the aforegiven manner, satisfiesf Â g for
every rulef → g in R, then the3-polygraph(Σ, R) terminates.

6 Application 1: explicit resource management polygraphs

This section is devoted to the remaining unproved results from section 4. Let us fix a term rewriting
system(Σ, R) for the whole section.

6.1 Convergence of the 3-polygraph of explicit resource management

The first result to prove is theorem 4.6: the3-polygraph(Σc, R∆Σ) is convergent, where we recall from
section 4 thatΣc is the signature made of the algebraic signatureΣ and the resource management signa-
ture∆, while R∆Σ is the family of resource management rules.

The proof is divided in three steps: the first one consists in proving its termination; then, we recall
from [Guiraud 2004] that this3-polygraph is locally confluent; finally, Newman’s lemma is applied to get
its convergence. Let us start with termination: we use the technique developped in section 5. However,
the considered polygraph is rather complex and needs two applications of the technique. For the rest of
this paragraph, let us fix some notations. Let us denote byα the following rule:

We denote byN∗ the set of non-zero natural numbers with its natural order relation. The commutative
monoid freely generated byN∗ is denoted by[N∗] and is considered equipped by themultiset order
generated by the usual order relation on natural numbers. The elements of[N∗] are all the finite formal
sums of non-zero natural numbers; a natural numbern, seen as a generator of[N∗], is denoted byn.

18

6.1. Convergence of the 3-polygraph of explicit resource management

The multiset order is defined in two steps: for the first one, one says that any suma =
∑

i ki.ni satisfies
the inequalityn > a if n > ni for eachi; then, the multiset order is taken as the reflexive and structure-
compatible closure of this relation.

This implies that the addition is strictly monotone in both variables; furthermore, since the strict
order> onN

∗ terminates, so does the strict part of the multiset order. Here is an example of some strict
inequalities that hold in[N∗]:

0 < 127.1 < 2 < 4.1 + 2.3 < 4 .

Lemma 6.1.1.The3-polygraph(Σc, R∆Σ) terminates if and only if the3-polygraph(Σc, {α}) terminates.

Proof. Let us consider the product categoryO(N∗, N∗, [N∗]) together with the termination orderÂ as
defined in section 5. Let us denote byF the product category functor from〈Σc〉 into O(N∗, N∗, [N∗])

defined by the following values on the operators ofΣc:

0

i i

i 1 i

i + j + 1

i i i j j k

i i i1 ini1 in

i ji1 + · · · + in + 1

i

i

i i

j

j j

j

j

k li

i + k

j ij.l + l.i + j

Three diagrams are given for each operatorϕ: two represent the functionsϕ∗ andϕ∗ (howϕ transmits
the current intensities) and one represents[ϕ] (the heatϕ produces). Now, it is checked that, for every
rule f → g in R∆Σ, the inequalityF(f) Â F(g) holds, except for the ruleα : sα → tα, for which
F(sα) = F(tα). Let us check the (in)equalities for three sample rules. The complete computations are in
[Guiraud 2004]. Let us start with the coassociativity rule forδ:

One checks that the first two non-strict inequalities are satisfied:
{

((1 ⊗ δ) ◦ δ)∗(i) = (i, i, i) = ((δ ⊗ 1) ◦ δ)∗(i)

((1 ⊗ δ) ◦ δ)∗(i, j, k) = i + j + k + 2 = ((δ ⊗ 1) ◦ δ)∗(i, j, k).

Moreover:

{
[(1 ⊗ δ) ◦ δ](i, j, k, l) = 2.i + l + k + l + 2

[(δ ⊗ 1) ◦ δ](i, j, k, l) = 2.i + l + k.

19

6. Application 1: explicit resource management polygraphs

Sincel + 2 > 0, one getsk + l + 2 > k and the required strict inequality. Then, consider the ruleα for
which the chosen values do not work. One gets the two following equalities:

{
((1 ⊗ τ) ◦ (τ ⊗ 1) ◦ (1 ⊗ τ))∗(i, j, k) = (k, j, i) = ((τ ⊗ 1) ◦ (1 ⊗ τ) ◦ (τ ⊗ 1))∗(i, j, k)

((1 ⊗ τ) ◦ (τ ⊗ 1) ◦ (1 ⊗ τ))∗(i, j, k) = (k, j, i) = ((τ ⊗ 1) ◦ (1 ⊗ τ) ◦ (τ ⊗ 1))∗(i, j, k).

And also this equality:

[(1 ⊗ τ) ◦ (τ ⊗ 1) ◦ (1 ⊗ τ)](i, j, k, l, m, n)

= jk.m + m.j + k + i.(j + k).n + n.(i + j + j + k)

= [(τ ⊗ 1) ◦ (1 ⊗ τ) ◦ (τ ⊗ 1)](i, j, k, l, m, n).

To finish with our examples, let us consider the most complicated rule of this presentation, namely the
local duplication rule:

This is this rule that motivates the use of the rather complicated product categoryO(N∗, N∗, [N∗]) to
interpret〈Σc〉. In order to make the computations for this rule, one must start by proving the following
equations, which is done by iteration on the integern:






(δn)∗(i1, . . . , in) = (i1, . . . , in, i1, . . . , in)

δ∗n(i1, . . . , in, j1, . . . , jn) = (i1 + j1 + 1, . . . , in + jn + 1)

[δn](i1, . . . , in, j1, . . . , jn, k1, . . . , kn)

=
∑

1≤u≤n(iu + ku) +
∑

1≤u<v≤n(iuiv.ku + ku.iu + iv).

Then one gets these two equalities:
{

(δ ◦ ϕ)∗(i1, . . . , in) = (i1 + · · · + in + 1, i1 + · · · + in + 1) = ((ϕ ⊗ ϕ) ◦ δn)∗

(δ ◦ ϕ)∗(i, j) = (i + j + 1, . . . , i + j + 1) = ((ϕ ⊗ ϕ) ◦ δn)∗.

For the strict inequality to be checked:





[δ ◦ ϕ](i1, . . . , in, j, k) = j + k + 1 + i1 + · · · + in + 1 + k

[(ϕ ⊗ ϕ) ◦ δn](i1, . . . , in, j, k)

= j + (n + 1 +
∑

1≤u<v≤n iuiv).k +
∑

1≤u<v≤n iu + k.
∑

1≤u<v≤n iu + iv.

The multiset order properties allow the conclusion: the left member of this rule is strictly greater than its
right member. Indeed, it is a consequence from the following strict inequalities that hold in[N∗]:






j + k + 1 > j

j + k + 1 > k

i1 + · · · + in + 1 > iu for everyu

i1 + · · · + in + 1 > iu + iv for everyu andv.

20

6.1. Convergence of the 3-polygraph of explicit resource management

The computations for the other rules are handled similarly, albeit more easily. Now, let us check the
equivalence between termination of the3-polygraphs(Σc, R∆Σ) and(Σc, {α}). Sinceα is a rule ofR∆Σ,
one concludes immediately that the termination of(Σc, R∆Σ) implies the termination of(Σc, {α}): any
infinite reduction path generated by the latter would also be an infinite reduction path in the former.

Conversely, let us assume that(Σc, {α}) terminates and that there exists an infinite reduction path(fn)n∈N

in (Σc, R∆Σ). This path yields an infinite decreasing sequence(F(fn))n in O(N∗, N∗, [N∗]), equipped
with the orderº. Since this order terminates, the sequence is stationary, which means that there exists
some natural numbern0 such thatF(fn) = F(fn+1) whenevern ≥ n0. However, as proved earlier, one
can have bothf →R∆Σ

g andF(f) = F(g) only if f →αg. This implies that the sequence(fn)n≥n0
is an

infinite reduction path in(Σc, {α}). However, the existence of such an infinite reduction path is prevented
by the termination of(Σc, {α}). ♦

Now, there remains to prove that:

Lemma 6.1.2. The3-polygraph(Σc, {α}) terminates.

Proof. This is done using the technique from section 5. The product category considered for the inter-
pretations isO(N, N, N), whereN is the set (or commutative monoid) of natural numbers, equipped with
its natural order. We denote byG the product category functor from〈Σc〉 to O(N, N, N) defined by the
following values on the operators ofΣc:

j

i 1 i

i ii + j

i i i j j k

i1i i

i j

i i ij j j

i j k l

ini1 in

i1 + · · · + in

0

0 i + j

0

i + 1

We must check thatα : sα → tα satisfiesF(sα) Â F(tα). The computations give, on one hand, the two
equalities:
{

((1 ⊗ τ) ◦ (τ ⊗ 1) ◦ (1 ⊗ τ))∗(i, j, k) = (k, j + 1, i + 2) = ((τ ⊗ 1) ◦ (1 ⊗ τ) ◦ (τ ⊗ 1))∗(i, j, k)

((1 ⊗ τ) ◦ (τ ⊗ 1) ◦ (1 ⊗ τ))∗(i, j, k) = (k, j, i) = ((τ ⊗ 1) ◦ (1 ⊗ τ) ◦ (τ ⊗ 1))∗(i, j, k).

On the other hand, one gets:
{

[(1 ⊗ τ) ◦ (τ ⊗ 1) ◦ (1 ⊗ τ)](i, j, k, l,m, n) = 2i + 2j + 2k + 2

[(τ ⊗ 1) ◦ (1 ⊗ τ) ◦ (τ ⊗ 1)](i, j, k, l,m, n) = 2i + 2j + 2k + 1.

By corollary 5.3, this gives the result. ♦

21

6. Application 1: explicit resource management polygraphs

Thus, one gets, as a corollary of lemmas 6.1.1 and 6.1.2:

Proposition 6.1.3. The3-polygraph(Σc, R∆Σ) terminates.

We recall the following result from [Guiraud 2004, proposition 5.31]:

Proposition 6.1.4. The3-polygraph(Σc, R∆Σ) is locally confluent.

Finally, Newman’s lemma [Baader Nipkow 1998] is applied to get theorem 4.6.

6.2 Termination of 3-polygraph built from a terminating rewriting system

This paragraph contains the proof of theorem 4.11, point 1: if a term rewriting system(Σ, R) terminates,
then so does its associated3-polygraph(Σc, Rc). The proof once again uses a termination order obtained
with theorem 5.2. However, integer values cannot be used here, since rules inR are unknown. To handle
this issue, the following classical result - see [Baader Nipkow 1998] - is used:

Theorem 6.2.1.A term rewriting system terminates if and only if there exists some mapping| · | from the
set of termsTΣ to N such that|u| > |v| wheneveru is a term that reduces into another termv. Moreover,
in that case, the mapping| · | can be chosen such that|u| ≥ |u ′| wheneveru ′ is a subterm ofu; the
mapping can also be chosen so that it takes its values in any countable set.

Proof. If (Σ, R) terminates, one can choose the mapping| · | to send each termu onto the length of the
longest reduction path starting fromu; this mapping satisfies|u| ≥ |u ′| if u ′ is a subterm ofu, since
every reduction path fromu ′ yields a reduction path of the same length fromu. Conversely, if such a
mapping exists, an infinite reduction path(un)n∈N in (Σ, R) would generate a strictly decreasing infinite
sequence(|un|)n∈N in N, which cannot exist; hence the term rewriting system(Σ, R) terminates. If this
is the case, the mapping| · | can be composed with any bijectionσ : N → E, whereE is any countable
set. ♦

Hence, from our terminating term rewriting system(Σ, R), a mapping| · | : TΣ → N
∗ is assumed to be

chosen such that|u| > |v| wheneveru reduces inv and|u| ≥ |u ′| wheneveru ′ is a subterm ofu. From
this mapping, one defines a binary relation> onTΣ by u > v if, for every term contextc, the inequality
|c[u]| > |c[v]| holds. From the fact that the usual order> on N

∗ is a terminating strict order, this binary
relation is proved to satisfy:

Lemma 6.2.2. The aforedefined binary relation> onTΣ is a terminating strict order.

Then, one builds the lexicographical order≥ on TΣ × N
∗: for this order,(u, i) ≥ (v, j) if u > v or if

u = v andi ≥ j. This order satisfies:

Lemma 6.2.3.This relation≥ is an order onTΣ×N
∗. Moreover, its strict part> is a terminating strict

order onTΣ × N
∗.

The setTΣ × N
∗, together with the aforedefined order, is taken as the first set used in the interpretation.

The second one is a one-element set{∗} with the only possible order. Finally, the commutative monoid
is once again[N∗] with its already-used multiset order. The product categoryO(TΣ × N

∗, {∗}, [N∗]) is
denoted byO.

22

6.2. Termination of 3-polygraph built from a terminating rewriting system

Sometimes, the two elements((u1, i1), . . . , (un, in)) of (TΣ×N
∗)n and(u1, . . . , un; i1, . . . , in) of Tn×

(N∗)n are identified.
The considered product category functorF from 〈Σc〉 to O is given by the following values (only two

are given for each operator since the contravariant interpretation is trivial):

(un, in)

(u, i) (u, i)

0

(u, i)

(u, i) (u, i)

(u, i)

∗

i.u

∗

(u, i)

(v, j) (u, i)

(v, j) (u, i)

∗ ∗

0

(v, j)

∗

(i1 + · · · + in).|ϕ(u1, . . . , un)|

(u1, i1) (un, in)

(ϕ(u1, . . . , un), 2.(i1 + · · · + in))

(u1, i1)

There are two steps to check the conditions given in corollary 5.3: the first one consists in ensuring that
each given operation is monotone; the second part is about computing ifF(f) > F(g) holds for every rule
f → g in Rc.

For the first part, consider, for example, the functionsϕ∗ and[ϕ] for some fixed operatorϕ in Σ(n, 1),
n ≥ 1. Let us consider termsu1, . . . , un, v1, . . . , vn and non-zero integersi1, . . . , in, j1, . . . , jn. Let us
assume that(uk, ik) ≥ (vk, jk) for everyk. In order to prove thatϕ∗ is monotone, one must check that
eitherϕ(u1, . . . , un) > ϕ(v1, . . . , vn) or both are equal andi1 + · · · + in ≥ j1 + · · · + jn. Let c be a
context. Since, for everyk, uk ≥ vk andc ◦ϕ(v1, . . . , vk−1, ¤, uk+1, . . . , un) is a context, one gets the
following inequality:

|c[ϕ(v1, . . . , vk−1, uk, . . . , un)]| ≥ |c[ϕ(v1, . . . , vk, uk+1, . . . , un)]|.

Furthermore, ifuk > vk for somek, then this inequality is strict for the samek; in this case:

|c[ϕ(u1, . . . , un)]| > |c[ϕ(v1, . . . , vn)]|.

Consequently,ϕ(u1, . . . , un) > ϕ(v1, . . . , vn). Otherwise, ifuk = vk andik ≥ jk for everyk, then:

{
|c[ϕ(u1, . . . , un)]| = |c[ϕ(v1, . . . , vn)]|

i1 + · · · + in ≥ j1 + · · · + jn.

Thus, in both cases:

(ϕ(u1, . . . , un), 2.(i1 + · · · + in)) ≥ (ϕ(v1, . . . , vn), 2.(j1 + · · · + jn)).

23

6. Application 1: explicit resource management polygraphs

In order to prove that[ϕ] is monotone, let us fix somek in [n]. Then, eitheruk > vk or uk = vk and
ik ≥ jk. In the first case:

|ϕ(v1, . . . , vk−1, uk, . . . , un)| > |ϕ(v1, . . . , vk, uk+1, . . . , un)|.

Thus, by definition of the multiset order on[N∗]:

(j1 + · · · + jk−1 + ik + · · · + in).|ϕ(v1, . . . , vk−1, uk, . . . , un)|

> (j1 + · · · + jk + ik+1 + · · · + in).|ϕ(v1, . . . , vk, uk+1, . . . , un)|.

In the second case, whereuk = vk andik ≥ jk:

(j1 + · · · + jk−1 + ik + · · · + in).|ϕ(v1, . . . , vk−1, uk, . . . , un)|

≥ (j1 + · · · + jk + ik+1 + · · · + in).|ϕ(v1, . . . , vk, uk+1, . . . , un)|.

Finally:
(i1 + · · · + in).|ϕ(u1, . . . , un)| ≥ (j1 + · · · + jn).|ϕ(v1, . . . , vn)|.

If γ is a constant inΣ(0, 1) or for operators in∆, proofs are direct. Furthermore, for each operatorϕ in
eitherΣ or ∆, the operationϕ∗ is the only map from{∗} to itself, and it is monotone, so that:

Lemma 6.2.4. For every operatorϕ in Σc, the aforegiven functionsϕ∗, ϕ∗ and[ϕ] are monotone.

Then, we must check ifF(f) Â F(g) for every rulef → g in Rc. Let us recall that this family of rules
consists of three subfamilies:R∆, RΣ andΦ(R). For any rulef → g in the first familyR∆, one gets
F(f) = F(g), except for left and right counit rules, whereF(f) Â F(g). Computations for rules inRΣ

are more complicated; let us examine, for example, the rule for local duplication and one of the rules for
local permutation:

Let us fix some natural numbern ≥ 1 and someϕ in Σ(n, 1); for constants inΣ(0, 1), computations are
direct. By iteration onn, the following equalities are proved:

(δn)∗(~u,~ι) = (~u, ~u;~ι,~ι) and [δn](~u;~ι) = i1.u1 + · · · + in.un.

This gives, at first:

(δ ◦ ϕ)∗(~u,~ι) = (ϕ(~u), ϕ(~u); 2.(i1 + · · · + in), 2.(i1 + · · · + in))

= ((ϕ ⊗ ϕ) ◦ δn)∗(~u,~ι).

Then: [δ ◦ ϕ](~u,~ι) = 3.(i1 + · · · + in).|ϕ(~u)|. To be compared with:

[(ϕ ⊗ ϕ) ◦ δn](~u,~ι) = 2.(i1 + · · · + in).|ϕ(~u)| + i1.u1 + · · · + in.un.

24

6.2. Termination of 3-polygraph built from a terminating rewriting system

Sinceuk is a subterm ofϕ(~u) for everyk, and by asumption on| · |, the inequality|ϕ(~u)| ≥ |uk| holds.
Hence, for everyk:

ik.|ϕ(~u)| ≥ ik.uk.

Finally: (i1+ · · ·+ in).|ϕ(~u)| ≥ i1.u1+ · · ·+ in.un. This gives the inequality[δ◦ϕ] ≥ [(ϕ⊗ϕ)◦δn].
Now, let us consider the first rule for local permutation; the first step is to prove, by iteration onn:

(τn,1)∗(~u, v;~ι, j) = (v, ~u; j,~ι) and [τn,1](~u, v;~ι, j) = 0.

Then: (τ ◦ (ϕ ⊗ 1))∗(~u, v;~i, j) = (v,ϕ(~u); j, 2.(i1 + · · · + in)) = ((1 ⊗ ϕ) ◦ τn,1)∗(~u, v;~i, j).

And: [τ ◦ (ϕ ⊗ 1)](~u, v;~i, j) = (i1 + · · · + in).|ϕ(~u)| = [(1 ⊗ ϕ) ◦ τn,1](~u, v;~i, j).

The other rules inRΣ are similarly handled and give similar results: for every rulef → g in RΣ, the
inequalityF(f) º F(g) holds inO. The final part concerns the familyΦ(R) of rules. Let us assume that
α : f → g is a rule inR; its translation byΦ is the ruleΦ(α) : Φ(f) → Φ♯f(g). Let us prove that
F ◦Φ(f) Â F ◦Φ♯f(g). The first step is to prove, by iteration on the degree of terms inTΣ, the following
lemma:

Lemma 6.2.5.Letu be a term inTΣ, n be an integer such thatn ≥ ♯u,~v a family ofn terms inTΣ and~ι
a family ofn non-zero natural numbers. Let us denote byσ~v the substitution defined byxk · σv = vk if
k ≤ n andxk otherwise. Then:

1. There exists some non-zero integerk such that(Φn(u))∗(u · σ~v, k).

2. The inequality[Φn(u)](~v,~ι) < |u · σ~v + 1| holds in[N∗].

3. If u is not a variable, then the inequality[Φn(u)](~v,~ι) ≥ |u · σ~v| also holds in[N∗].

Point 1 gives, when applied tof andg with n = ♯f, the existence of non-zero natural numbersk andk ′

such thatΦ(f)∗(~u,~ι) = (f · σ~u, k) andΦn(g)∗(~u,~ι) = (g · σ~u, k ′). Let us consider some contextc.
By definition of the reduction relation→α generated by the ruleα, one getsc[f · σ~u] →α c[g · σ~u].
Consequently, the properties of| · | give |c[f · σ~u]| > |c[g · σ~u]|. This holds for any context thus, by
definition of> onTΣ, one getsf · σ~u > g · σ~u. Finally, using the definition of> onTΣ × N

∗:

Φ∗(f) > Φ∗(g).

Let us prove now that[Φ(f)] > [Φn(g)]. Sinceα is a term rewrite rule, its sourcef is a non-variable
term. Hence, point 3 of the previous lemma gives the inequality[Φ(f)](~u,~ι) ≥ |f · σ~u|. Moreover,
point 2 gives[Φn(g)](~u,~ι) < |g · σ~u + 1|. Finally, since the reductionf · σ~u →α g · σ~u holds in(Σ, R)

and by properties of| · |: |f · σ~u| > |g · σ~v|. There remains to concatenate these three inequalities to
get [Φ(f)] > [Φn(g)] and, as a consequenceF ◦ Φ(f) Â F ◦ Φn(g). The product category functorF
from 〈Σc〉 to O gives usF(f) Â F(g) for every rulef → g in Φ(R) andF(f) º F(g) for every rulef → g

in R∆Σ. This yields the following result:

Proposition 6.2.6. If the term rewriting system(Σ, R) terminates, then termination of the3-polygraph
(Σc, Rc) is equivalent to termination of(Σc, R∆Σ).

Since we already know that(Σc, R∆Σ) always terminates, this concludes the proof of theorem 4.12.

25

7. Application 2: a convergent 3-polygraph for a commutative equational theory

7 Application 2: a convergent 3-polygraph for a commutative equational
theory

This final section is devoted to give a convergent presentation of the equational theory ofZ/2Z-vector
spaces, which is, as mentionned before, a commutative equational theory and thus do not have any con-
vergent presentation by a term rewriting system.

In section 1, we have considered three term rewriting systems(Σ, R0), (Σ, R1) and(Σ, R2) that repec-
tively present the equational theories of monoids, of commutative monoids and ofZ/2Z-vector spaces.
All three have two operators, a product and a unit, and they have respectively three, four and five rules.
Thus, their associated3-polygraphs have five operators together with twenty-three rules for(Σc, Rc

0),
twenty-four for(Σc, Rc

1) and twenty-five for(Σc, Rc
2).

Since(Σ, R0) is a left-linear convergent term rewriting system, theorem 4.12 ensures, in particular,
that(Σc, Rc

0) is a convergent presentation of the theory of monoids,with explicit resource management.
The term rewriting system(Σ, R1) is left-linear, non-terminating (due to the commutativity rule) and
non-confluent (though it could be completed to get a confluent rewriting system), hence theorem 4.12
gives us that(Σc, Rc

1) is a non-terminating and non-confluent presentation of the equational theory of
commutative monoids, with explicit resource management. Finally, the term rewriting system(Σ, R2) is
a non-left-linear, non-terminating and non-confluent term rewriting system: non-left-linearity denies us
any information coming from theorem 4.12 about this presentation.

However, there is, in [Lafont 2003], an equivalent3-polygraph called L(Z2). Its signature contains a
sixth operator, calledκ and pictured this way:

This new operator is said to besuperfluoussince it represents, in aZ/2Z-vector space, the concrete
operationκ(x, y) = (µ(x, y), x) that can be expressed in terms ofµ, δ andτ. In the presentation, this
relation is enforced by means of the following extra rule:

The main objective of these new operator and rule is to make proof of termination easier (if not just
possible). Then, one has to add a certain amount of rules in order to complete the presentation, to finally
obtain the3-polygraph L(Z2), discovered and baptized in [Lafont 2003].

This polygraph has six operators:

κµ η δ ε τ

26

7. Application 2: a convergent 3-polygraph for a commutative equational theory

And sixty-seven rules:

From [Lafont 2003], we already know that this presentation is confluent but termination was still a
conjecture. The technique presented in section 5 now allows us to prove that it is also terminating, hence
convergent. The interpretation product category we use isO(N∗, N∗, [N∗]), once again denoted byO.
The interpretation functorF is given by the following values on generating operators:

27

7. Application 2: a convergent 3-polygraph for a commutative equational theory

i

1

1i

i i

i

i

i

i i i

i

i

i

ii i

i

j j

j j k

k

i + j

i + j

i

i

i i

j

j

j

j

j

k l

i j

k l

i

i + j

i + k i + k

i + k

i + j

i + j

i + j

i + j

i

i

i

The chosen values simplify the computations greatly. Indeed, normally, there are three inequalities to
check for each rule: hence, there should be 201 inequalities to check here. The first reduction comes
from the fact thatF identifiesτ andκ: there are 24 rules that can be dropped since, for each one, there is
another rule that is sent to the same image. Thus there remains 43 rules and 129 inequalities to check.

Moreover, the rules of L(Z2) have some interesting symmetries that one can exploit: indeed, when-
ever f → g is a rule of L(Z2), thenfo → go is also a rule of L(Z2), where the duality(·)o is the
involution defined by:

µo = δ, ηo = ε, τo = τ, κo = κ, no = n, (g ◦ f)o = fo ◦ go, (f ⊗ g)o = fo ⊗ go.

Another way to define this duality is by its action on diagrams: there, it is the top-down symmetry.
Furthermore, the functorF is compatible with this symmetry, in the sense that, for every arrowf, the
functorF sendsfo ontoF(f)o, where the duality onO is defined that way:(f∗, f∗, [f])o = (f∗, f∗, [f]

o),
with [f]o(~x,~x ′) = [f](~x ′,~x). Note that this only have a meaning because the two setsX andY are the
same here (both equal toN∗).

Thus, if some rulef → g in L(Z2) satisfiesF(f) > F(g), then so doesfo → go. As a consequence,
this reduces the number of rules to study: 18 of the remaining rules have a distinct dual, hence only 25
rules need to be studied (75 inequalities). Furthermore, when a rulef → g is self-dual, the inequality
F(f)∗ ≥ F(g)∗ holds if and only ifF(f)∗ ≥ F(g)∗ holds: 8 of the remaining rules are in that case,
which means there still are 67 inequalities from the former 201 to check. Computations do not rise any
difficulty. For example, let us study the following (self-dual) rule:

One computes

{
(κ ◦ κ)∗(i, j) = (2i + j, i + j)

((1 ⊗ µ) ◦ (τ ⊗ 1) ◦ (1 ⊗ δ))∗(i, j) = (i + j, i + j).

Sincei andj are non-zero natural numbers, the following inequality holds:

(κ ◦ κ)∗ > ((1 ⊗ µ) ◦ (τ ⊗ 1) ◦ (1 ⊗ δ))∗.

28

Comments and future directions

Then

{
[κ ◦ κ](i, j, k, l) = i + i + j + k + k + l

[(1 ⊗ µ) ◦ (τ ⊗ 1) ◦ (1 ⊗ δ)](i, j, k, l) = 2i + j + 2k + l.

Sincei andj are non-zero natural numbers, the inequalitiesi + j > i andi + j > j always hold. Thus,
by property of the multiset order on[N∗], the inequalityi + j > i + j always holds. Similarly, so does
k + l > k + l. Finally, the multiset order on[N∗] is compatible with addition, yielding:

[κ ◦ κ] > [(1 ⊗ µ) ◦ (τ ⊗ 1) ◦ (1 ⊗ δ)].

The other rules are studied in a similar way [Guiraud 2004], which leads to the following result, proving
that commutative equational theories can admitpolygraphicconvergent presentations:

Theorem 7.1. The3-polygraphL(Z2) is a convergent presentation of the equational theory ofZ/2Z-
vector spaces, with explicit resource management.

Comments and future directions

The study of (3-)polygraphs has been started by Albert Burroni and Yves Lafont, as an algebraic model
for 3-dimensional calculus on2-dimensional objects. Foundations were laid in [Lafont 1992], [Burroni
1993] and [Lafont 1995]. In [Lafont 2003], rewriting systems generated by3-polygraphs were con-
sidered and many known equational presentations are studied in order to be completed into convergent
rewriting systems (or, at least, rewriting systems with the unique normal form property). Discussions
with Albert Burroni, Yves Lafont and Philippe Malbos have been essential in order to achieve the results
presented here. Comments from the referee were of great help to make this paper clearer.

There exist many research paths concerning polygraph. The first one is about confluence: as men-
tionned earlier, there exist theoretical issues with critical pairs of3-polygraphs; exploration and classifi-
cation are mandatory in order to achieve some automated completion procedure for these objects. Such
a tool (which implementation in Caml has already started) would be very useful since, starting from an
equational theory, one could use the constructions described in section 4 in order to obtain a3-polygraph;
then a completion procedure could be applied to correct termination and confluence issues. Suggested
by Pierre Lescanne, other usual techniques for building reduction orders in term rewriting could also be
examined, in order to see if they could also be adaptated to polygraphs. Among the most useful results
to be studied are the ones concerning path orders, see [Baader Nipkow 1998], and dependency pairs, see
[Arts Giesl 2000].

A second theme to be explored is the study of higher-dimensional polygraphs. For an example of
application,4-polygraphs provide a categorical framework for proof transformations in thecalculus of
structures[Guglielmi Straßburger 2001]. Such an approach could yield results such as proof decom-
positions or normal forms, given by a convergent4-polygraph. At least, it suggests that formulas are
2-dimensional objects, proofs are3-dimensional and computation on them (such as cut elimination) lives
in dimension4. This point of view is conjectured to yield a new class of objects describing formal proofs,
giving a different, categorical and geometrical way to approach proof theory.

Theoretical studies can also be directed at pursuing the synthesis started in [Guiraud 2004] on rewrit-
ing systems: one of the main goals is to have a framework where one can compare two rewriting systems,
regardless of the algebraic structure of their terms. The reduction space associated to each rewriting sys-
tem is an algebraico-geometric object (a cubical object in some category of algebras) and one could use

29

References

the underlying cubical sets of these objects to compare rewriting systems, geometrically. Notions of
(co)fibrations from Quillen model categories - see [Hovey 1999] - theory could be useful for a better
understanding of results such as the ones of section 4; since many rewriting systems are special cases of
polygraphs, this study will start with the construction of homotopical tools for these objects.

Still another question is the following: is there somen for which there exists a finiten-polygraph
yielding a calculus with both explicit substitutions and explicit resource management for theλ-calculus.
Whenn = 3, the answer seems to be negative, since theoretical results deny the existence of any non-
trivial product category that is both cartesian (for resource management) and sovereign (for substitu-
tions). An equational description of the structure of closed category (such as the one Albert Burroni
has given for cartesian categories) should be the first step of this work. Another possibility is to use a
3-dimensional interpretation of proofs, together with the links betweenλ-terms and proofs.

Finally, 3-polygraphs have the interesting property to modelize computational circuits. Indeed, both
classical and quantum algorithms accept representations as circuits which are, albeit not in their usual
presentation, genuine operators of a3-polygraph. Furthermore, equational presentations are known for
both kinds of circuits. Questions that can be studied with this point of view concern the existence of
convergent3-polygraphs for classical or quantum circuits, thus leading to canonical representations of
programs. One can take a look at [Kitaev Shen Vyalyi 2002] for more information on circuits and [Lafont
2003] for their links with polygraphs.

References

T. ARTS and J. GIESL, Termination of term rewriting using dependency pairs. Theoretical Computer
Science 236, 133-178, 2000.

F. BAADER and T. NIPKOW, Term rewriting and all that. Cambridge University Press, 1998.

A. BURRONI, Higher-dimensional word problems with applications to equational logic. Theoretical
Computer Science 115(1), 46-62, 1993.

A. GUGLIELMI AND L. STRASSBURGER, Non-commutativity and MELL in the calculus of structures.
Lecture Notes in Computer Science 2142, 54-68, 2001.

Y. GUIRAUD, Présentations d’opérades et systèmes de réécriture. Thèse de doctorat, Montpellier, 2004.

M. HOVEY, Model categories. Mathematical Surveys and Monographs 63, 1999.

A. K ITAEV , A. SHEN and M. VYALYI , Classical and quantum computation. Graduate Studies in Math-
ematics 47, 2002.

Y. L AFONT, Penrose diagrams and 2-dimensional rewriting. London Mathematical Society Lecture
Notes Series 177, 191-201, 1992.

—, Equational reasoning with 2-dimensional diagrams. Lecture Notes in Computer Science 909, 170-
195, 1995.

—, Towards an algebraic theory of boolean circuits. Journal of Pure and Applied Algebra 184, 257-310,
2003.

S. MACLANE, Categorical algebra. Bulletin of the American Mathematical Society 71, 40-106, 1965.

—, Categories for the working mathematician. Springer, 1998.

30

