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Termination orders for 3-dimensional rewriting

Yves Guiraud:

Abstract: This paper studie$-polygraphs as a framework for rewriting on two-dimen-
sional words. A translation of term rewriting systems igtpolygraphs with explicit re-
source management is given, and the respective computational properties of each system
are studied. Finally, a convergehpolygraph for the (commutative) theory @j27Z-vector

spaces is given. In order to prove these results, it is explained how to craft a class of termi-
nation orders foB-polygraphs.

Outline

This paper starts with the introductory section 1 on equational theories and term rewriting systems.
It gives notations and graphical representations that are used in the sequel. Then, it focuses on one
major restriction of term rewriting, namely the fact that it cannot provide convergent presentations for
commutativeequational theories: equational theories that contain a commutative binary operator.

Section 2 studies the resource management operations of permutation, erasure and duplication: they
are implicit and global in term rewriting and it is sketched there how to make them explicit. However,
the framework for rewriting in algebraic structures needs to be extended to include this change; section 3
proposes-polygraphs to fulfill this role. Here, these objects, introduced in [Burroni 1993], are used as
equational presentations of a special casg-oftegories: MaclLane’s product categories, called PROs,
for short, in [MacLane 1965].

These first three sections do not introduce new material, but focus on the notations, representations,
terminology and philosophy of this paper. Then section 4 gives some relations between term rewriting
systems and-polygraphs: a translation from the former to the latter is built and some properties are
given. The main result of the section is the proof of a conjecture from [Lafont 2003]: any left-linear
convergent term rewriting system can be translated into a conve¥geatygraph.

To prove some of these results, one needs new tools, in adequation with the more complicated struc-
ture of polygraphs. In particular, section 5 introduces a recipe to build termination orders for them.
Section 6 consists in the application of this technique to prove some termination results of section 4.
Finally, section 7 applies the same technique to prove the termination 8fgbkygraph LZ,) which
was introduced in [Lafont 2003] and, since then, was already known to be a confluent presentation of
the equational theory &t /2Z-vector spaces. It is therefore the first known convergent presentation of a
commutative equational theory.
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1. Equational theories and term rewriting systems

1 Equational theories and term rewriting systems

Universal algebra provides different types of objects in order to modelize algebraic structures. Among
them areequational theoriesthese are presentations by generatorgperatorg and relations (oequa-

tions equalitieg. As an example, the equational theorymednoidsis a pair(XZ, Ey) consisting of the
signatureX (a set of operators) and the famiy of equations given by:

Y={u:2-1,1n:0-1},
Eo = (n(p(x,v),z) = pulx, 1y, z)), un,x) =x, plx,n) =x).

Each operator has a finite number of inputs and of outputs. When each one has exactly one output, which
is the case here, the signature is said talgebraic The given equational theolfyf, E) is said to be

the theory of monoidsince monoids are exactly sets endowed with a binary operation and a constant,
such that the operation is associative and admits the constant as a left and right unit.

The formal operations one can form on any set with a binary operation and a constant are cétliedshe
built from the signature&.. There exist numerous ways to build the $Etof such terms, and each one
gives a different representation for them. Two are used hesgniacticone and adiagrammaticone.
For each one, a fixed countable $&is needed; its elements are calletiables

The classical representation of terms define them inductively with the following construction rules:
the first one states that each variable is a term; furthermore, the condtaatterm; then, for any two
termsu andv, the formal expressiopn(u, v) is a term.

The diagrammatic representation starts with the assignment, for each operataringthts, of an
arbitrarily chosen tree of height one withleaves. For example, one can fix the following trees:

v e
Hooom

Then, the terms are all the trees one can build from these two generating trees and which leaves are
labelled with variables. As an example, the following figure pictures terms built from the sigriiature
with the two representations for each one:

XYy X
Xy z X
X X
y , ¥ v ¥
wix, u(y,z)) n w(m, x) (x,x) wip(x,y), uix,m))

The equations from the theory of monoids generate equalities between terms that represent the same
operation, through gewriting process. Let us sketch how this works. For example, the following term
contains the tree-part of the associativity rule left-member, which has been greyed out:

X1 X2 X3
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Hence, the associativity equation generates an equality between the chosen term and another. To deter-
mine which one, let us follow the following method, which consists of three steps: at first, the remaining
(black) part of the term is copied; then, in the space left empty, the other member of the rule is placed;
finally, the two parts obtained are joined (by dotted lines), according to the respective position of the
variables in each member of the equation. Concerning our example, this process is pictured as follows:

X1 X2 X3
X1 X2 X3 !

Note that each variable appears once and in the same position in each member of the associativity rule,
so that the links are direct. When the second term is compacted, the following equality holds and is said
to be generated by the associativity equation:

X1 X2 X
X1 X2 X3 1 2 A3

L%; _

In order to study the computational properties of these rewriting procassesrewriting systemare

useful; they can be defined as oriented equational theories. Indeed, such a rewriting system is defined
from an equational theory by keeping the same operators and replacing each equatiewiie aule

it is an oriented version of the equation, which can only be used in one way. As an example, starting
from the equational theory of monoids, one can form the term rewriting sysieRy), whereX is still

the same algebraic signature made of a produamd a unit] andR is the following set of three rules:

winlx,y),z) — ulx, uly,z)), wmx) —x, wxmn —x

Rewrite rules generateductionsinstead of equalities, and a graph containing terms as vertices and re-
ductions as edges is callededuction graph Some geometrical properties of reduction graphs are of
particular interest since they have consequences on computational properties of the rewriting process.
Among these geometrical properties, three are particularly stutiedination confluenceandconver-

gence

A rewriting systenterminatesdf it contains no infinite length reduction paths such as:
U — U U2 — ... 2 U — Upyp] — ...

Intuitively, this means that the rewriting calculus must end after a finite time, whatever the input is. This
is formalized by the following consequence of termination: every tetmas at least oneormal form{i;

this means that is a term such that there exists a finite reduction path fuaim{i (denoted by — {i)

and{i is irreducible (no rule can apply on it).
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A rewriting system isconfluentif, whenever there exist three terms v andw such thatu — v

andu — w, then there exists a fourth termsuch thatv — t andw — t. Intuitively, this means

that choices made between two rules that can transform the same term do not have any consequence on
a potential final result; equivalently, this means that any term has at most one normal form.

Thus, one defines the last property: a rewriting systegois/ergentwhen it is both terminating and
confluent. One immediate consequence is that any term has exactly one normal form. This property is
very useful for several purposes.
One of the most known is the following usage: let us assume Ihat) is an equational theory and
that (X, R) is a rewriting system that is finite convergent presentatiaf (X, R), which means that it
is a convergent rewriting system with a finite number of rules and such that two terms are equal in the
equational theory if and only if there exists a non oriented reduction path between these two terms in the
rewriting system. Then there exists a decision procedure to check if two teamdv are equal or not.
Indeed, one computes their unique normal fofirend?®. Note that this is where the finiteness con-
dition is useful: it allows one to check if a term is a normal form. Then the two normal faram9 are
comparedu andv are equal in the equational theory if and onliind? are (synctactically) equal.

However, term rewriting systems have a major restriction in this field: there is a large class of equational
theories for which they cannot provide a convergent presentation. These are the commutative theories,
fairly frequent in algebra, which are equational theories with a commutative binary operator. As an ex-
ample, let us take a look at one of the simplest, namely the equational theory of commutative monoids. Its
signature is stilE; its setk; of equations is made of the same three as the ones for monoids (associativity
and left and right units) plus the following one expressing the commutativity of the product:

wix,y) = uly,x).

From this theory, one can form a number of term rewriting systems, such as the orleagitfignature
and with the following choic®; of orientations for equations:

wlulx,y),z) — ulx, 1wy, z)), umx) —x, wx,n —x  wxy) — wy,x).

Note that the last rule could have been chosen in the reverse direction, but it would not change the
following fact: this rule generates infinite reduction paths. Indeed, for any two teranrsd v, the
commutativity rules generates:

wu,v) = pv,u) = plu,v) = plv,u) — ...

The purpose of this paper is to provide a framework where some commutative equational theories admit
convergent presentations:polygraphs. Links between term rewriting systems asmblygraphs are
studied and a new tool to prove termination is given and applied on some examples.

The equational theory that provides the main example here is the ah&Bfvector spaces: it has the

same operators as the previous ones (the binary product embodies the sum and the unit is the zero) and a
setk, of five equations made of the four frofy (associativity, left and right units and commutativity)

plus the following fifth equation:

rix,x) =mn.
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It expresses the fact that, ir¥a2Z-vector space, any element is its own opposite. This theory is prefered

to the theory of commutative monoids for two reasons. The first one is theoretical: any boolean algebra
has an underlying./27Z-vector space, so that any convergent presentatiof faZ.-vector spaces is a

first step towards one for boolean circuits. The second one concerns the application range of the tools
developped here: this fifth equation has some nasty computational effects and is thus important to en-
compass in the new framework, so that it can be used for other applications.

From the theory ofZ/2Z-vector spaces, the term rewriting systém R,) is built, whereR, is the
following choice of orientations:

winlx,y),z) — ulx, uly,z)), wmx) —x, uxn) —x  wxy) — wy,x), wpxx —mn.

Note that this rewriting system is neither terminating nor confluent but will serve as a starting point to
build a convergent presentation. This transformation will start with the study of the so-czdlmaice
management operationgor further information on (term) rewriting systems, one can refer to [Baader
Nipkow 1998].

2 Resource management operations

Let us recall the last step of the term rewriting process: one has to draw links between two parts of a
term, according to the variables occuring in the corresponding rule. As mentionned earlier, the rewriting
example in section 1 is the simpliest case: indeed, the variables occur once each and in the same order
in each member of the associativity rule. However, if this is not the case, one has two use additional
operations before links are drawn: these operations are calledgberce management operaticasd

there are three of the kingermutation erasureandduplication

Permutation is used, for example, when the commutativity rule is applied. Indeed, when in this case,
one has to use a permutation operation that will exchange the two grey subterms in any term such as the
following generic one:

Xy Yy x
A

The second operation, erasure, is used in the following case, for example: let us consider a theory
containing a binary operator and a constant which is a right absorbing element. The following figure
displays a rule which expresses this property (on the right) together with a generic application of this
rule (on the left); this requires an intermediate operation that erases the grey subterm:

VJ*? XW*?

Finally, the last operation, called duplication, can occur in the following case: let us consider a theory
containing two binary operators, one of which is left-distributive with respect to the other. Then, when
applied, a rule that expresses this property (such as the one pictured on the right) requires the use of an
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operation that can duplicate the greymost subterm (and exchange one of its copies with another subterm,
but this is the already-encountered permutation):

LA

Thus, in term rewriting, these three operations are lmiblicit (they are not specified by rules) and
global (they act immediately on subterms of any size). We are now going to sketch how one can make
them explicit and local: only the idea is given here, the full translation is postponed to section 4.

Let us start with the following observation: the use of the three resource management operations is spec-
ified both by the number of occurences and the order of appearance of each variable in each member
of a rewrite rule. Thus, in order to make these operations explicit, variables will be replaced by some
additional operators that will represent local permutations, erasers and duplicators; furthermore, rules
will guarantee the global behaviour of these local operators.

In order to give an idea of how the translation works, let us start with the study of this term, which
represents the operati¢n, y, z) — p(p(x,z),x):

X ZX

<

Seen as an operation, it is the compositéxgfy, z) — (x, z, x) followed by (x,y, z) — u(u(x,y), z).
The first operation can be pictured as the following diagram (a shunter), since its action is to tell where
each of the three arguments goes in the term:

XYy z XYy z
mm -
X Z X X Z X

This diagram will be formalized as a composite of new operators and the term will be translated this way
(with some explanations below):

X
131

Y
Variables in the term have been replaced by ordinals; indeed, we have seen that variables are just labels
corresponding to the first, second, third, etc. arguments taken by the corresponding operation. Hence,
they will be replaced by ordinals whenever it makes the translation clearer. The second remark is also

about variables, but in the translated diagram: they will always appear, after translation, in order: 1, 2, 3,
etc. Thus, they have no purpose anymore; they will therefore vanish, as in the diagram.
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Finally, let us see what operators will be added to the signature and sketch how to translate terms and
rules. One operator is added for each resource management operation: indeed, in order to formalize
our previous diagram, one must be able to exchange two arguments, erase one or duplicate another one.
Thus, we fix a (hon-algebraic) signatukemade of the following threeesource managemeaperators:

< A

T 3 B

Each one has a representation that makes explicit the operation one wishes it to embody. Some rules will
be added to ensure their global behaviour, but they will be given in section 4. For the moment, the only
thing we need to know is that these rules give the following interpretations to these three operators:

T(x,y) = (y,x), €(x)=(nothing), 6(x)=(x,x).

Now, let us sketch how terms are translated: first, the tree-part is copied; then and progressively, resource
management operators are added on the top of the copy, according to the variables that appear in the term.
The following figure gives four sample translations (the translating map is denot@dfmsreafter):

123

K

11 0 1213 o

Then, let us see how to translate the five rules of our term rewriting system derived from the theory of
7./27-vector spaces. Each rule is pictured in order (associativity, left and right units, commutativity and
self-inverse), has been given a namAe [, R, C andS) and has its translation written just below:

123 123 1

YUl Y b V¥V,
o (a) o (L) @ (R) —a(C) —ao(s)
Vo Y| P | v e @0 @ g

Note that several cases may occur. For the first three rules, no resource management operator is added
during translation: these three rules énear (or left- andright-linear). When translated, the commu-

tativity rule has one operator added on its right side and none on its left side: it is a left-linear but not
right-linear rule. Finally, the self-inverse rule has one operator added on each of its members during
translation: it is neither left- nor right-linear.
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Some issues have now been arisen. The first one concerns the rules to be added in order both to describe
the behaviour of our local permutation, eraser and duplicator and to ensure the global coherence of these
local rules.

The next issue is about the respective computational properties of the starting term rewriting system
and of the rewriting system one gets as a result of making the resource management operations explicit.
These first two issues are adressed in section 4.

For the moment, we are concerned with a third issue: where does rewriting takes place now? Indeed,
starting from a term rewriting system, we have crafted another rewriting system which is not a term one,
and for two reasons. The first one is that its signature contains non-algebraic operators, that is operators
that do not have exactly one output (the resource management operators have zero or two outputs). The
second reason is that variables have been dropped to be replaced by these new operators: this is also a
step outside term rewriting. Hence, our new object is not a term rewriting system and section 3 recalls a
notion from [Burroni 1993] used to describe it.

3 Three-dimensional polygraphs

Like equational theorie$-polygraphsare useful objects in universal algebra, in the sense that they allow

one to present algebraic structures by generators and relations. However, they are far more general than
equational theories, and this has two consequences: on one hand, they can handle more general objects,
like the rewriting system sketched in section 2, or the structure of quantum groups; but, on the other
hand, their generality comes with an increase in the structural complexity: the development of new tools

is mandatory to prove termination, for example.

Polygraphs are genuine categorical objects but we prefer a diagrammatic definition here. For this paper,
a 3-polygraph is made of a signature, that is a set of operators with a finite number of inputs and a finite
number of outputs, together with a family of rules: in fact, this is just a special cas@alygraph,
one with only one-cell and onel-cell. For the complete theory af-polygraphs, the interested reader
should check [Burroni 1993].

The operators are once again represented by fixed diagrams of size one, with as many free edges at
the top as the operator inputs and as many free edges at the bottom as the operator outputs. For example,
some usual diagram shapes are pictured here:

Y o 4 6 < u am o U N

Some of them have already been encountered, some of the others are less algebraic: one has zero input
and output - it is usefull to describe Petri nets, see [Guiraud 2004] -, one has two inputs and zero output
- it is used together with its dual with zero input and two outputs to represent knots and tangles.

Here, the "terms" one considers are all the circuits one can build with all these elementary diagrams:
these are th€enrose diagramgor circuits) one can build with the size one diagrams representing the
operators, such as:

I TeU IR =1
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Each of these circuits has a finite number of inputs (on the top) and of outputs (on the bottom) but has no
variable. Furthermore, they need not be connected, as the three-inputs and three-outputs wire-only one.

These circuits, which are also called diagrams or arrows, have an algebraic structure. To explain it, let us
use the notatioffi : m — n to express thaf is a circuit withm inputs andn outputs. For any circuif,

s(f) is its number of inputs and f) its number of outputs. The following constructions and properties
are valid for circuits:

- Letf: m — nandg : n — p. Then, one can connect each outpuf efith the corresponding
input of g, in the same order, to form a new circuit witl inputs andp outputs denoted by o f.

- This composition operation admits local units: a cir¢uitm — n satisfiefom = f andnof = f,
wherep is the wire-only circuit withp inputs andp outputs.

- Letf: m — nandg:p — . Then, one can putandg side by side to form a new circuit with
m + p inputs andh 4 g outputs, denoted by ® g.

- This product operation admits a bilateral neutral element: the empty cireuith no input nor
output, represented by an empty diagram.

- Finally, the composition and product are related bydkehange relationsThey are given by the
following equality, that is required to hold for any two circuftsm — nandg : p — q:

(t(fl®g)lo(f®s(g)) =f®g=(f®t(g))o(s(f)®g).

Definition 3.1. A family € of circuits endowed with this structuse ando, satisfying the aforegiven unit
and exchange relations, is callegp@duct categorythe subset of circuits witln inputs andn outputs
is denoted by (m, n). When the circuits o€ are freely built from a signaturg, this object is thdree
product category generated By denoted by(X). ¢

Remark 3.2. Product categories, or PROs, were defined in [MacLane 1965]. An alternative definition
is: a product category is a strict monoidal category whose underlying monoid of objédis+is0),

the one of natural numbers with addition and zero. In [Guiraud 2004], such a category was called
a (monochromatic) operadfor this structure is a common generalization of many universal algebra
objects: May’s operads, Lawvere’s algebraic theories and MacLane’s PROs and PROPs.

Product categories are also a special casg-monoidsor 2-categories with only oné-cell. A
generalization of this paper results should be possible, since circuit-like diagrams extend to Zyeneral
cells. For this paper, we stick to MacLane’s product categories, but all this terminology will be made
clear in subsequent work.

A rewrite ruleon a product categorg is a pairf — g of parallel arrows (they have the same number

of inputs and the same number of outputs). Such a rule geneealestionson circuits: whenever an
arrow h containsf, the rule generates a reduction frémo k, wherek is the same ak, except thaf

has been replaced hy The fact thatf andg have the same number of inputs and the same number of
outputs ensures that one can connect the unchanged part of the circuit with the changed part, without
using implicit operations before.
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Definition 3.3. A 3-polygraphis a pair(Z, R) whereZX is a signature an#l is a family of rewrite rules
on (X).

One way to formalize the reduction relation generated by rules on a free product cgfegisrio define
contexts We just explain here what they are, avoiding to dig further into the technical aspects, devel-
opped in [Guiraud 2004]. Lek be a signature. Then,antexton (X) is a circuitc with a "hole" inside:

this hole has a finite number of inputs and of outputs where on can paste a tingtlitcorreponding
numbers of inputs and outputs; this pasting operation results in a circuit denotéf].byhen, a rule

f — g generates a reduction from each ciraift, with ¢ any context, to the circuit[g].

Finally, given two product categorigsandD, a product category functor fror® to D is a map which
sends each circuit d® onto a circuit of D with the same number of inputs and of outputs, and which
preserves identities, products and compositions. Whsrthe free product categofy ), then a classical
categorical argument tells us that any product category furictofX) — D is entirely and uniquely
given by the circuit$(¢) in D, for every operatotp in X.

4 From term rewriting to 3-polygraphs

This section uses results from [Burroni 1993], presented in a slightly different way, in order to prove a
conjecture from [Lafont 2003]: this is theorem 4.6. This is the result that allows the definition 4.8 of
a translationd from any term rewriting system into&polygraph. Proposition 4.11 and theorem 4.12
give the respective computational properties of the term rewriting system ageptiiggraph.

In section 2, a-polygraph has been built from the term rewriting syst@mR,), which presents the
equational theory of./27Z-vector spaces. Its signature, denotediyis the one built from: by addi-

tion of the three resource managment operatpobsande from A. Its family of rules, denoted b$ (R>),
consists of the translationB(A), ®(L), ®(R), ®(C) and®(S) of the five rules from the original term
rewriting system. This construction can be generalized to any term rewriting system but is still incom-
plete for the moment. It lacks two families of rules and this section starts with their description.

Let us fix an algebraic signatuke The set of terms built on the signatireand on some fixed countable
setV of variables is denoted bIZ. Let us assume that the Sétis endowed with a total order (given by
a bijection withN), so that the variables can be written x,, x3, etc. For any ternu, the notatiorju is
used for the greatest natural numbeuch thatc; appears in.. Then, we definff'X(m,n) to be the set
of families (uy, ..., uy,) of n terms such thahu; < m for everyi. Note that the séfX(m, 0) has only
one element, denoted bym). The following operations provide the SBE with a product category
structure:

- Ifu = (ug,...,un) isin TX(m,n) andv = (vq,...,vp) isin TX(n,p), then their composite
vouis the family(wy, ..., w,) where eachv; is built fromv; by replacing eacly; with u;.

- The identity ofn, for any natural numbet, is the family(x1, ..., xn).

- The productu ® v of u = (uy,...,un) in TX(m,n) and ofv = (vy,...,vq) iIn TX(p, q) is the
family (w1, ..., wnyq) built that way: ifi lies betweerl andn, thenw; is ui; otherwisew;
is vi where eaclx; has been replaced by .

10
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Furthermore, this product category satisfies some additional properties. The first oneTig tisaa
cartesiancategory: seen as a strict monoidal category, the monoidal prodiscthe functorial part of
a cartesian product. In our case and informally, this means that every dircuit— n is entirely and
uniguely determined by circuitsm — 1, in the same way that any functign X™ — X™, whereX is
a set, is entirely and uniguely determinedrbfunctionsX™ — X: its components. To check thak is
indeed cartesian, one uses a result from [Burroni 1993], restricted to our setting:

Theorem 4.1 (Burroni). A product category is cartesian if and only if it contains three arrows:
e T
T d €

Such that the two following families of equations hold:

1. The familyE o, made of the following seven equations:

A8 A 5-4 -]
g1 - e

2. The familyEx, made of three equations for each integeand each arrowf : 1 — 1in C:

R AT

The following recursively defined arrows familig@s, ) ncy and(tn,1)nen have been used:

n+1

L -

n+1 n+1

with the initial valuessy = 0 andto 7 = 1.

Note that the following convention is now used in diagrams: generating operators are drawn with black
diagrams, while composite arrows are grey. The union of the two fankilieendE s is denoted byE A5 .
Theorem 4.1 is not mandatory to get the following proposition but yields an easy proof of it:

Proposition 4.2. The product categor{¥ L is cartesian.

Proof. Let us start with the definition of the three arrows from theorem 4.1: the atr@ithe pair
(x2,x7) of terms; the arrovb is (x1, x1); finally, the arrowe is the empty family<(1). Computations to
check the equations of theorem 4.1 are straightforward. O

11
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The next step consists in the proof tHBX is the free cartesian category generated by the algebraic
signatureX. In order to prove this fact, one starts with another use of theorem 4.1:

Corollary 4.3 (of theorem 4.1). For every algebraic signatur&, the category(X€)/Eax is the free
cartesian category generated By

Hence, in order to prove thatX is another version of the free cartesian category generated thys
sufficient to prove that there exists an isomorph@®mTL — (Z¢)/Ens.

The signature is contained iffZ: one defines an inclusiornwhich sends eactp : n — 1 from X
onto the termyp(x1,...,xn). Hence, corollary 4.3 extendsnto a cartesian functdf from (£€)/Eax
to TX: this functor sends each from X ontoi(¢) andt, & ande respectively ontdxy, x1), (x1,%1)
andx(1).

Conversely, let us consider an arrdw= (u1,...,uy) in TX(m,n). Each termu; can be writ-
tenu; = fi(yl,... ,y}q), with k; an integer,f; an arrow in(Z)(k;, 1) and eachg} a variable from
{x1,...,xm}. Furthermore, this decomposition of terms is unique. Thus, the artanquely decom-
poses into:

f=(f1®...0f)o[Y],...,up ).

There remains to prove that every familyy,...,yx) of variables in{xq,...,xm} can be uniguely
written (moduloE ») with the three arrows(t), 1(8) andi(¢). This can be done in two steps.

Let us define the sub-product categdhpf TZ by restricting ourselves to families of variables: this
is T®, where) denotes the signature with no operator. One also defines the cartesian categfiipite
setswith: the arrows off°(m, n) are in bijective correspondance with the functions from the finite set
n] ={1,...,n}to[m]. Then:

Lemma 4.4. The cartesian categori€g andF° are isomorphic.

Proof. Let (y1,...,yn) be a family of variables taken ifx1,...,xm}. Then, there exists an unique
functionf* from [n] to [m] such thaty; = x(;) for eachi. Let us fix0(yy, ..., yn) as the arrovf in [F°
that corresponds té*. Conversely, iff is an arrow inF°(m,n): let us denote by* the corresponding
function from[n] to [m]. Then one defines (f) = (x¢«(1),...,X(n)). There remains to check that
andw are cartesian functors which are inverse one another, which is straightforward. &

The second step uses another result from [Burroni 1993]:
Theorem 4.5 (Burroni). The cartesian categorids® and (A)/E A are isomorphic.

Hence, the cartesian categoriégnd(A)/E A are isomorphic. Consequently, each fantily, ..., yx)
of variables taken itix1, ..., xn} corresponds to a unique arrow(A)/Ea. Furthermore, each arrofv
in TX(m,n) admits a uniqgue decompositién= fx o fo with fx in () andfa in V.

Finally, one gets that the cartesian fundédrom (£¢)/E s to TZ is an isomorphism. However, we
want an map fronTZ to (X€): let us find a convergem-polygraph(X€, Rax) such that(X¢)/Rax is
isomorphic to(X¢)/EAx and use the unique normal form property.

A conjecture from [Lafont 2003] is proved:

Theorem 4.6. For any algebraic signatur&, the 3-polygraph(X€,Ras) is convergent andx€)/Rax
is isomorphic to the free cartesian categd®’)/E x> generated by, where the family of ruleRax is
made of the following two subfamilies:

12



4. From term rewriting to 3-polygraphs
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2. The familyRy given, for each integen and each operato®p in X(n, 1), by:

@f_>l...l (p‘ﬁ%_» %@
e WL

Remark 4.7. Three families of verifications need to be done. The first one consists in checking that the
new rules are derivable froiay, which is straightforward.

The second one is much more complicated: one needs to check thaptiggraph terminates.
However, the structural complexity of polygraphs requires new techniques since the usual ones used in
rewriting do not work. One way to craft reduction orders Jgpolygraphs is made explicit in section 5
and used in section 6 in order to prove the terminatiof®6f Ray).

Finally, one needs to check that tBigpolygraph is confluent. Here, this is equivalent to computing
all of its critical pairs and check that each one is confluent. Once again, the structural complexity of
polygraphs generates problems unknown with other kinds of rewriting theories. For example, a finite
3-polygraph can produce an infinite number of critical pairs; this is the case here. However, among these
critical pairs, some have properties that allow us to finally have only a finite number of computations to
do. Critical pairs oB-polygraphs need to be further studied and classified according to properties of this
kind; this will be addressed in subsequent work.

The present case is discussed in section 6 and fully studied in [Guiraud 2004].

From theorem 4.6, one concludes the existence of adnffom TX to (X€). Indeed, iff is an arrow
in the cartesian categofyz, then®(f) will be the Ros-normal form of any representant {&¢) of the
arrow F(f) in the product categoryx€)/Eay. This map®, which could not be proved to exist until
theorem 4.6, allows the formal definition of the translation of terms into circuits.

13



4. From term rewriting to 3-polygraphs

Definition 4.8. For every termu in T and for every integen > fu, the termu can be seen as an
arrow u,, in TZ(n,1). One denotes byp™(u) the arrow®(u,,) of (X¢) and by ®(u) the particu-
lar case®™(u). If & = (u,v) is a rewrite rule onlX, the notation®(«) is used for the rewrite
rule (@ (u), ®¥(v)) on (Z€).

As an immediate consequence of the definition, one gets:

Lemma 4.9. For any algebraic signatur&, any termu in TX and any integen > fu, the arrow®™(u)
is a normal form for the resource management rikgs.

The rest of this section is devoted to the comparison of a term rewriting sysieR) with the 3-
polygraph(Z€, R€¢), whereR€ is the union of the familyR o5 of resource management rules and of the
family @ (R) made of the translations & of the rulesR.

Remark 4.10. Before stating the result, let us qualify liformizeda rule (u,v) on TX such that

u = f(yy,...,yx) with f an arrow in(X) and(y1,...,yx) a family of variables with the following
property:ys is x1; then, for each in {1, ...,k — 1}, the variabley;; is either in{yq,...,yi}, Oryis
isxpy1if {y1,...,ui} ={x1,..., xp}k

Note that any rule offiZ can be replaced by a uniquely defined uniformized rule that generates the
same reduction relation. Furthermore, if a left-linear rule is replaced by its uniformized rule, this one is
also left-linear.

Hence, for what follows, (left-linear) term rewriting systems can always be considered uniformized:
if they are not, they are replaced by their uniformized equivalent version, with no consequence on the
results.

This choice simplifies the translations: a riie v) that is both left-linear and uniformized satisfies
u = f(x1,...,%), with f an arrow in(Z), uniquely defined; hence, the translation®yof such au
is f and thus is an arrow gi-).

Proposition 4.11. If (£, R) is a term rewriting system, then:
1. If the term rewriting systerfiz, R) terminates, so does tl3epolygraph(Z¢, R¢).

2. The translation® preserves the reduction steps generated by any left-linearoccutlat is: for
any pair (u,v) of terms such that —, v and any integen > tu, there exists an arrowin (X¢)
such that

O™ (U) —o(a) T —r,y V).

Proof. Point 1 uses the technique to be introduced in section 5. Its proof is thus postponed until section 6.
Point 2 requires lengthy and cumbersome though intuitively simple computations that can be found in
[Guiraud 2004]. &

Theorem 4.12. A left-linear term rewriting systerft, R) terminates (resp. is confluent) if and only if its
associated-polygraph(X€, R€) terminates (resp. is confluent).

Proof. Let us assume that ttepolygraph(X€, R¢) terminates while the term rewriting systdih, R)
does not. Consequently, there exists some sequenggcy of terms inTZ such thatt,, —; u, for
everyn. From 4.11, since every rule Ris left-linear, one concludes that, for evéry> fuy:

DX(1p) e DX(uy) =l - =l D) = P(ungr) e -
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5. Termination orders for 3-polygraphs

where the notation» . stands for aon-emptyR¢-reduction path. Such an infinite reduction path exis-
tence is denied by the termination of thgolygraph(X€, R¢), thus giving this property fofx, R). The
converse, which is true even if the term rewriting system is not left-linear, is still postponed to section 6.

Now, let us assume that the term rewriting systemR) is confluent. Let us consider a branching
(f,g,h) of (X€, R¢): the arrowsf, g andh have the same finite number of inputs, sayand the same
finite number of outputs, say, and satisfyf — . g andf —c h. Let us denote byt the canonical
projection of (£€) onto TZ. Then,n sends each of, g andh on families(fy,...,fn), (g1,...,9n)
and(hq,...,h,) of terms such that each one has variable&in. . ., x.}. Moreover, for each, one
gets that the tripléf;, gi, hi) is a branching ofZ, R). From confluence of this rewriting system, one
concludes the existence of a arrkythat closes this branching. Let us defknas the translation, b ™,

in (X€)(m,n), of the family (kq, ..., k) of terms. SincéX, R) is left-linear, proposition 4.11 ensures
that this arrowk closes the branchin, g, h).

Conversely, let us assume that wpolygraph(X€, R€) is confluent. Let us consider a branching
(u,v,w) in (X, R); since this rewriting system is left-linear, this branching translates to a branching
(d™(u), d™(v), D™ (w)) in (X, RE) for anyn > fu. Since the3-polygraph is confluent, there exists
some arrowf in (X¢)(n, 1) closing this branching. The projectiotif) is an arrow ifTX(n, 1) and thus
corresponds to a term that closes the initial brancking, w). O

Before considering what this result allows (or rather does not allow) us to conclude about our term rewrit-
ing system(Z, R,) presenting the theory &/27Z-vector spaces, there remains some termination results

to prove in the elapsed section. However, the intrinsic complexity of the polygraph structure prevents the
use of classical techniques; rather, the incoming section presents an adaptation to the particular case of
3-polygraph we consider of classical interpretation techniques used to craft termination orders for terms.

5 Termination orders for 3-polygraphs

In rewriting, one of the most used technique to prove termination is the following one: aithhation

order, which is a terminating strict order that is compatible with the term structure; then prove that this
order contains the rules. Hence any reduction path in the corresponding rewriting system yields a strictly
decreasing family for the reduction order: the fact that such families cannot be infinite ensures that there
cannot exist any infinite reduction path or, equivalently, that the rewriting system terminates.

In term rewriting, one easy way to build reduction orders is by means dfitarpretation The
simpliest ones are: each tenmsuch thatiu = n is sent to a functiont, from N™ to N (or any set
equipped with a terminating strict order). Then, one saysuhat v if eachn-uple of integers is sent
to a strictly greater integer by, than byv,. One easy way to compute, for each termu is to fix .
for each operatog in the considered signature and to extend these values functorially. If one can prove
that eachyp. is a strictly monotone map and th@at- g for each rulef — g, thenu > v whenever there
is a reduction fromu to v. Since the order ol is terminating, so is the order on functions: hence, the
considered term rewriting system terminates.

However, in the case @kpolygraphs, this classical interpretation technique does not yield reduction
orders in general. Indeed, it is not always possible to send each operatdine signature onto a strictly
monotone map: for example, the erasure operateitl be sent to an function fror¥ to N°, that is to a
single-element set: this function is uniqgue and monotone, but not strictly. Consequently: even if a rule
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5. Termination orders for 3-polygraphs

f — g satisfiesf,, > g., then(e™ o f), = (¢™ o g),, with n the number of outputs of bothandg.

One could also consider contravariant interpretations: hene®uld be sent to a constant natural
numbere*. But, in the most interesting+polygraphs, such as the ones we are concerned with, there is a
constant operatat which cannot be contravariantly sent to a strictly monotone map. The interpretation
technique must be adaptated to the polygraph structure in order to yield termination orders.

Here we are in front of a choice between two possible directions: the first one consists in interpreting
arrows into functions between objects equipped with a monoidal product, rather than a cartesian one,
such as vector spaces. But, when examined, this has led to horrendous computations that did not produce
any reduction order. Nonetheless, this trail is not to be forgotten and shall be reexamined when there is
a computational tool, adaptated to polygraphs.

The other path consists in using classical interpretations, both covariant and contravariant, as tools
to build a third interpretation: this one will give the desired reduction orders. Let us present images that
describe the intuition beneath the formalism. Each arrow in the considered product category is seen as
an electrical circuit whose elementary components are the operators it is built from, such as suggested by
the diagrammatic representation used. Then, a heat production value is associated to each circuit: each
of its inputs and outputs receives a current with a fixed intensity; hence there are two types of currents:
some are descending (they come from the inputs and propagate downwards to the outputs) and some are
ascending (they propagate upwards, from the outputs to the inputs).

The heat produced by a fixed circuit is calculated this way: an operator is arbitrarily chosen. Then,
currents are propagated through the other operators to the chosen one. This requires that choices have
been made for each operator: for each one, one must be able to compute the intensities of descending
currents transmitted when he knows the intensities of incoming descending current, and similarly with
ascending currents. When one knows the intensities of each current coming into the chosen operator,
one computes the heat it produces, according to values fixed in advance. Then, one repeats the same
procedure for each operator, and sums the results to get the heat produced by the considered circuit, for
the chosen current intensities.

Two circuits with the same number of inputs and the same number of outputs are compared this way:
if, for each family of (ascending and descending) current intensities, one produces more heat than the
other one, then the first one is said to be greater. The goal of this section is twofolds: firstly, to formalize
the objects required to compute such an order; secondly, to obtain sufficient conditions for this order to
be a reduction order.

Let us describe the required materials. The first one is the object where the interpretations take their
values: this will be a product category equipped with a strict order. In order to build it, one considers
(non-empty) ordered se¥sandY to express the current intensities, one for descending currents, one for
ascending currents (for one of the applications to be described, two different sets of values are needed).
Then, a commutative monofel will contain the possible values of heats; moreover, it is supposed to be
equipped with an order such that the addition is strictly monotone in both variables.

From the datX, Y andM, one builds a somewhat weird product categd(¥, Y, M) this way: an
arrow frommtonin O(X,Y, M) is a triplef = (f,, f*, [f]) consisting of threenonotondunctions

fo : XM= XY YT = Y™ [ XM x YT — M.

The identity ofn is the triplen = (X™, Y™, 0) made from the identities of™ andY™ and the constant
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5. Termination orders for 3-polygraphs

zero-function fromxX™ x Y™ to M. Two arrowsf : m — n andg : n — p compose this way(g o ),
and(g o f)* are respectively the compositgso f, andf* o g*; for elements<in X™ andy in YP, the
function[g o f] is given by:

[g o f(X,4) = [fl(X, g"(¥)) + [g](f+(X), ).

If f:m — nandg:p — qaretwo arrows ird(X,Y, M), then their product is given byf ® g). and
(f ® g)* are respectively, ® g, andf* @ g*; if X, §, X’ andy ’ are respectively elements ¥f™, Y™, XP
andY4, then[f ® g] is given by:

[f® gl(x, X", 4,¥") = [f1(x,9) + [gl (X', § ).

Then one checks that these operations return monotone functions and that they satisfy the required equa-
tions, in order to get:

Lemma 5.1. The aforedefined obje(X,Y, M) is a product category.

On top of this product category structure, a strict order relatiors defined on parallel arrows of
O(X,Y,M). If f andg are two arrows fromm to n, thenf > g if, for any X in X™ andy in Y™,
the following three inequalities hold:

f(X) = 9.(x), f°(Y) = ¢"(v), [f(X,y) > [gl(X, 7).

Now, let us consider a signatuke Let us asume that each operagor m — n in X is associated with
an arrow(@,, @*, [@]) : m — nin O(X,Y,M): this is the interpretation. For any, the monotone
functions @, @* and[g] respectively express how the operator transmits descending and ascending
currents and how much heat it produces, according to the current intensities it receives.

Since(X) is the free product category generated by the signatutiee map sending eaghin X to
the triple (¢., *, [¢]) uniquely extends to a product category fundidrom (<) to O(X,Y, M). This
means that one can compute f* and([f] for any circuitf in (X), from the valuesp.., ¢* and[¢] given
for each operatop in £ and using the formulas for composition and produad{iX, Y, M).

The last step consists in usifigo get the order- back fromO(X,Y, M) on (X): for any two parallel
arrowsf andg in (X), thenf > g isF(f) > F(g).

Theorem 5.2. With the aforegiven notations and if the strict part of the orderis terminating, then
the strict order- constructed or{X) is a reduction order.

Proof. One must check that the binary relatierbuilt on (X) is antireflexive, transitive, terminating and
compatible with the product category structure. Let us assumé thain arrow in(X)(m,n) such that

f > f; let us fix any elements andy respectively in the non-empty set8* andY™; then, by definition
of -, one gets the following strict inequality t:

[F(OI(X,4) > [F(AI(X, y).

However, this inequality cannot hold M since> is the strict part of an order relation. The termination
is proved by a similar argument: any infinite and strictly decreasing sequekkeg yields, through the
non-emptyness aX andY, at least one infinite strictly decreasing sequenc®inwhich existence is
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6. Application 1: explicit resource management polygraphs

denied by the assumed termination of the strict part of its order. The transitivity comes from the ones of
the orders orX, Y andM. Finally, compatibility with the product category structure is checked through
computations which use the monotone quality of echf* and[f] in O(X,Y, M), together with the

facts thatM is a commutative monoid arfdis an product category functor. &

For concrete applications, presented in the next two sections, the following corollary will be used instead
of theorem 5.2:
Corollary 5.3. Let us consider @-polygraph(Z, R). Let us assume that there exist:

1. Two non-empty ordered seXsandY.

2. A commutative monoi equipped with an order such that its strict partéminatingand such
that the sum is strictly monotone in both variables.

3. For each operatokp in X(m,n), threemonotongunctions:

Qs XM= XY @ YT Y™ (@] : XM x Y — M.

If the strict order>- on arrows of(X) built from these data, in the aforegiven manner, satidfiesg for
every rulef — g in R, then the3-polygraph(Z, R) terminates.

6 Application 1: explicit resource management polygraphs

This section is devoted to the remaining unproved results from section 4. Let us fix a term rewriting
system(XZ, R) for the whole section.

6.1 Convergence of the 3-polygraph of explicit resource management

The first result to prove is theorem 4.6: thgolygraph(X©, Roy) is convergent, where we recall from
section 4 thak € is the signature made of the algebraic signatuend the resource management signa-
ture A, while Rays is the family of resource management rules.

The proof is divided in three steps: the first one consists in proving its termination; then, we recall
from [Guiraud 2004] that thi3-polygraph is locally confluent; finally, Newman’s lemma is applied to get
its convergence. Let us start with termination: we use the technigue developped in section 5. However,
the considered polygraph is rather complex and needs two applications of the technique. For the rest of
this paragraph, let us fix some notations. Let us denote thye following rule:

aindty

We denote byN* the set of non-zero natural numbers with its natural order relation. The commutative
monoid freely generated byf* is denoted byN*] and is considered equipped by thmultiset order
generated by the usual order relation on natural numbers. The eleménts afe all the finite formal
sums of non-zero natural numbers; a natural numbeeen as a generator [6¥*], is denoted by.
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6.1. Convergence of the 3-polygraph of explicit resource management

The multiset order is defined in two steps: for the first one, one says that any supn ; k;.n; satisfies
the inequalityn > a if n > n; for eachi; then, the multiset order is taken as the reflexive and structure-
compatible closure of this relation.

This implies that the addition is strictly monotone in both variables; furthermore, since the strict
order> on N* terminates, so does the strict part of the multiset order. Here is an example of some strict
inequalities that hold ifiN*]:

0 <1271 <2< 41423 < 4.

Lemma 6.1.1.The3-polygraph(X€, Ray) terminates if and only if th&-polygraph(Z€, {«}) terminates.

Proof. Let us consider the product categddyN*, N*, [N*]) together with the termination order as
defined in section 5. Let us denote byhe product category functor frofLc) into O(N*, N*, [N*])
defined by the following values on the operator& 6f

1 1 l i i—l—)*—i—] l
Y * Y - N
R TIRI

—
-
-

v ¥ ¥ ; ; S Gl lit]
b reo bt

- -

o -
e —

G it ]

Three diagrams are given for each operaiotwo represent the functiong, ande* (how ¢ transmits

the current intensities) and one represépts(the heatp produces). Now, it is checked that, for every
rule f — g in Ray, the inequalityF(f) = F(g) holds, except for the rule : s« — ta, for which

F(sx) = F(ta). Let us check the (in)equalities for three sample rules. The complete computations are in
[Guiraud 2004]. Let us start with the coassociativity ruledor

PPy

One checks that the first two non-strict inequalities are satisfied:

(1®8)08).(1) =(1,1,1) =((d®1)0d)(i)
(T®8)od)*(1,j,k)=i+j+k+2=((6®1)08)"(i,] k).

Moreover: (e
(6 ®
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6. Application 1: explicit resource management polygraphs

Sincel + 2 > 0, one getk + 1 + 2 > k and the required strict inequality. Then, consider the sufer
which the chosen values do not work. One gets the two following equalities:

(M@ o(t@l)o(1T@T))(i,j, k) =(kj, i) =({(t®@1)o(1@T)0(T®1))(i,] k)

(M@)o (t®@1)o(1®1))*(1,j,k) =(kji)=((t®1)o(1®@T) o (t® 1))*(i,], k).
And also this equality:

(T®T1)o(t®1) o (1®1T)I{,j,k,1,m,n)
= jkm+mj+k+i(+k)n+n(i+j+j+k)
= [(t@l)o(1®@71)o(t® i k1,mmn).

To finish with our examples, let us consider the most complicated rule of this presentation, namely the

local duplication rule:
‘z - h )

This is this rule that motivates the use of the rather complicated product catégufyN*, [N*]) to
interpret(X€). In order to make the computations for this rule, one must start by proving the following
equations, which is done by iteration on the integer

(6n)s(i1,...yin) = (A1, .., in, 11, -+, in)
op(ir, .. indn, i) =1+ + 1, in+in+ 1)
Brl(i1,. .y, d1y -y dn, K1, .00, Kn)

= Z1§u§n(ﬁ+ﬁ) + Z1§u<v§n(iuiv-@+ku-@)-

Then one gets these two equalities:
(0o @)u(ir,...,in) =1+ +in+ L1+ - +in+1) =((e@@)odn)
(bo@) (i) =(+j+1,...,i+j+1)=((¢ @ ¢)odn)".

For the strict inequality to be checked:

[(¢ ® @) obnllin,... in,j,k)
= 1 + (TL +1+ Zl§u<v§niui"’)'L< + Z]§u<v§nij+ k. Z1§u<v§niu + i"'

The multiset order properties allow the conclusion: the left member of this rule is strictly greater than its
right member. Indeed, it is a consequence from the following strict inequalities that eI in

jtk+1>j

i+k+1>k

Wt tintl>iy for everyu

i1+ +in+1>1i,+1, foreveryuandv.
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6.1. Convergence of the 3-polygraph of explicit resource management

The computations for the other rules are handled similarly, albeit more easily. Now, let us check the
equivalence between termination of Bwpolygraphg €, Rax) and(X€,{«}). Sincex is a rule ofRay,

one concludes immediately that the terminatior{ ©f, Roy) implies the termination ofZ¢ {«}): any

infinite reduction path generated by the latter would also be an infinite reduction path in the former.

Conversely, let us assume thar, {«}) terminates and that there exists an infinite reduction ffath.cn

in (£¢,Rax). This path yields an infinite decreasing sequefidé.,)) in O(N*, N* [N*]), equipped

with the order>-. Since this order terminates, the sequence is stationary, which means that there exists
some natural numbet, such thafF(f,,) = F(f,.,1) whenevem > ny. However, as proved earlier, one

can have bothi — . g andF(f) = F(g) only if f —,g. This implies that the sequen¢,)n>n, is an

infinite reduction path ifnZ<,{«x}). However, the existence of such an infinite reduction path is prevented
by the termination ofZ¢, {«}). O

Now, there remains to prove that:
Lemma 6.1.2. The3-polygraph(Z€,{«}) terminates.

Proof. This is done using the technique from section 5. The product category considered for the inter-
pretations i€9(N, N, N), whereN is the set (or commutative monoid) of natural numbers, equipped with
its natural order. We denote Iy the product category functor frofL€) to O(N, N, N) defined by the
following values on the operators bf:

i 1 i Y T $
Y } | A A A0
T

' T
T T T oAaae
i j ji+T 17 k1
We must check that : s« — t satisfiesF(sx) = F(ta). The computations give, on one hand, the two
equalities:
(M@t)o(t@1l)o(1®1))(i,j, k) =(kj+1,i+2)=((t®@1)o(1®1)o(T®1))(i,j, k)
(M@t)o(t®@1)o(1®@1))*(1,j,k) =(kji)=((t®1)o(1®@T) o (tT®1))*(i,], k).
On the other hand, one gets:
(TeTo(t®l)o(T®1){,j,k,L,mmn) =21+2j+2k+2
(teo(l®T)o(t®1){,j,k 1, mn) =21+2j+2k+1.
By corollary 5.3, this gives the result. &
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6. Application 1: explicit resource management polygraphs

Thus, one gets, as a corollary of lemmas 6.1.1 and 6.1.2:
Proposition 6.1.3. The3-polygraph(X€, Ras) terminates.

We recall the following result from [Guiraud 2004, proposition 5.31]:
Proposition 6.1.4. The3-polygraph(Z€, Rax) is locally confluent.

Finally, Newman'’s lemma [Baader Nipkow 1998] is applied to get theorem 4.6.

6.2 Termination of 3-polygraph built from a terminating rewriting system

This paragraph contains the proof of theorem 4.11, point 1: if a term rewriting sy&tetm terminates,
then so does its associatggholygraph(X€, R¢). The proof once again uses a termination order obtained
with theorem 5.2. However, integer values cannot be used here, since rRlasarunknown. To handle
this issue, the following classical result - see [Baader Nipkow 1998] - is used:

Theorem 6.2.1. A term rewriting system terminates if and only if there exists some mappifigm the
set of termdX to N such thatu| > |v| wheneveuw is a term that reduces into another tekmMoreover,
in that case, the mapping | can be chosen such that| > [u/| wheneven’ is a subterm ofy; the
mapping can also be chosen so that it takes its values in any countable set.

Proof. If (X, R) terminates, one can choose the mappingo send each term onto the length of the
longest reduction path starting from) this mapping satisfiest > [u/| if u’ is a subterm ofx, since
every reduction path from’ yields a reduction path of the same length framConversely, if such a
mapping exists, an infinite reduction pdth, ).cn in (X, R) would generate a strictly decreasing infinite
sequencé|un|)nen in N, which cannot exist; hence the term rewriting systéhnR) terminates. If this
is the case, the mapping| can be composed with any bijection: N — E, wherekE is any countable
set. &

Hence, from our terminating term rewriting systém R), a mapping - | : TX — N* is assumed to be
chosen such thatt| > [v| wheneven reduces inv and|u| > [u’| wheneven' is a subterm ofi. From
this mapping, one defines a binary relatisron TX by u > v if, for every term context, the inequality
Ic[u]] > |e[v]| holds. From the fact that the usual ordepn N* is a terminating strict order, this binary
relation is proved to satisfy:

Lemma 6.2.2. The aforedefined binary relation on TX is a terminating strict order.

Then, one builds the lexicographical orderon T x N*: for this order,(u,1) > (v,j) if u > v or if
u =v andi > j. This order satisfies:

Lemma 6.2.3. This relation> is an order onTZ x N*. Moreover, its strict part> is a terminating strict
order onTZ x N*.

The seflX x N*, together with the aforedefined order, is taken as the first set used in the interpretation.
The second one is a one-element{séwith the only possible order. Finally, the commutative monoid

is once agairiN*] with its already-used multiset order. The product categ®ix x N* {x}, [N*]) is
denoted byo.
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6.2. Termination of 3-polygraph built from a terminating rewriting system

Sometimes, the two elemeritsty, i1),. .., (un,in)) Of (TZxN*)™and(uq, ..., un;i1,...,1in) Of T™x
(N*)™ are identified.

The considered product category fundtdrom (X€) to O is given by the following values (only two
are given for each operator since the contravariant interpretation is trivial):

(u,1) (u,1) (w,1) (v,3) (w,1) (v,])
(u,i)  (u,1)

o

¢ o0 vy M
(u, 1) (u, 1) (v,j) (w, i) % =
(u] y U1 (uTU 111) (u1 y U1 Un, l‘rl)

v ¥ (i) e, )
}

L4+ 1ia))

There are two steps to check the conditions given in corollary 5.3: the first one consists in ensuring that
each given operation is monotone; the second part is about compuiirfg i F(g) holds for every rule
f — gin R,

For the first part, consider, for example, the functignsand|¢] for some fixed operatop in Z(n, 1),
n > 1. Let us consider terms,, ..., un, v1,..., vy and non-zero integeis, . ..,in, j1,...,Jjn. LELUS
assume thatuy, i) > (vi, ji) for everyk. In order to prove thap . is monotone, one must check that
eitherp(uy,...,un) > @(vy,...,vy) or both areequaland +---+1, > j1+ -+ +jn. Letcbea
context. Since, for everly, u > v andco @(vy,...,vi1, 0, w1, ..., Un) iS a context, one gets the
following inequality:

lclovi, . v, Wi - wn)ll > fel@(vey o vig Wity - wall
Furthermore, ifu, > vy for somek, then this inequality is strict for the sarkein this case:

lclo(ur, ..., unll > [cle(vi,...,valll.

Consequentlyyp (ug,...,un) > @(vy,...,vn). Otherwise, ifu, = vi andix > ji for everyk, then:

clo(ur,...,wn)ll = lelo(vi,...,va)]
i > 1 .

Thus, in both cases:

(e(ur,...,un),2.(i1 + - +1in)) = (@(v1,...,vn), 2.001 + - +in)).

23



6. Application 1: explicit resource management polygraphs

In order to prove thalp] is monotone, let us fix somein [n]. Then, eitheny, > vy or u, = v and
ik > jx. Inthe first case:

‘(p(vl)' .. )kal)uk) R )un)| > |(p(v]) . ?vk)uk+]) . ?un)"
Thus, by definition of the multiset order ¢gN*]:

(j] +"'+jk—1 +ik+"‘+in)'|(P(V1>-~~)Vk—1»uk)-~~)un)|

> (]1 +"'+jk+ik+] +"’+in)-|(P(V1»---aVkaukJrh---aun”-

In the second case, wheng = vy andiy > jyi:

(j] +"'+jk—1 +ik‘|‘"'+'.Ln).|(P(V1,...,Vk_],uk,...,Un)|

Z (]] +"'+jk+ik+] +"'+in).|(p(\}1,...,Vk,Uk+1,...,un)|.

Finally:
(it Fin)feln,. . un)l 2 Gr 4 +in)feV, .. va)l.

If v is a constant irE(0, 1) or for operators im\, proofs are direct. Furthermore, for each opergton
eitherX or A, the operationp* is the only map fromix} to itself, and it is monotone, so that:

Lemma 6.2.4. For every operatokp in ¢, the aforegiven functiong., ¢* and[¢] are monotone.

Then, we must check #(f) = F(g) for every rulef — g in R€. Let us recall that this family of rules
consists of three subfamilie®a, Ry and®(R). For any rulef — g in the first familyRa, one gets

F(f) = F(g), except for left and right counit rules, wheFéf) = F(g). Computations for rules iRy

are more complicated; let us examine, for example, the rule for local duplication and one of the rules for

local permutation:

Let us fix some natural number> 1 and somep in Z(n, 1); for constants ir£ (0, 1), computations are
direct. By iteration om, the following equalities are proved.

(On)«(d,0) = (U, G5 0) and [6,](W;10) = 14 N e i—'rvh-
This gives, at first:

(80 @), 1) = (@), e(d); 2.(11 + - - +1in), 2.(i1 + - - +1n))
= ((@ ® @) 0 dn)« (1, 1).

Then:[6 o @](U,0) = 3.(11 + -+ - + in).J@(1)|. To be compared with:

(@ ® @) odnl(i,0) =2.(i1 + -+ +in).JoW)] + 11w + - +inln.

24



6.2. Termination of 3-polygraph built from a terminating rewriting system

Sinceuy is a subterm ofp (1) for everyk, and by asumption on |, the inequality@ (1) > |uy| holds.
Hence, for everk:

el ()] > tewe

Finally: (i14---+1in).Jo (W) > 11,01+ - - +in.un. This gives the inequalitip o @] > [(@ @ @) 0 dy].
Now, let us consider the first rule for local permutation; the first step is to prove, by iteration on

— —

(T, 1)« (W, 07) = (v,14;5,0) and [ty 1](t,v;T,j) = 0.

Then: (to (@@ 1)).(t,v;1,j) = (v, @(W);5,2.(11 + - +1n)) = (1@ @) 0 T 1)u(T, V31, ).

—

And:  [to (@@ DI(W,v1,j) = (14 +in)le@)] = [(1® @) otnl(d,wi,i).

The other rules iRy are similarly handled and give similar results: for every rfiles g in Ry, the
inequalityF(f) = F(g) holds inQ. The final part concerns the famify(R) of rules. Let us assume that
« : f — gis arule inR; its translation by® is the rule®(x) : ®(f) — ®F(g). Let us prove that
Fo ®(f) >~ Fo ®(g). The first step is to prove, by iteration on the degree of termi& jrihe following
lemma:

Lemma 6.2.5.Letu be aterm inTZ, n be an integer such that > fu, v a family ofn terms inTZ andt
a family ofn non-zero natural numbers. Let us denotedythe substitution defined by, - o, = vy if
k < n andxy otherwise. Then:

1. There exists some non-zero integgesuch thatf ®@™(u)).(u - oy, k).
2. The inequality®@™(u)](v, 1) < [u - oy + 1] holds in[N*].

3. If wis not a variable, then the inequalifp™(u)](V,t) > [u - oy also holds in[N*].

Point 1 gives, when applied foandg with n = f, the existence of non-zero natural numbeendk’
such that®d(f), (U, ) = (f - og, k) and®™(g).(U,1) = (g - 0,k’). Let us consider some context
By definition of the reduction relations, generated by the rule, one gets|[f - 0zl —, clg - ogl.
Consequently, the properties [of| give [c[f - ogl| > |c[g - ogl|. This holds for any context thus, by
definition of > on TL, one gets - o5 > g - og. Finally, using the definition of on TZ x N*:

Q.(f) > @.(g).

Let us prove now thatd(f)] > [®™(g)]. Sincex is a term rewrite rule, its sourdeis a non-variable
term. Hence, point 3 of the previous lemma gives the inequadityf)](t,t) > |f - og/. Moreover,
point 2 gives|®™(g)](u, 1) < |g - og + 1|. Finally, since the reductiofi- oz —, g - og holds in(Z,R)

and by properties of- |: |f - ozl > |g - ogl. There remains to concatenate these three inequalities to
get[®(f)] > [®™(g)] and, as a consequenEe O (f) = Fo ®™(g). The product category functdr
from (£€) to O gives usF(f) >~ F(g) for every rulef — g in ®(R) andF(f) > F(g) for every rulef — g

in Ras. This yields the following result:

Proposition 6.2.6. If the term rewriting systeri, R) terminates, then termination of tepolygraph
(X, R€) is equivalent to termination d-¢, Rax).

Since we already know th&E€, Ry ) always terminates, this concludes the proof of theorem 4.12.
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7. Application 2: a convergent 3-polygraph for a commutative equational theory

7 Application 2: a convergent 3-polygraph for a commutative equational
theory

This final section is devoted to give a convergent presentation of the equational thebf3/Ziector
spaces, which is, as mentionned before, a commutative equational theory and thus do not have any con-
vergent presentation by a term rewriting system.

In section 1, we have considered three term rewriting systémiy), (£, R;) and (X, Ry) that repec-
tively present the equational theories of monoids, of commutative monoids &)@ @fvector spaces.
All three have two operators, a product and a unit, and they have respectively three, four and five rules.
Thus, their associatestpolygraphs have five operators together with twenty-three rulesXgrRg),
twenty-four for(Z¢, R{) and twenty-five for Z¢, RS).

Since(X, Rp) is a left-linear convergent term rewriting system, theorem 4.12 ensures, in particular,
that (Z¢, R§) is a convergent presentation of the theory of monaoidt) explicit resource management
The term rewriting systeniZ, Ry) is left-linear, non-terminating (due to the commutativity rule) and
non-confluent (though it could be completed to get a confluent rewriting system), hence theorem 4.12
gives us tha(Z¢ R{) is a non-terminating and non-confluent presentation of the equational theory of
commutative monoids, with explicit resource management. Finally, the term rewriting syS{&m is
a non-left-linear, non-terminating and non-confluent term rewriting system: non-left-linearity denies us
any information coming from theorem 4.12 about this presentation.

However, there is, in [Lafont 2003], an equivaléapolygraph called [Z,). Its signature contains a
sixth operator, calle@ and pictured this way:

<

This new operator is said to [®iperfluoussince it represents, in &/2Z-vector space, the concrete
operationk(x,y) = (u(x,y),x) that can be expressed in termsgfé andt. In the presentation, this
relation is enforced by means of the following extra rule:

G% - H
The main objective of these new operator and rule is to make proof of termination easier (if not just
possible). Then, one has to add a certain amount of rules in order to complete the presentation, to finally
obtain the3-polygraph LZ;), discovered and baptized in [Lafont 2003].
This polygraph has six operators:
Y o A & < P
p n d T K

3
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7. Application 2: a convergent 3-polygraph for a commutative equational theory

And sixty-seven rules:
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From [Lafont 2003], we already know that this presentation is confluent but termination was still a
conjecture. The technique presented in section 5 now allows us to prove that it is also terminating, hence
convergent. The interpretation product category we ug®i$*, N* [N*]), once again denoted LY.

The interpretation functdt is given by the following values on generating operators:
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7. Application 2: a convergent 3-polygraph for a commutative equational theory

R A A T A

oo Y Y w¥itk X< X X itk

e
1+) 1 k i+ i1 i k1l
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The chosen values simplify the computations greatly. Indeed, normally, there are three inequalities to
check for each rule: hence, there should be 201 inequalities to check here. The first reduction comes
from the fact that identifiest andk: there are 24 rules that can be dropped since, for each one, there is
another rule that is sent to the same image. Thus there remains 43 rules and 129 inequalities to check.

Moreover, the rules of (Z,) have some interesting symmetries that one can exploit: indeed, when-
everf — g is a rule of L(Z,), thenf® — ¢° is also a rule of [Z,), where the duality-)° is the
involution defined by:

23 :év n- =g, TOZT» KOZK» nO:n> (gof)ozfoogo) (f®g)ozfo®go'
Another way to define this duality is by its action on diagrams: there, it is the top-down symmetry.
Furthermore, the functdr is compatible with this symmetry, in the sense that, for every affrotlie
functorF sendsf® onto F(f)°, where the duality oY) is defined that way(f,, f*, [f])° = (f*, {,, [f]°),
with [f]°(X,X’) = [f](X’,X). Note that this only have a meaning because the twoXseisdY are the
same here (both equal k).

Thus, if some rulé — g in L(Z,) satisfiesF(f) > F(g), then so doe$® — ¢g°. As a consequence,
this reduces the number of rules to study: 18 of the remaining rules have a distinct dual, hence only 25
rules need to be studied (75 inequalities). Furthermore, when d riieg is self-dual, the inequality
F(f)* > F(g)* holds if and only ifF(f), > F(g). holds: 8 of the remaining rules are in that case,
which means there still are 67 inequalities from the former 201 to check. Computations do not rise any
difficulty. For example, let us study the following (self-dual) rule:

-0

(kok)s(i,j) = (2L 4+7§,14+7)
(M@wolt@l)o(1®8))(i,j) = ({1+j,i+j).
Sincei andj are non-zero natural numbers, the following inequality holds:

One computes {
(kok) > (1o (t®l)o(1®3))..
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Then [kokl(i,j,k,)=i+it+j+k+k+1
[(T@pol(t@l)o(T®@d)(ij k1) =21+]j+2k+1

Sincei andj are non-zero natural numbers, the inequalitiesj > i andi + j > j always hold. Thus,
by property of the multiset order div*], the inequalityi +j > i + j always holds. Similarly, so does
k + 1 > k + 1. Finally, the multiset order ofN*] is compatible with addition, yielding:

ko]l >[(T®@uo(tal)o(1®0d).

The other rules are studied in a similar way [Guiraud 2004], which leads to the following result, proving
that commutative equational theories can adlyygraphicconvergent presentations:

Theorem 7.1. The3-polygraphL(Z,) is a convergent presentation of the equational theor{ GI7Z-
vector spaces, with explicit resource management.

Comments and future directions

The study of §-)polygraphs has been started by Albert Burroni and Yves Lafont, as an algebraic model
for 3-dimensional calculus o&-dimensional objects. Foundations were laid in [Lafont 1992], [Burroni
1993] and [Lafont 1995]. In [Lafont 2003], rewriting systems generated-pplygraphs were con-
sidered and many known equational presentations are studied in order to be completed into convergent
rewriting systems (or, at least, rewriting systems with the unique normal form property). Discussions
with Albert Burroni, Yves Lafont and Philippe Malbos have been essential in order to achieve the results
presented here. Comments from the referee were of great help to make this paper clearer.

There exist many research paths concerning polygraph. The first one is about confluence: as men-
tionned earlier, there exist theoretical issues with critical paigsblygraphs; exploration and classifi-
cation are mandatory in order to achieve some automated completion procedure for these objects. Such
a tool (which implementation in Caml has already started) would be very useful since, starting from an
equational theory, one could use the constructions described in section 4 in order to 8ipaiggraph;
then a completion procedure could be applied to correct termination and confluence issues. Suggested
by Pierre Lescanne, other usual techniques for building reduction orders in term rewriting could also be
examined, in order to see if they could also be adaptated to polygraphs. Among the most useful results
to be studied are the ones concerning path orders, see [Baader Nipkow 1998], and dependency pairs, see
[Arts Giesl 2000].

A second theme to be explored is the study of higher-dimensional polygraphs. For an example of
application4-polygraphs provide a categorical framework for proof transformations icdleilus of
structures[Guglielmi Straf3burger 2001]. Such an approach could yield results such as proof decom-
positions or normal forms, given by a convergémolygraph. At least, it suggests that formulas are
2-dimensional objects, proofs adadimensional and computation on them (such as cut elimination) lives
in dimensiom. This point of view is conjectured to yield a new class of objects describing formal proofs,
giving a different, categorical and geometrical way to approach proof theory.

Theoretical studies can also be directed at pursuing the synthesis started in [Guiraud 2004] on rewrit-
ing systems: one of the main goals is to have a framework where one can compare two rewriting systems,
regardless of the algebraic structure of their terms. The reduction space associated to each rewriting sys-
tem is an algebraico-geometric object (a cubical object in some category of algebras) and one could use
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the underlying cubical sets of these objects to compare rewriting systems, geometrically. Notions of
(co)fibrations from Quillen model categories - see [Hovey 1999] - theory could be useful for a better
understanding of results such as the ones of section 4; since many rewriting systems are special cases of
polygraphs, this study will start with the construction of homotopical tools for these objects.

Still another question is the following: is there somédor which there exists a finite-polygraph
yielding a calculus with both explicit substitutions and explicit resource management foictieulus.
Whenn = 3, the answer seems to be negative, since theoretical results deny the existence of any non-
trivial product category that is both cartesian (for resource management) and sovereign (for substitu-
tions). An equational description of the structure of closed category (such as the one Albert Burroni
has given for cartesian categories) should be the first step of this work. Another possibility is to use a
3-dimensional interpretation of proofs, together with the links betwerms and proofs.

Finally, 3-polygraphs have the interesting property to modelize computational circuits. Indeed, both
classical and quantum algorithms accept representations as circuits which are, albeit not in their usual
presentation, genuine operators af-polygraph. Furthermore, equational presentations are known for
both kinds of circuits. Questions that can be studied with this point of view concern the existence of
convergenB-polygraphs for classical or quantum circuits, thus leading to canonical representations of
programs. One can take a look at [Kitaev Shen Vyalyi 2002] for more information on circuits and [Lafont
2003] for their links with polygraphs.
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