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Anne Quéguiner-Mathieu

Abstract. — The ‘transcendental methods’ in the algebraic theory of quadratic

forms are based on two major results, proved in the 60’s by Cassels and Pfister,

and known as the representation and the subform theorems. A generalization of the

representation theorem was proven by Jean-Pierre Tignol in 1996, in the setting of

central simple algebras with involution. This paper studies the subform question for

orthogonal involutions. A generic characterization of direct summands is given; an

analogue of the subform theorem is proven for division algebras and algebras of index

at most 2.

Introduction

The ‘transcendental methods’ in the algebraic theory of quadratic forms are based

on two major results, proved in the 60’s by Cassels and Pfister, and known as the

representation and the subform theorems (see [Sch85, Ch. 4 §3] or [Lam05, CH. 9 §1

and 2]). J.-P. Tignol gave in [Tig96] a generalization of the representation theorem

for algebras with involution (of any kind), which implies the corresponding statement

for quadratic forms.

In this paper, the subform question is studied in the context of algebras with orthog-

onal involutions. The main results, which give partial answers to this question, are

theorems 3.1 and 4.1, stated and proved in §3 and §4. The first one gives a generic

characterization of direct summands, which is valid for any algebra with orthogonal

involution, but which is much weaker than the subform theorem in the split case. The

second one is an analogue of the subform theorem, but only for division algebras and

algebras of index at most 2. Before proving these theorems, we define in §1 direct

summands of an algebra with involution, using the direct sum of [Dej95], and we

restate the subform theorem in a convenient way for our purpose in §2.

We assume throughout the paper that the base field F has characteristic different

from 2, and refer the reader to [KMRT98] for basic facts on algebras with involution.
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1. Direct summands of an algebra with involution

Consider two central simple algebras with involution (B, τ) and (B′, τ ′) over F ,

which are Morita equivalent, i.e. B and B′ are Brauer equivalent and τ and τ ′

are of the same type. They can be represented as (B, τ) = (EndD(N), adhN
) and

(B′, τ ′) = (EndD(N ′), adhN′
) for some hermitian modules (N, hN ) and (N ′, hN ′) over

a central division algebra with involution (D, γ) over F . The direct sum for hermitian

modules gives rise to an algebra with involution, (EndD(N⊕N ′), adhN⊕hN′
), which is

Morita equivalent to (B, τ) and (B′, τ ′). But the involutions τ and τ ′ only determine

the hermitian forms hN and hN ′ up to a scalar factor, and modifying this factors

independently may lead to a hermitian form which is not similar to hN ⊕ hN ′ .

In [Dej95], Dejaiffe defined a notion of direct sum for algebras with involution which

extends direct sum of hermitian modules, i.e. such that (EndD(N ⊕ N ′), adhN⊕hN′
)

is a direct sum of (EndD(N), adhN
) and (EndD(N ′), adhN′

). Precisely, given any

Morita equivalence data between two algebras with involution (B, τ) and (B′, τ ′) she

defines the corresponding direct sum of (B, τ) and (B′, τ ′). Note that different Morita

equivalence datas (which amount to modifying scalars as in the previous paragraph)

may lead to non isomorphic direct sums of the same (B, τ) and (B′, τ ′).

We say that (B, τ) is a direct summand of (A, σ) if there exist (B′, τ ′), Morita equiv-

alent to (B, τ) and a direct sum of (B, τ) and (B′, τ ′) which is isomorphic to (A, σ).

By [Dej95, Prop. 2.2], this leads to the following definition:

Definition 1.1. — The algebra with involution (B, τ) is a direct summand of (A, σ)

if there exist a σ-symmetric idempotent e ∈ A such that (eAe, σ|eAe) is isomorphic to

(B, τ).

This condition can be translated in terms of hermitian modules as follows. Fix rep-

resentations (A, σ) = (EndD(M), adhM
) and (B, τ) = (EndD(N), adhN

), for some

hermitian modules over a central division algebra with orthogonal involution (D, γ)

over F . Denote by M0 ⊂M the image of the idempotent e, and by hM0
the restriction

of hM to M0. The algebra with involution (eAe, σ|eAe) is (EndD(M0), adhM0
). Hence,

(B, τ) is a direct summand of (A, σ) if and only if M contains a submodule M0 such

that hM0
is similar to hM .

In the split orthogonal case, that is (A, σ) = (EndF (V ), adqV
) and (B, τ) =

(EndF (W ), adqW
), for some quadratic spaces (V, qV ) and (W, qW ) over F , we get

that (B, τ) is a direct summand of (A, σ) if and only if there exists a scalar λ ∈ F×

such that λqW is a subform of qV . A ’generic’ condition under which this is satisfied

is given by the subform theorem, at least in a version up to similarities. For further

use, we give in the next section a projective version of this statement.

2. A projective version of the subform theorem up to similarities
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2.1. Definition of qW
proj. — Denote by F (W ) the function field of the affine

variety W and by F (PW ) the field of rational functions on the projective variety

PW . The generic point of the projective space PW , viewed as an F (PW ) rational

point, gives rise to a line LW ⊂ WF (PW ), which we call the generic line. We define

the projective class of qW to be the square class in F (PW ) of the value of qW at any

point of the generic line. It is a well defined element of F (PW )×/F (PW )×2, and the

notation qW
proj stands for an element in F (PW ) who belongs to the projective class

of qW .

If we identify F (PW ) with the subset F (W )0 ⊂ F (W ) of degree 0 homogeneous

functions, we may describe the projective class of qW as the quotient qW

f2 , where qW
is viewed as an element of F (W ) and f is an arbitrary degree 1 homogeneous element

so that the quotient is in F (W )0. The square class of qW

f2 clearly does not depend on

the choice of f .

Let (e1, . . . , en) be any basis of W over F , with dual basis t1, . . . tn, so that F (W ) ≃

F (t1, . . . , tn). We may then identify F (PW ) with F (θ2, . . . θn), where θ2, . . . , θn are

indeterminates, by f 7→ f(1, θ2, . . . , θn). Assume moreover that the basis (e1, . . . en)

is orthogonal for qW , and let bi = qW (ei). Using these identifications, one may check

that the element b1 + b2θ
2
2 + · · ·+ bnθ

2
n belongs to the projective class of qW . Indeed,

we have b1+b2θ
2
2 + · · ·+bnθ

2
n = qW (δ), for δ = e1+e2θ2+ · · ·+enθn ∈ LW ⊂WF (PW ).

2.2. A projective version of the subform theorem up to similarities. —

The classical subform theorem ([Sch85, Ch. 4, Th. 3.7], [Lam05, Ch. 9, Th. 2.8])

has the following easy consequence:

Proposition 2.1. — Let (V, qV ) and (W, qW ) be two quadratic spaces, with qV
anisotropic. There exists λ ∈ F× such that λqW is a subform of qV if and only if

(dep) ∃λ ∈ F× such that qV F (PW ) represents λqW
proj.

Remark 2.2. — This statement does not depend on the choice of qW
proj, since the

set of values represented by a quadratic form is stable under multiplication by a

square.

Proof. — Since qW F (PW ) represents qproj
W (see §2.1), condition (dep) clearly is nec-

essary. Let us prove it is also sufficient. Pick a vector v ∈ VF (PW ) satisfying

qV F (PW )(v) = λ(b1 + b2θ
2
2 + · · · + bnθ

2
n). If we identify F (PW )(t) = F (θ2, . . . , θn)(t)

with F (W ) by f 7→ f( t2
t1
, . . . , tn

t1
)(t1), we get qV F (W )(tv) = λ(b1t

2
1 + · · · + bnt

2
n). By

the classical subform theorem, this implies that λqW is a subform of qV .

Remark 2.3. — There are two differences between this statement and the classical

subform theorem. Using F (PW ) instead of F (W ) and qproj
W instead of qW is not a

serious one. As opposed to this, one should notice that it does not seem easy to prove

the subform theorem up to similarities (even in an affine version) without using the

subform theorem.
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3. The generic ideal and a characterization of direct summands

We now go back to the setting of algebras with involution, and for simplicity, we re-

strict ourselves to the orthogonal case. Hence (A, σ) and (B, τ) are Brauer equivalent

central simple algebras over F , with orthogonal involutions.

We denote by XB the Brauer-Severi variety of B and by FB the field of rational

functions on XB. It is a generic splitting field for the algebra B. By definition

of XB, its generic point, viewed as an FB-rational point, corresponds to a right

ideal of reduced dimension 1 of the split algebra BFB
:= B ⊗F FB . We call it the

generic ideal of B and denote it by IB. By [KMRT98, (1.12)], given a representation

BFB
= EndFB

(W ), there exists a unique line LB in the FB-vector space W such that

IB = HomFB
(W,LB); we call it the generic line of B.

If B is split and (B, τ) = (EndF (W ), adqW
) for some quadratic space (W, qW ) over

F , then XB is isomorphic to PW , and with the notations of §2.1, we have LB = LW

and IB = HomF (PW )(W,LW ).

In this section, we prove the following theorem, which gives a necessary and sufficient

condition under which (A, σ) contains (B, τ) as a direct summand in terms of the

generic ideal of B. Note that we do not view this as an analogue of the subform

theorem (see remark 4.4 below). In particular, the involution σ may be isotropic.

Theorem 3.1. — Let (A, σ) and (B, τ) be two Brauer-equivalent central simple al-

gebras, each endowed with an orthogonal involution. Then (A, σ) contains (B, τ) as

a direct summand if and only if

(iso) there exist a σ-symmetric idempotent e ∈ A

and an isomorphism Ψ : eAe→̃B such that

∀g ∈ IB , ∃f ∈ AFB
, ΨFB

(eσ(f)fe) = τ(g)g.

Remark 3.2. — (i) The idea of considering elements of the type τ(g)g, with g of

rank 1, is borrowed from Tignol’s paper [Tig96]. Since BFB
is split, such an element

may give us some information on the value of the underlying FB-quadratic form on

the image of g, namely the generic line (see lemma 3.3 below). In the split case, this

value precisely is the projective class of qW .

(ii) Since A and B are Brauer equivalent, there exist in general many σ-symmetric

idempotents e ∈ A such that eAe is isomorphic to B. Indeed, one may take for e any

orthogonal projection on a submodule of M of dimension over D equal to dimD(N).

Given such an idempotent e, Theorem 3.1 actually gives a criterion of isomorphism

between the involutions σ|eAe and τ .

Proof. — Condition (iso) is clearly necessary. Indeed, if (B, τ) is a direct summand of

(A, σ), there exist e ∈ A such that e2 = σ(e) = e and an isomorphism of algebras with
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involution Ψ : (eAe, σ|eAe)→̃(B, τ). For any g ∈ IB ⊂ BFB
, the element f = ψ−1

FB
(g)

clearly satisfies the required condition.

We have to prove condition (iso) is also sufficient. Consider (A, σ) and (B, τ) as

in the theorem, and take representations (A, σ) = (EndD(M), adhM
) and (B, τ) =

(EndD(N), adhN
), for some hermitian modules over a central division algebra with

orthogonal involution (D, γ) over F . Let M0 ⊂M be the image of e, so that e is the

orthogonal projection on M0. The isomorphim eAe = EndD(M0) ≃ B is given by

some isomorphism of D-modules ψ : M0→̃N . Let us denote by hM0
the restriction

of hM to M0. We will prove that hM0
is similar to hN , which in turn implies that

(B, τ) is a direct summand of (A, σ).

Let n1, . . . , ns be an orthogonal basis of (N, hN ). The elements mk = ψ−1(nk) for

1 ≤ k ≤ s form a basis of the D-module M0. We will actually compute hM0
in this

basis, using condition (iso).

Since A and D are Brauer equivalent to B, they both split over FB. Let (E, qγ) be a

quadratic space over FB such that (DFB
, γ) ≃ (EndFB

(E), adqγ
). By Morita theory,

we then have (see for instance [BFP95, §1.4])

BFB
≃ EndFB

(W ), where W = (N ⊗F FB) ⊗D⊗F FB
E,

and similarly,

AFB
≃ EndFB

(V ), where V = (M ⊗F FB) ⊗D⊗F FB
E, and

eAFB
e ≃ EndFB

(V0), where V0 = (M0 ⊗F FB) ⊗D⊗F FB
E.

Moreover, the involutions σ, τ and σ|eAe are respectively adjoint, after scalar extension

to FB to the quadratic forms qV , qW and qV0
defined by

bqV
((m⊗ λ) ⊗ e, (m′ ⊗ λ′) ⊗ e′) = bqγ

(e, (hM (m,m′) ⊗ λλ′)(e′)),

and similarly for qW and qV0
.

Let e1, . . . , ed be an orthogonal basis of (E, qγ). We denote by di = hN (ni, ni) and

aj = qγ(ej). The elements ni ⊗ 1 ⊗ ej for 1 ≤ i ≤ s and 1 ≤ j ≤ d form a basis of

the FB vector space W . Let δ be any non trivial element in the generic line LB ⊂W

defined at the beginning of this section.

The proof is based on the following computation, which the reader may easily check:

Lemma 3.3. — Consider the element g ∈ IB defined by g(ni⊗1⊗ej) = αi,jδ. Then,

τ(g)g maps ni ⊗ 1 ⊗ ej to αi,j qW (δ)(
∑

1≤k≤s , 1≤l≤d αk,l(nkd
−1
k ⊗ 1 ⊗ el

al
)).

For any couple 1 ≤ i ≤ s and 1 ≤ j ≤ d, let us first apply this lemma to the element

gi,j ∈ IB which maps ni ⊗ 1 ⊗ ej to δ, and any other element of the basis to 0, so

that τ(gi,j)gi,j maps ni ⊗ 1⊗ ej to nid
−1
i ⊗ qW (δ)⊗

ej

aj
and any other element of the

basis to 0. Denote by fi,j the corresponding element of AFB
= EndFB

(V ) given by

condition (iso). It satisfies

ψFB
eσ(fi,j)fi,jeψ

−1
FB

= τ(gi,j)gi,j .
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from which we deduce that eσ(fi,j)fi,je maps mi ⊗ 1⊗ ej to mid
−1
i ⊗ qW (δ)⊗

ej

aj
and

any other element of the basis to 0. Now, we can compute

bqV0
(fi,j(mk ⊗ 1 ⊗ el), fi,j(mp ⊗ 1 ⊗ eq))

for any k, p ∈ {1, . . . , s} and l, q ∈ {1, . . . , d} in two different ways. First, it is equal

to

(1) bqV0
(mk ⊗ 1 ⊗ el, eσ(fi,j)fi,je(mp ⊗ 1 ⊗ eq))

=

{

0 if p 6= i or q 6= j

qW (δ)bqγ
(el, (hM0

(mk,mi)d
−1
i )(

ej

aj
)) if (p, q) = (i, j).

By symmetry, it is also equal to

{

0 if k 6= i or l 6= j

qW (δ)bqγ
(eq, (hM0

(mp,mi)d
−1
i )(

ej

aj
)) if (k, l) = (i, j).

From this, we deduce that if k 6= i, then for any l,

bqγ
(el, (hM0

(mk,mi)d
−1
i )(ej)) = 0.

Hence (hM0
(mk,mi)d

−1
i )(ej) = 0. This is valid for any value of j, and we finally get

(2) hM0
(mk,mi) = 0 if k 6= i

Let us take now k = i. For any l 6= j, we have

bqγ
(el, (hM0

(mi,mi)d
−1
i )(ej)) = 0.

Since the basis (e1, . . . , ed) is orthogonal for qγ , this implies that there exists an

element λi,j ∈ F×
B such that

(hM0
(mi,mi)d

−1
i )(ej)) = λi,jej .

In other words, the element hM0
(mi,mi)d

−1
i ∈ D ⊂ D ⊗F FB ≃ EndFB

(E) corre-

sponds in the basis e1, . . . , ed to the diagonal matrix with coefficients λi,j , 1 ≤ j ≤ d.

Let us now prove that the coefficients λi,j are all equal. Consider the element gi ∈ IB
which maps ni⊗1⊗ej to δ for all j = 1, . . . , d and any other element of the basis to 0.

Again by the previous lemma, τ(gi)gi maps ni⊗1⊗ej to nid
−1
i ⊗qW (δ)⊗( e1

a1

+· · ·+ ed

ad
)

for any j, and any other element of the basis to 0. Let fi be the corresponding

element of AFB
≃ EndFB

(V ) given by condition (iso). We get that eσ(fi)fie maps

any mi ⊗ 1⊗ ej to mid
−1
i ⊗ qW (δ)⊗ ( e1

a1

+ · · ·+ ed

ad
). The same computation as above

for

bqV0
(fi(mi ⊗ 1 ⊗ ej), fi(mi ⊗ 1 ⊗ el)),

now gives λi,j = λi,l, which proves that hM0
(mi,mi)d

−1
i is actually central,

hM0
(mi,mi)d

−1
i = λi ∈ F×

B . Since we know from the very beginning it lies in

D ⊂ D ⊗F FB , λi actually belongs to F×.
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To finish the proof, consider the element g ∈ IB which maps any element of the basis

to δ. Then, τ(g)g maps any ni ⊗ 1 ⊗ ej to

(n1d
−1
1 + · · · + nsd

−1
s ) ⊗ qW (δ) ⊗ (

e1
a1

+ · · · +
ed

ad

).

Again, let f be the corresponding element of AFB
≃ EndFB

(V ) given by condi-

tion (iso). We get that eσ(f)fe maps any mi ⊗ 1 ⊗ ej to

(m1d
−1
1 + · · · +msd

−1
s ) ⊗ qW (δ) ⊗ (

e1
a1

+ · · · +
ed

ad

).

Computing as before bq(f(mi ⊗ 1⊗ ej), f(mk ⊗ 1⊗ el)) in two different ways, we get

λi = λk = λ ∈ F×. Hence we have proven that

(3) hM0
(mi,mi) = λdi = λhN (ni, ni) for any 1 ≤ i ≤ s,

and combined with 2, this finishes the proof.

4. A subform theorem in some particular cases

Under some assumption on the algebra, we may improve the previous theorem. Note

that conditions (ii) and (iii) in the following statement are direct consequences of con-

dition (iso) of theorem 3.1. Also, the involution σ now is supposed to be anisotropic.

Theorem 4.1. — Let (A, σ) and (B, τ) be two Brauer-equivalent central simple alge-

bras, each endowed with an orthogonal involution, with (A, σ) anisotropic. We assume

moreover that either the index d of the algebras A and B is at most 2 or B is a division

algebra. Then the following assertions are equivalent :

(i) (B, τ) is a direct summand of (A, σ);

(ii) For any left ideal J ⊂ B of reduced dimension d with τ(J) anisotropic,

there exists a symmetric idempotent e ∈ A and an isomorphism Ψ : eAe ≃ B

such that ∀g ∈ IB ∩ JFB
, ∃f ∈ AFB

, with ΨFB
(eσ(f)fe) = τ(g)g;

(iii) There exists a left ideal J ⊂ B of reduced dimension d with τ(J) anisotropic,

a symmetric idempotent e ∈ A, and an isomorphism Ψ : eAe ≃ B,

such that ∀g ∈ IB ∩ JFB
, ∃f ∈ AFB

, with ΨFB
(eσ(f)fe) = τ(g)g.

Remark 4.2. — It follows from [KMRT98, (1.12) and (6.2)] that the algebra B

always contains left ideals J of reduced dimension d such that τ(J) is anisotropic.

Indeed, J = HomD(N/(n.D)⊥, N) satisfies these conditions as soon as the vector

n ∈ N is anisotropic.

Moreover, for any such ideal J , after scalar extension JFB
coincides with the set of

endomorphisms of the split algebra BFB
= EndFB

(W ) whose kernel contains some

particular subspace W1 ⊂ W of codimension d. Hence, since d is non zero and LB
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has dimension 1, there exists non trivial elements in JFB
with image included in LB,

that is non trivial elements in the intersection JFB
∩ IB. This guarantees conditions

(ii) and (iii) are non empty.

Clearly, (i) implies (ii) and (ii) implies (iii). We now prove the theorem in the split

and division cases. The index 2 case will be proven in § 5.

4.1. The division case. — In the particular case when B is a division algebra,

there exists a unique left ideal of reduced dimension d, B itself, which is necessarily

anisotropic. Hence conditions (ii) and (iii) in that case both reduce to condition (iso)

of theorem 3.1. This already proves the result is true if B is a division algebra. Note

that the anisotropy hypothesis is not necessary in that case.

4.2. The split case. — We assume now that A and B are split, and take represen-

tations (A, σ) = (EndF (V ), ad qV ) and (B, τ) = (EndF (W ), adqW
). The involution σ

is anisotropic if and only if qV is anisotropic, and (A, σ) contains (B, τ) as a direct

summand if and only if qV contains λqW as a subform for some λ ∈ F×.

Hence the theorem follows from the following proposition :

Proposition 4.3. — If A and B are split, then condition (iii) is equivalent to con-

dition (dep) of Theorem 2.1.

Proof. — Recall the isomorphism B = EndF (W ) ≃ W ⊗W given by (x ⊗ y)(z) =

xbqW
(y, z). It is an isomorphism of algebras with involution if we endow W ⊗W with

the product (x ⊗ y)(z ⊗ w) = bqW
(y, z)x⊗ w and the involution τ(x ⊗ y) = y ⊗ x.

Under this isomorphism, a left ideal J ⊂ B = EndF (W ) of reduced dimension 1

corresponds to {x⊗ w, x ∈ W} for some non trivial w ∈ W , uniquely defined up to

a scalar factor. Moreover, σ(J) = {w ⊗ x, x ∈ W} is anisotropic if and only if the

vector w itself is anisotropic. On the other hand, after scalar extension to FB, the

ideal IB corresponds under the same isomorphism to LB ⊗FB
WFB

.

Let us first assume (iii). Denote by V0 the image of the idempotent e. The isomor-

phims Ψ : eAe = EndF (V0) → B is given by Ψ(f) = ψfψ−1, for some isomorphism

ψ : V0 ≃W .

Fix a vector w ∈W such that J = {x⊗w, x ∈W}. Any g ∈ IB
⋂

JFB
can be written

as g = δ ⊗ w for some δ ∈ LB. We then have τ(g)g = qW (δ)w ⊗ w. Hence, τ(g)g

maps w to qW (δ)qW (w)w, and any element of the orthogonal of w to 0.

Let us now consider the element v = ψ−1(w) ∈ V0, and denote by f the element of

EndFB
(VFB

) corresponding to g given by condition (iii). We have

qV (f(v)) = qV (fe(v)) = bqV
(eσ(f)feψ−1(w), v) = bqV

(ψ−1(τ(g)g(w)), v) =

qW (δ)qW (w)qV (v). This proves (dep) is satisfied. Indeed, we have already no-

ticed in §3 that qW (δ) belongs to the projective class of qW . On the other hand,

v and w are both defined over F , w is anisotropic and qV is anisotropic. Hence

qW (w)qV (v) ∈ F×.
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Let us assume conversely that (dep) is satisfied, and let ν ∈ VFB
be a vector satisfying

qV (ν) = λqproj
W = λqW (δ0) for some fixed non trivial δ0 ∈ L. Specializing this equality,

one may find anisotropic vectors w ∈ W and v ∈ V such that qV (v) = λqW (w). We

let v1 = v, v2, . . . , vm be an orthogonal basis of (V, qV ) and w1 = w,w2, . . . , wn be

an orthogonal basis of (W, qW ). Let V0 ⊂ V be the sub-vector space generated

by v1, . . . vn. We define e to be the orthogonal projection on V0, ψ : V0→̃W the

isomorphism defined by ψ(vi) = wi for i = 1, . . . , n, and Ψ : eAe→̃B the isomorphism

defined by Ψ(f) = ψfψ−1.

Any element g ∈ IB ∩ JFB
can be written as g = lδ0 ⊗ w for some l ∈ FB . Take the

corresponding element in AFB
to be f = l

λ
ν⊗v. We then have τ(g)g = l2qW (δ0)w⊗w

while σ(f)f = l2

λ2 qV (ν)v ⊗ v. An easy computation shows that ψeσ(f)feψ−1(w) =
l2

λ2 qV (ν)qV (v)w = l2qW (δ0)qW (w)w = τ(g)g(w). Moreover, both maps are trivial on

the orthogonal of w, since by definition of ψ, the image under ψ−1 of the orthogonal

of w is included in the orthogonal of v. Hence ψeσ(f)feψ−1 = τ(g)g, and this proves

(iii).

Remark 4.4. — Note that proposition 4.3 actually shows that, in the split case,

theorem 4.1 is a reformulation of theorem 2.1. Hence, we may consider it as an

analogue for algebras with involution of the subform theorem up to similarities. It

would be nice to have a proof which does not use any version of the subform theorem.

As opposed to this, we do not consider theorem 3.1 as an analogue of the subform

theorem. One should notice, in particular, that condition (iii) do imply that (A, σ)

contains a direct summand isomorphic to (B, τ), but this need not be (eAe, σ|eAe)

as the proof above shows. While under condition (iso) (eAe, σ|eAe) is isomorphic

to (B, τ), where e precisely is the idempotent mentioned in the condition. Hence,

theorem 3.1 actually is a criterion of isomorphism rather than a subform theorem.

5. Hermitian forms and the index 2 case

Before proving the theorem for algebras of index 2, we translate the conditions of

theorem 4.1 in terms of hermitian forms.

5.1. Conditions (ii) and (iii) in terms of hermitian forms. —

Proposition 5.1. — Let (A, σ) and (B, τ) be two Brauer equivalent central simple

algebras both endowed with an orthogonal involution. Fix representations (A, σ) =

(EndD(M), adhM
) and (B, τ) = (EndD(N), adhN

) and let qV and qW denote as in

§3 the quadratic forms corresponding via Morita theory to the hermitian forms hM FB

and hN FB
. We denote by δ a fixed non zero element in the generic line LB.

The algebras with involution (A, σ) and (B, τ) satisfy condition (iii) if and only if

there exists an anisotropic vector n ∈ N , a vector m ∈ M and a scalar λ ∈ F× such

that hM (m) = λhN (n), and qV represents λqW (δ).
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Remark 5.2. — Note that in particular, if (A, σ) and (B, τ) satisfy condition (iii),

then the hermitian forms hM and hN have a common value up to a central scalar

λ ∈ F×.

Proof. — Let us assume first that (A, σ) and (B, τ) satisfy condition (iii). We use

the computations made in the proof of theorem 3.1, and keep the same notations.

Consider J , e and Ψ as given by condition (iii). We denote again by M0 the image

of e and we let ψ : M0→̃M be an isomorphism such that Ψ(f) = ψfψ−1 for any

f ∈ A. As recalled in remark 4.2, the ideal J ⊂ B = EndD(N) can be written

as J = HomD(N/(n.D)⊥, N), for some anisotropic vector n ∈ N . Define m to be

m = ψ−1(n). Since n is anisotropic, we may choose an orthogonal basis n1, . . . , n2

of (N, hN ) over D such that n1 = n. One may then easily check that the elements

g1,j and g1 defined in the proof of theorem 3.1 belongs to JFB
∩ IB, and condition

(iii) proves the existence of corresponding elements f1,j and f1 in AFB
. By the

computations made in the proof of theorem 3.1 we get that hM (m) = λhN (n) for

some λ ∈ F×.

Moreover, if we let ν = f1,1(m1 ⊗ 1 ⊗ e1) ∈ V0, equation (1) proves that qV (ν) =

bqV0
(f1,1(m1 ⊗ 1 ⊗ e1)) = λqW (δ).

Let us now prove the converse. Since n is anisotropic, there exists orthogonal basis

m1, . . .mr of M and n1, . . . , ns of N such that n1 = n and m1 = m. We let J be J =

HomD(N/(n.D)⊥, N), and take e to be the orthogonal projection on the submodule

M0 of M generated by m0, . . . ,ms and ψ to be the isomorphism ψ : M0→̃N given

by ψ(mi) = ni.

Any endomorphism g ∈ JFB
∩ IB is defined by

g(n1 ⊗ 1 ⊗ ej) = αjδ for some αj ∈ FB and g(ni ⊗ 1 ⊗ ej) = 0 for i ≥ 2.

We then define f ∈ AFB
= EndFB

(V ) by

f(m1 ⊗ 1 ⊗ ej) = αjν and f(mi ⊗ 1 ⊗ ej) = 0 for i ≥ 2,

where ν ∈ V satisfies qV (ν) = λqW (δ). As in lemma 3.3, one may check that

σ(f)f(m1 ⊗ 1 ⊗ ej) = αjqV (ν)(m1hM (m1)
−1 ⊗ 1 ⊗

d
∑

l=1

αl

el

al

),

and σ(f)f(mi ⊗ 1 ⊗ ej) = 0 for i ≥ 2.

Hence we get

ψeσ(f)feψ−1(n1 ⊗ 1 ⊗ ej) = αjλqW (δ)(n1λ
−1hN (n1)

−1 ⊗ 1 ⊗

d
∑

l=1

αl

el

al

),

and ψeσ(f)feψ−1(ni ⊗ 1 ⊗ ej) = 0 for i ≥ 2

which by lemma 3.3 implies ψeσ(f)feψ−1 = τ(g)g and hence finishes the proof.
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From the previous proposition and the correspondence between left ideals J of reduced

dimension D such that τ(J) is anisotropic and anisotropic vectors in (N, hN ) recalled

in remark 4.2, we deduce a translation of condition (ii) in terms of hermitian forms:

Corollary 5.3. — Let (A, σ), (B, τ), (M,hM ), (N, hN ) and δ be as in proposi-

tion 5.1.

The algebras with involution (A, σ) and (B, τ) satisfy condition (ii) if and only if for

any anisotropic vector n ∈ N , there exist a vector m ∈ M and a scalar λ ∈ F× such

that hM (m) = λhN (n) and qV represents λqW (δ).

5.2. Proof of theorem 4.1 in the index 2 case. — The theorem in the index 2

case now follows from the following proposition :

Proposition 5.4. — Let (D, γ) be a division algebra of index at most 2 with orthog-

onal involution and (M,hM ) and (N, hN ) two hermitian forms over (D, γ), with hM

anisotropic. Then hM contains hN as a subform if and only if qV represents qW (δ).

Proof. — If D is split, this statement is the projective version of the classical subform

theorem which is already known. Hence we assume D is a division quaternion algebra.

The condition is clearly necessary.

To prove it also is sufficient, let us first extend scalars to FD, so that the situa-

tion is split. By a result due both to I. Dejaiffe [Dej01] and Parimala-Sridharan-

Suresh [PSS01], we know that the involution σ remains anisotropic after scalar ex-

tension to FD, so that the quadratic form qV is anisotropic. Hence we can apply

the subform theorem to qV and qW . Since the generic point of a variety maps under

scalar extension to the generic point of the extended variety, the condition implies

that qV FD(PW ) represents qW
proj, and hence qV contains qW as a subform. By Morita

equivalence, this precisely means that (hM )FD
contains (hN )FD

as a subform, and it

only remains to go down using the injectivity of the natural map from the Witt group

of D to the Witt group of FD and the excellence result of [PSS01]
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