
Rev 1

Widget security model based on
MIDP
and
Web Application based on a
security model with TLS/SSL and
XMLDsig

Claes Nilsson
Technology Area Group Leader
Web Browsing

Marcus Liwell
Technology Area Group Leader
Security and DRM

Differences of the security approaches in
PCs and mobile devices

- Create a mobile security framework that is both reliable and “user friendly”
 - Preserve the user’s view that mobile devices are trusted and secure

GOALS

• Currently user’s awareness of security issues are low
Mobile devices are considered as “secure”

• Mobiles are getting more and more based on open
 environments – user’s awareness of security issues will

increase

• Established as open environment – users are used to
install and uninstall program

• User aware of and accepts security problems – firewalls
and virus protection generally used

Difference in security approaches between
Web Applications and Widgets

Web Execution Environment

• Network
• Calendar
• Location
• Camera

Platform API’s

Security framework

• Find new services in widget

gallery

• Downloaded and installed on

the

device

• Started from standby screen

or

 shortcuts

• Executable content, i.e.

scripts, contained within a

single package

Widget

• Find new services by

“browsing around”

• No installation process

• Invoked by the browser by

a URL, bookmark or shortcut

• Content resides behind

several URLs and is often

dynamically generated

Web App

Widgets

Proposed security solution for Widgets

• Digital signing to authenticate the Widget creator and verify the
integrity of the Widget. Is independent of the delivery solution, i.e. the
server the Widget is fetched from

• Protection domain concept to create a default policy to ease the IOT
burden on application developers

• To be added: Mechanism to dynamically define API permission policies
for the different domains

Base on MIDP security principles and improve

• Avoid pop-ups when the Widget is under execution. MIDP
implementations often launch pop-ups during execution that are
difficult to relate to the current user context.

• Use requested API permissions in the Widget manifest to execute user
dialogues asking for permissions at installation time

• User may have the possibility to impact when user dialogues asking
for permissions are executed

Focus on usability

Untrusted and trusted domains

• Origin and integrity of the Widget can NOT be trusted by the device

• Must execute in the untrusted domain using a restricted environment:
• Access to un-sensitive APIs, e.g. UI, Playback of sound, vibration

etc
• Access to some protected APIs with explicit user confirmation, e.g.

http and https

Untrusted Widgets

• Digitally signed and verified

• Security model based on protection domains

• Each protection domain defines a set of permissions to authorize
access to protected APIs or function groups

Trusted Widgets

Permission policies for protection domains

Allowed permissions:
(no user interaction)
API FG1
API FG 2
…….

User permissions:
(requires user interaction)

Blanket:: Session:
(“ask at installation”) (“”ask on the first invocation”)
API FG 5 API FG 10
API FG 6 API FG 11
……. …….

Oneshot:
(“ask always”)
API FG 15
API FG 16
…….

Manufacturer API permission policies for
the different protection
domains,
e.g.3rd party, operator,
manufacturer, are
dynamically loaded into the
device.

Allowed permissions:
(no user interaction)
API FG1
API FG 2
…….

User permissions:
(requires user interaction)

Blanket:: Session:
(“ask at installation”) (“”ask on the first invocation”)
API FG 5 API FG 10
API FG 6 API FG 11
……. …….

Oneshot:
(“ask always”)
API FG 15
API FG 16
…….

Operator

Allowed permissions:
(no user interaction)
API FG1
API FG 2
…….

User permissions:
(requires user interaction)

Blanket: Session:
(“ask at installation”) (“”ask on the first invocation”)
API FG 5 API FG 10
API FG 6 API FG 11
……. …….

Oneshot:
(“ask always”)
API FG 15
API FG 16
…….

Third Party

Requesting permissions at Widget installation

• At installation validate against the
 permission policies for the Widget’s
 protection domain

• Hierarchy of APIs to same functionality,
 “use best available in device”

• User may be allowed to configure user
 dialogues. For example, impact if location
 API is always available or if the user
 should confirm every time

• If API is not allowed for the Widget’s
 protection domain, it shall be up to the

Widget to decide if it still shall be installed
 or not.

Requested Permissions:

<Location API>
Location

</Location API>

<Camera API>
Camera Advance
Camera Light

</Camera API>

<Calendar API>
Calendar

</Calendar API>

Widget manifest

Web Applications

• Avoid irritating pop-ups

• Consider asking for user
permissions

 when the page is loaded

Focus on usability

“Manufacturer”
Web Application

Service

Proposed security solution for Web App

“Navigation” Web
Application

Service

Transport layer
security

(TLS/SSL)
XML Digital signing of

page
or parts of the page

Transport layer security
(TLS/SSL)

• Transport layer security (TLS/SSL)
Authenticates the server from which the page
was loaded and achieves integrity protection
during the transport from server to client

• XMLDsig of page or parts of the
page

Authenticate the content creator if needed
(some sensitive APIs)

Verify origin and integrity of
Web Application

Permission policies for protection domains

Similar protection domain concept as for
Widget also for Web Applications

• Transport layer security (TLS/SSL)
Authenticates the server to identify which API access policy shall be used

• Transport layer security and XML Digital signing
 Combination of transport layer security and digital signing gives the highest

security level and ensures end to end security. Cross server applications will
not cause illegal use of sensitive APIs by a Web application hosted on a

non trusted server when it is accessed through a trusted server.

Possible security levels:

• No secure transport and signing:

Only “harmless” APIs can be accessed (battery level, beep, vibration etc)

• Secure transport:
Medium sensitive APIs can be accessed (Positioning, Camera, Call Handling etc)

• Secure transport and signing:
 Highly sensitive APIs can be accessed (SIM, DRM etc)

Thank you

	Widget security model based on MIDP and Web Application based on a security model with TLS/SSL and XMLDsig
	Differences of the security approaches in PCs and mobile devices
	Difference in security approaches between Web Applications and Widgets
	Slide 4
	Proposed security solution for Widgets
	Untrusted and trusted domains
	Slide 7
	Requesting permissions at Widget installation
	Slide 9
	Proposed security solution for Web App
	Permission policies for protection domains
	Slide 12

