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Abstract. This paper investigates shape optimization of complex thermo-fluid phenomena
that occur in welding processes. The linear finite elements dicretization is accomplished. The
existence of the discrete optimal solution is established. Some computational results for our
approach are presented and discussed.
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1. Introduction

In this paper, we consider a problem modeling analysis of heat transfer in a welding operation.
The aim is to identify the liquid/solid interface and estimate the field temperature in the welded
parts of the plate in order to predict and control the mechanical effects caused by the process
on these parts (residual stresses, distortions. . . ). The considered approach concerned only the
solid part of the plate and it consists to simplify the physical phenomena occurring between the
welding torch and the plate as well as the liquid bath by introducing a temperature condition
imposed on the liquid/solid interface which is unknown. To solve this free boundary problem,
an optimal shape design formulation was proposed in [4]. Our interest is the numerical study
of the approached shape design problem, obtained by using the finite element method and the
parametrization of the liquid/solid interface by Bézier curves. We are interested more precisely
by showing the existence of the optimal discrete solution of this approached problem. The
main difficulty of this work lies in the fact that the state problem is governed by a noncoercive
operator, which complicates the study of existence. At this stage, it must be noted that in the
coercive case we can show easily this result, see [8]. The proposed approach for overcoming this
difficulty is based on the topological degree tools in finite dimensional spaces [6], and a uniform
estimate of discrete solutions norm’s. To show the efficiency of our approach, we give some
numerical results.

2. Setting of the problem

We are interest by a numerical realization, using the finite element method, of the optimal
shape design formulation of a welding problem given by
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find Ω∗ ∈ Θad solution of
J(Ω∗) = inf

Ω∈Θad

J(Ω)

where J(Ω) = 1
2

∫
Γ0
|T (Ω(x, y))− T0|2 dσ

and T (Ω) the solution of

(SP )





K ∂T
∂x = ∇ · (λ∇T ) + f in Ω

λ∂T
∂ν = 0 on Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3

T = Td on Γ4, T = Tf on Γ,

(1)

where the parameters in (1) are such that:
K is a constant dependent to the material characteristics (density of the plate and heat capac-
ity,...), λ is the thermal conductivity, f is a given source term. The quantities Td, T0 and Tf are
given temperatures. The solid part of plate Ω (see fig. 1), is defined by

Figure 1. The solid part of the welded workpiece with interface Γ.

Ω(ϕ) =]0, a[×]0, Ly[∪
{
(x, y) ∈ IR2/a ≤ x ≤ b, ϕ(x) ≤ y ≤ Ly

}∪]b, Lx[×]0, Ly[ (2)
where ϕ, the parametrisation of the unknowon boundary Γ, is a Lipschitz function. The set Θad

is defined by
Θad = {Ω(ϕ) ϕ ∈ Uad}

and

Uad =
{

ϕ ∈ C([a, b]) / ∃ aϕ and bϕ ∈ [a, b] , ϕ|[a,aϕ] = 0 , ϕ|[bϕ,b] = 0 and ∃ L0 > 0 /∣∣ϕ(x)− ϕ(x′)
∣∣ ≤ L0

∣∣x− x′
∣∣ ∀x, x′ ∈ [a, b] , 0 ≤ ϕ(x) ≤ Ly ∀x ∈ [a, b]

}
.

In the sequel we suppose that the parameters of our problem are such that: D =]0, Lx[×]0, Ly[,
(H1) λ ∈ L∞(D) and ∃λ0 > 0 such that λ(x)ξ · ξ ≥ λ0|ξ|2 a.e x ∈ D
(H2) K ∈ L∞(D) and f ∈ L2(D)
Let ΓD = Γ ∪ Γ4, we define the space H1

ΓD
(Ω) =

{
u ∈ H1(Ω) / u|ΓD

= 0
}

where H1(Ω) is the

Sobolev space. From the surjectivity of the trace operator from H1(D) to H
1
2 (∂D), we have

∃ V ∈ H1(D) such that V =
{

v on ]b, Lx[×]0, Ly[
Tf on ]0, b[×]0, Ly[,

where v ∈ H1(]b, Lx[×]0, Ly[) such that v = Td on Γ4 and v = Tf on {b} × [0, Ly] .
Then a variational formulation of the state problem (SP ) is the following:

{
find u ∈ H1

ΓD
(Ω)∫

Ω λ∇u · ∇ψ +
∫
Ω K ψ ∂u

∂x =
∫
Ω f ψ − ∫

Ω λ∇V · ∇ψ − ∫
Ω K ψ ∂V

∂x ∀ψ ∈ H1
ΓD

(Ω).
(3)

The following existence result is proved in [4].
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CHAKIB A. et al.: FINITE ELEMENT APPROXIMATION ... 3

Theorem 1. Under assumptions (H1) and (H2), the problem (1) is well posed and admits
at least one solution in Θad.

3. Numerical approximation of the problem

In this section we give an approximation of (1); we shall discretize both the admissible family
Θad and the state problem (SP). We start with the first one, for this we use the piecewise spline
approximations of Γ(ϕ) locally realized by quadratic Bézier functions [8].

3.1. Discretization of the shape optimal problem. Let us consider a uniform partition
(ai)d

i=0 of [a, b], such that a = a0 < a1 < ... < ad = b, ai = iµ + a, µ = (b − a)/d, i = 0, ..., d;
and ai+1/2 be the midpoint of [ai, ai+1]. Further let Ai = (ai, ϕi), ϕi ∈ IR, i = 0, ..., d, be design
nodes and Ai+1/2 = 1

2(Ai+Ai+1) be midpoint of the segment AiAi+1, i = 0, ..., d−1. In addition
let a− 1

2
= a− µ

2 , ad+ 1
2

= b + µ
2 , A− 1

2
= (a− 1

2
, 1

2(ϕ0 + ϕ1)), Ad+ 1
2

= (ad+ 1
2
, 1

2(ϕd−1 + ϕd)).
Remark 1. The triple {Ai− 1

2
, Ai, Ai+ 1

2
}, is termed the control points of the Bézier function.

For a partition (ai)d
i=0 we associate the set Qad

µ ⊂ Uad of continuous, piecewise linear functions
over (ai)d

i=0:

Qad
µ = {ϕµ ∈ C([a, b]) | ϕµ|[ai−1,ai] ∈ P1([ai−1, ai]) ∀i = 1, ..., d} ∩ Uad. (4)

The family of admissible discretized design domains is now represented by

Θµ
ad = { Ω(sµ) /sµ ∈ Uµ

ad, } (5)

where
Uµ

ad = { sµ = s̃µ|[a,b] ∈ C1([a− µ
2 , b + µ

2 ]) / s̃µ|[a
i− 1

2
,a

i+1
2
] is a quadratic Bézier

function determined by {Ai− 1
2
, Ai, Ai+ 1

2
},

where Ai = (ai, ϕµ(ai)), i = 0, ..., d, and ϕµ ∈ Qad
µ . }

(6)

Now, we start the approximation of the state problem (SP ). We use the finite element
method with continuous piecewise linear polynomials over a triangulation of the computational
domain (an appropriate approximation of Ω(sµ) ∈ Θad). We introduce another family of regular
partition (bi)

q
i=0 of [a, b], such that: a = b0 < b1 < ... < bq = b (not necessary equidistant),

whose norm well be denoted by h. We suppose that h −→ 0+ if µ −→ 0+. Let rhsµ be the
piecewise linear Lagrange interpolate of sµ on (bi)

q
i=0:

rhsµ(bi) = sµ(bi) and rhsµ|[bi−1,bi] ∈ P1([bi−1, bi]) ∀i = 0, · · · , q;

Then the computational domain of Ω(sµ) is represented by Ω(rhsµ). The system of all Ω(rhsµ),
sµ ∈ Uµ

ad, will be denoted by Θµh
ad in what follows:

Θµh
ad = {Ω(rhsµ) | sµ ∈ Uµ

ad}. (7)

Since Ω(rhsµ) is already polygonal, one can construct its triangulation T (h, sµ) with the h > 0
and depending on sµ ∈ Uµ

ad. We shall suppose that for h > 0 fixed, triangulations T (h, sµ)
are topologically equivalent for all sµ ∈ Uµ

ad. The domain Ω(rhsµ) with a given triangulation
T (h, sµ) will be denoted by Ωh(sµ) and the approximate of Γ is noted by Γh. Let

Hh(Ωh(sµ)) = {vh ∈ C(Ωh) | vh|T ∈ P1(T ), T ∈ T (h, sµ)}
and

Hh
ΓD

(Ωh(sµ)) = {vh ∈ Hh(Ωh(sµ)) | vh|ΓD,h
= 0}

be the finite dimensional spaces associated respectively to H1(Ω) and H1
ΓD

(Ω). We note that
the finite element method used here is the conforming one [11]. Then for any sµ ∈ Uµ

ad, the
approximation uh := uh(sµ) ∈ Hh

ΓD
(Ωh(sµ)) of u ∈ H1

Γd
(Ω) is given by: uh =

∑N
i=1 uh(b̄i)ψi,

where N is the number of the nodes of T (h, sµ) lying in Ωh(sµ), (b̄i)1≤i≤N is a vertex of the
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4 APPL. COMPUT. MATH., V.11, N.1, 2012

triangulation and (ψ)N
i=1 is a basis function of Hh

ΓD
(Ωh(sµ)). Let z(rh(sµ)) = D \Ω(rh(sµ)), we

construct another family {T E(h, sµ)} of triangulations of z(rh(sµ)). The union of T (h, sµ) and
T E(h, sµ) define a regular triangulation of D. Let Vh be a piecewise lineair Lagrange interpolant
of V in D̄.

The discrete state problem reads




Find uh ∈ Hh
ΓD

(Ωh(sµ)) such that ∀vh ∈ Hh
ΓD

(Ωh(sµ))∫

Ωh(sµ)
λh∇uh · ∇vh +

∫

Ωh(sµ)
Kh vh

∂uh

∂x
=

∫

Ωh(sµ)
f vh −

∫

Ωh(sµ)
λh∇Vh · ∇vh −

∫

Ωh(sµ)
Kh vh

∂Vh

∂x
,

(8)

where Kh (resp λh) is an approximation of K (resp λ) such that Kh (resp λh) is uniformly
bounded, converges to K (resp λ), almost every where and satisfies the following equation:

∃λ0 > 0 independent of h such that λh(x)ξ · ξ > λ0|ξ|2 a.e x ∈ D. (9)

We approach the cost functional by the following discrete one:

Jh(uh(sµ)) = Jh(Ωh(sµ)) =
1
2

∫

Γh
0

|Th(sµ)− T0|2 d, σ (10)

where Th(sµ) = uh(sµ) + Vh and uh(sµ) ∈ Hh
ΓD

(Ωh(sµ)).
We state our discrete optimal shape problem as follows

{
inf

sµ∈Uµ
ad

Jh(uh(sµ)),

where uh(sµ) is solution of (8) on Ωh(sµ),
(11)

where N is the number of the nodes of T (h, sµ) lying in Ωh(sµ). In the following we prove the
existence of a solution of (11).

3.2. Existence of the discrete optimal domain. The basic step in the existence analysis
of a solution of (11) consists in showing that solutions of (8) depend continuously on shape
variations for all h > 0. This is based on the following lemma.

Lemma 1. ∃ C > 0 , ∀ sµ ∈ Uµ
ad and ∀ h > 0 ‖uh(sµ)‖1,Ωh(sµ) ≤ C.

Proof. The main difficulty of this work is to show that ‖uh(sµ)‖1,Ωh(sµ) is uniformly bounded
with respect to Ωh(sµ). For this we use the two following inequalities (see [1, 2, 9])
- There exists C0 > 0 independent of Ωh(sµ) such that ∀uh ∈ H1

ΓD
(Ωh(sµ))

C0 ‖uh(sµ)‖1,Ωh(sµ) ≤
∫

Ωh(sµ)
|∇uh(sµ)|2. (12)

- There exists C > 0 independent of Ωh(sµ) such that

‖uh(sµ)‖L4(Ωh(sµ)) ≤ C|Ωh(sµ)| 14 ‖uh(sµ)‖H1(Ωh(sµ)) .

Then we define the set Ak = {(x, y) ∈ Ωh(sµ), |uh(x)| > k}, the functions
hk(uh) = max(−k, min(uh(sµ), k)) and ψk(uh(sµ)) = uh(sµ) − hk(uh(sµ)). First we show the
following uniform estimation of ψk(uh(sµ)):
(C0 − C|Ak|

1
4 ) ‖ψk(uh(sµ))‖2

H1(Ωh(sµ)) ≤ | < `, ψk(uh(sµ)) >((H1
ΓD

(Ωh(sµ)))′,H1
ΓD

(Ωh(sµ))) |.
To show that the constant

(C0−C|Ak|
1
4 ) is positive. We start by showing the uniform control of Lebesgue measure of Ak,

using Tchebychev inequality and the uniform estimate of ln(1 + |u|), i.e. there exists C2 > 0
independent of Ωh(sµ) such that

|Ak| =
∣∣ {(x, y) ∈ Ωh(sµ)/ ln(1 + |w|)2 ≥
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CHAKIB A. et al.: FINITE ELEMENT APPROXIMATION ... 5

≥ ln(1 + k)2} ∣∣ ≤ 1
ln(1 + k)2

‖ln(1 + |w|)‖L2(Ωh(sµ)) ≤
C2

ln(1 + k)2
. (13)

Then there exists k0 ∈ N ∗, such that ∀k ≥ k0 C|Ak|
1
4 ≤ C0

2 . Taking k = k0, we show that there
exists C3 > 0 independent of Ωh(sµ) such that

‖ψk0(uh(sµ))‖H1(Ωh(sµ)) ≤ C3.

Finally, using the fact that hk0(uh(sµ))uh(sµ) ≥ (hk0(uh(sµ)))2, ∇hk0(uh(sµ)) = χAk0
∇uh(sµ)

and inequality (12), we show the existence of C4 > 0 independent of Ωh(sµ) such that
‖hk0(uh(sµ))‖H1(Ωh(sµ)) ≤ C4.

We can now prove the follwing theorem.
Theorem 2. Under the assumptions (9), the problem (11) admits a solution on Uµ

ad, for all
h > 0 and µ > 0.

Proof . for sµ ∈ Uµ
ad fixed and h > 0, we define the operator Ft, ∀t ∈ [0, 1], by

Ft : Hh
ΓD

(Ωh(sµ)) → Hh
ΓD

(Ωh(sµ)),
ūh 7→ uh,

where uh is the unique solution of,
∫

Ωh(sµ)
λh∇uh · ∇vh =

∫

Ωh(sµ)
f vh−

−t

∫

Ωh(sµ)
Kh vh

∂ūh

∂x
−

∫

Ωh(sµ)
λh∇Vh · ∇vh −

∫

Ωh(sµ)
Kh vh

∂Vh

∂x
. (14)

The a priori estimate ‖uh‖1,Ωh(sµ) < C, with C > 0, allows as to build an open ball B, such
that there is no fixed point of Ft on the boundary of B. Thus deg[I − Ft, B, 0] is defined
and independent of t, where ’deg’ is the topological degree [6] and I the identity mapping in
Hh

ΓD
(Ωh(sµ)). Since F0 is trivial, we conclude that 1 = deg[I − F0, B, 0] = deg[I − F1, B, 0].

Therefore, F1 admits a fixed point in the interior of B which is solution of (8). For the uniqueness
of the discrete solution, since the second member of (8) is linear, we show that equation (8) with
second member zero, has no solution other than zero. This means that the problem is well
posed. It remains to show that that solutions of (8) depend continuously on shape variations
for all h > 0.

Let (sj
µ)j ⊂ Uµ

ad, we can extract a subsequence denoted again (sj
µ)j such that sj

µ → s∗µ in Uµ
ad

and Ωh(sj
µ) → Ωh(s∗µ) as j →∞. According to Lemma 1, ∃C > 0

∥∥uh(sj
µ)

∥∥
1,Ωh(sj

µ)
≤ C. (15)

From Chenais’s uniform extension result [3], there exist ũh(sj
µ) a uniform extension of uh(sj

µ)
from Ωh(sj

µ) to D, such that

∃ M > 0 ∀j ∥∥ũh(sj
µ)

∥∥
1,D

< M.

Thus there exists a subsequence ũh(sj
µ) and an element ũh ∈ H1(D),

ũh(sj
µ) ⇀ ũh in H1(D).

Let us show that uh = ũh|Ωh(s∗µ) solves (8). It’s easy to see that uh|Γ4 = 0 and using the
compactness of the trace operator from H1(D) into L2(Γ), we show that uh ∈ H1

ΓD
(Ωh(s∗µ)).

It remains to show that uh solve (8). Let ψh ∈ Hh
ΓD

(Ωh(s∗µ)) and ψ̃ ∈ H1(D) be an extension of
ψh defined by

ψ̃ =
{

ψh in Ωh(s∗µ)
0 in D \ Ωh(s∗µ).
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6 APPL. COMPUT. MATH., V.11, N.1, 2012

Then we can construct a sequence (ψn)n, ψn ∈ D(D̄), such that,

dist(supp ψn, ΓD) > 0 ∀n ∈ N and ψn → ψ̃ in H1(D), n →∞.

Let n ∈ N , since Ωh(sj
µ) → Ωh(s∗µ), there exists j0 such that ψh

n = πhψn|Ωh(sj
µ)
∈ H1

ΓD
(Ωh(sj

µ)), ∀j ≥
j0, where πhψn is the piecewise linear interpolation of ψn on T (h, sj

µ). For all j ≥ j0, we have
∫
D χ

Ωh(s
j
µ)

λh∇ũh(sj
µ) · ∇ψh

n +
∫
D χ

Ωh(s
j
µ)

Kh
∂ũh(sj

µ)
∂x ψn =

=
∫
D χ

Ωh(s
j
µ)

fψh
n −

∫
D χ

Ωh(s
j
µ)

λh∇πhV (sj
µ) · ∇ψh

n −
∫
D χ

Ωh(s
j
µ)

Kh
∂πhV (sj

µ)
∂x ψn.

(16)

Passing to the limit first with n → ∞, then with j → ∞ in (16), we obtain that uh is solution
to the (8).

3.3. Numerical algorithms. To solve the welding problem, we developed a numerical algo-
rithm based on a genetic algorithm procedure [10] for solving our discrete optimal shape problem
(11). Genetic algorithms (GA), primarily developed by Holland [7], have been successfully ap-
plied to various optimizations problems. It is essentially a searching method based on the
Darwinian principles of biological evolution. In GA a new generation of individuals is produced
using the simulated genetic operations crossover and mutation. The probability of survival of
generated individuals depends of their fitness: the best ones survive with the high probability,
the worst die rapidly. This procedure can be summarized in the following algorithm see [10].

(1) Iteration k = 0, Generate randomly an admissible population.
(2) Solve (8) for each individual of population.
(3) Evaluate the fitness (10) for each individual of population.
(4) If the termination criteria is hold Jh ≤ ε, then stop.

Else set k = k + 1 and go to step 5.
(5) Roulette wheel selection
(6) Applied to the selected individuals, the barycenter crossover procedure.
(7) Select randomly some individual, and applied to them the mutation.
(8) Go to step 2.

4. Numerical results

In the following, we solve the welding problem considering the workpiece D as the square
Lx = 1, Ly = 1.

4.1. Validation of the method against a design model. Consider our model example (1)
with the following physical data (corresponding to the aluminium variante),

λ = 0.221 kJ.(K.m.S)−1, K = ρ C vtorch, ρ = 2.37× 103 kg.m−3

C = 0.124 kJ.(kg.K)−1, vtorch = −30 mm.s−1, f(x, y) = 0,
∂T

∂ν
= 0 on Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3 and Tf = 659.25 C, Td = 20 C

The exact boundary is taken as the Bézier curve defined by the following control point :

b0 = (0.35, 0), b1 = (0.35, 15), b2 = (0.65, 0.285), b3 = (0.65, 0)

We solve the direct problem (SP ) using finite element, the obtained solution on Γ0 is then
specified as the desired temperature T0.

Fig. 2 illustrates the iterative convergence process as the initial guess for the free boundary
moves towards the exact boundary Γ, for various numbers of iterations performed. From this
figure, it can be seen that the numerically retrieved boundary is a very good approximation of
the exact one.
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CHAKIB A. et al.: FINITE ELEMENT APPROXIMATION ... 7

5. Conclusions

This paper is concerned with the approximation of the welding problem formulated as a PDE
optimization problem where the shape of the interface serves as the control variable. To avoid
the shape differential calculus needed in a gradient like method for solving a shape optimization
problem, we used a numerical algorithm based on genetic algorithm procedure, Bézier curve
parametrization of the free boundary and finite element discretization of the state problem.
We proved the existence of the discrete optimal solution. Our computational example confirms
the efficiency of the proposed approach. The convergence can be accelerated by the parallel
computation procedure.

It can be stressed that the presented method admits a straightforward generalization to three
dimensions. Our future work in this class of problems will involve extensions of the present
method to a time-dependent problem.
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Figure 2. The cost functional decreasing. And the iterative convergence process for the unknown boundary.
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