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An oscillatory instability has been observed experimentally on an horizontal cylin-

der free to move and rotate between two parallel vertical walls of distance H ; its

characteristics differ both from vortex shedding driven oscillations and from those of

tethered cylinders in the same geometry. The vertical motion of the cylinder, its ro-

tation about its axis and its transverse motion across the gap have been investigated

as a function of its diameter D, its density ρs, of the mean vertical velocity U of the

fluid and of its viscosity. For a blockage ratio D/H above 0.5 and a Reynolds number

Re larger then 14, oscillations of the rolling angle of the cylinder about its axis and

of its transverse coordinate in the gap are observed together with periodic variations

of the vertical velocity. Their frequency f is the same for the sedimentation of the

cylinder in a static fluid (U = 0) and for a non-zero mean flow (U 6= 0). The Strouhal

number St associated to the oscillation varies as 1/Re with : St.Re = 3± 0.15. The

corresponding period 1/f is then independent of U and corresponds to a character-

istic viscous diffusion time over a distance ∼ D, implying a strong influence of the

viscosity. These characteristics differ from those of vortex shedding and tethered

cylinders for which St is instead roughly constant with Re and higher than here.
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I. INTRODUCTION

The influence of confinement on the motion of a cylinder facing a flow is relevant to

many applications like the transport of particles or fibers in slits or the development and

localization of bio films inside pores1,2. Many studies have been devoted to this problem but

dealt mostly with the determination of the forces on the cylinders (for instance, when they

were left free to rotate or eccentered in a stationary flow).

In the studies of the hydrodynamical transport of confined cylinders3–6, it has usually

been assumed that, in the absence of vortex shedding, the motion of the cylinder is steady:

the cylinder translates with constant velocity and, in some cases, rotates with a constant

angular velocity and at a fixed transverse distance from the mid plane of the gap.

Following these views, non-stationary flows would only appear at Reynolds numbers,

Re, above the vortex shedding threshold. The present work demonstrates instead, at lower

Reynolds numbers, a periodic non-stationary transport regime due to another type of flow

instability strongly influenced by the viscosity.

Early studies of the torque and drag forces on a cylinder facing a flow have been performed

in the Stokes regime or at relatively small Reynolds numbers. For particles placed in the

centre of the channel, Faxen7 derived the expression of the drag for a confinement D/H less

then 0.5; the case of higher confinements has been recently considered by Ben Richou and

co workers8,9. An eccentered cylinder experiences in addition a positive torque decreasing

sharply in the vicinity of the walls3–6; for a cylinder translating closely along a wall or held

fixed in a Poiseuille flow, this torque tends to generate a rotation of sign opposite to that

of contact rolling. This results from the backflow near the second wall and has a sizable

influence on the force distribution on the cylinder10.

The displacement of a free cylinder released from an eccentric position inside a vertical

gap has been computed by Hu6 for three values of the Reynolds number Re. For Re ≤ 5, the

cylinder reaches a final stable transverse position in the middle of the gap. For Re ≃ 100,

instead, an off-axis cylinder rotates in the direction opposite to the previous one, resulting

in a lift force oriented away from the axis: this was accounted for by the appearance of a

recirculation zone11. However, as the cylinder approaches one of the walls, the recirculation

zone recedes because of the interaction between the wake and the wall boundary layer. The

rotation and the lift force then change sign again, so that a stable off-axis position is finally
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found.

Such observations are made at a Reynolds number close to the periodic vortex shedding

regime12 and are consistent with the conclusions of Zovatto and Pedrizzetti13 for a non ro-

tating cylinder. Above the critical Reynolds number, vortex shedding may induce vibrations

of frequency and amplitude depending on the mechanical properties of the system14–16.

More recently, Semin et al17 observed that a tethered cylinder placed in a Poiseuille

flow between vertical parallel planes oscillates spontaneously at Reynolds numbers below

the threshold for vortex shedding: unlike in the present case, both the vertical and rolling

motions of the cylinder were blocked.

The present work deals with an horizontal cylinder free to translate and rotate inside

the gap of a vertical Hele Shaw cell. Either this cylinder sediments in a stationary fluid or

is submitted to a vertical Poiseuille flow (i.e. transverse to its axis): the relative velocity

of the cylinder and of the fluid is always below the threshold for vortex shedding. The

transverse and vertical components of the motion of the cylinder and its rotation about its

axis are studied: the influence of physical parameters such as the diameter and density of the

cylinder and the viscosity of the fluid and of hydrodynamical variables like the flow velocity

is particularly investigated.

II. DESCRIPTION OF THE EXPERIMENTAL SETUP

The experimental setup consists of a Hele Shaw cell placed vertically. Its height, width

and aperture are respectively L = 350, W = 100 and H = 3 mm. The vertical sections

of the cell have a Y-shape in their upper part; the upper end of the cell is at the bottom

of a rectangular bath with a slit allowing for the flow of the fluid and the insertion of the

cylinders. An upward flow may be imposed by a gear pump: the fluid velocity U is counted

in this case as negative.

Table I lists the characteristics of the fluids used in the experiments; the viscosity is mea-

sured using a Contraves Low Shear-30 rheometer. In this study, the natrosol concentration

is sufficiently low so that the fluids can be considered as Newtonian: at a given temperature,

their viscosity is determined by the natrosol concentration (and increases with it). For shear

rates ranging from 0.2 to 118 s−1, the viscosity (see Tab. I) of the two natrosol solutions

is indeed found to be constant (within ±0.04 mPa.s). The density and temperature of the
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Figure 1. Experimental setup. a) Front view - U : mean flow velocity, Vcx: vertical component of

the cylinder velocity. b) Side view - yc: transverse position of the center of mass of the cylinder, Γ

: Torque.

Fluids ρf (g/cm3) µ (mPa.s)

WG 1.05 1.56

N1 0.998 1.11

N2 0.998 2.20

Table I. Physical properties of the fluids. density: ρf , viscosity: µ. Temperature 23oC. N1 and

N2 correspond to natrosol solutions at respectively 1 and 2 g.l−1. WG refers to a glycerol solution

containing 20% in weight of glycerol.

solutions are measured prior to any set of experiments.

The cylinders are made of PMMA (density ρs = 1.20 g.cm−3) or of carbon (ρs =

1.54 g.cm−3); their diameter D ranges from 1.1 to 2.1mm. Their length Lc is smaller

than but as close as possible to the internal width W of the cell. Initially, they are placed

in the upper bath with their principal axis horizontal and one lets them move down into the

Y-shaped zone by reducing the flow rate Q. Then, Q may be adjusted so that the cylinder

remains at a fixed level either at rest (state 0) or oscillates about its principal axis (state

1). Then, one may reduce Q (sometimes to zero) in order to analyze the motion of falling

cylinders; in a part of the experiments, Q is increased again after the cylinder has reached

the bottom of the cell for studying its upward motion (Vcx < 0).

4

ha
l-0

06
73

59
4,

 v
er

si
on

 1
 - 

23
 F

eb
 2

01
2



The displacement of the cylinder is monitored by two cameras triggered synchronously;

they image respectively the displacements in the plane (x, z) of the Hele Shaw cell and in

the plane (x, y) of the gap (the axis y = 0 is in the midplane between the walls). Processing

digitally the two sets of images gives first the instantaneous coordinates (xc, yc) of the center

of mass of the cylinder in the (x, z) and (x, y) planes. The angle θ between its axis and

the horizontal is also determined from the instantaneous location of its two ends in the

(x, z) plane. In order to analyze the rotations of the cylinder around its axis, its length is

divided into 4 domains of equal size. The two outside parts are painted in black and two

black staggered stripes parallel to the axis are painted on the central portions. The rotation

about the axis is analyzed from the variation with time of the local vertical distance between

each of the stripes and the principal axis of the rod: this allows one to determine the rotation

angle α and, therefore, the corresponding angular velocity α̇.

The Reynolds number Re is defined by:

Re = ρf |U
∗|(H −D)/(2µ), (1)

in which (H−D)/2 is the width of the gap between the walls and the cylinder (when yc = 0),

U∗ is the mean instantaneous vertical fluid velocity in this gap, ρf and µ are the fluid density

and viscosity. The flow in the gap combines the component imposed by the pump and that

induced by the vertical displacement of the cylinder. The velocity U∗ is defined as :

U∗ =
H

H −D
U −

D

H −D
Vcx, (2)

in which U is the mean velocity far from the cylinder and Vcx is the vertical component of

its velocity.

Figure 2 displays experimental results obtained using a PMMA cylinder of diameter

D = 1.45mm and solution N1. Two distinct regimes are observed:

- at the beginning of this experiment (t . 8 s), the cylinder is located midway between

the two vertical walls (yc = 0 in Fig.2c); it does not roll about its principal axis (α = 0 in

Fig.2b) and falls at a constant velocity (a linear regression gives Vcx = 13.8 mm.s−1).

- After about 8 s the motion of the cylinder suddenly shifts to an oscillating regime: both

the angle α of the cylinder about its axis and the deviation δyc from the mean transverse

position in the gap oscillates with a well defined frequency. At the same time, the vertical

translation velocity Vcx drops by more than 35%. These two regimes are discussed in detail

in sections III and IV below.
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Figure 2. Experimental measurements obtained using solution N1 (see Tab. I) with D = 1.45 mm

(D/H = 0.48) and U = −10.55 mm.s−1. (a) xc vs time t (s). (b) α vs t. (c) δyc vs t.

III. MEAN VERTICAL TRANSLATION VELOCITY FOR LOW

REYNOLDS NUMBERS AND MODERATE CONFINEMENT.

In the present section we are interested in the value of the vertical velocity Vcx of the

cylinder, averaged over a time larger than the period of the oscillations (if present) but

short enough to avoid the influence of global variations. In this section, “velocity” always

refers to such an average: for instance in the case of Fig. 2, separate averages are computed

before and after the appearance of the oscillations. The vertical velocity is obtained from

the equilibrium condition of the gravity and the vertical drag force Fx (averaged over the

same time lapse):

mg + Fx = 0; (3)

here, m = π∆ρ(D/2)2 is the reduced mass per unit length (with ∆ρ = ρs − ρf). For a

cylinder moving at a constant velocity Vcx in a fluid flowing at a constant mean velocity

U away from the cylinder, the drag may be written in the low Reynolds number limit and

when the cylinder does not rotate :

Fx = −λsµVcx + λpµU ; (4)
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the parameters λs and λp reflect the influence of the geometrical confinement. For a long

cylinder (Lc ≃ W ≫ D and Lc ≫ H), λs and λp are only functions of the ratio of the

cylinder diameter D and of the cell aperture H18. The vertical velocity of the cylinder is

then:

Vcx =
λp

λs
U + V 0

cx, (5)

in which

V 0

cx = mg/(λsµ) (6)

is the velocity of the cylinder with no applied flow (U = 0).

30
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V
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Figure 3. Vertical velocity Vcx of cylinders of diameter D in solutions N1 or N2 (see Tab. I)

as a function of the fluid velocity U . Open symbols: oscillating cylinders; solid symbols: no

oscillations. PMMA cylinders - (△), (N): D = 1.45 mm (D/H = 0.48), N1; (◦), (•): D = 1.63 mm

(D/H = 0.54), N1 for (◦) and N2 for (•); (�): D = 2.1 mm (D/H = 0.7), N1. Carbon cylinder -

(▽): D = 1.45 mm (D/H = 0.48), N2.

Fig. 3 displays the variation of the velocity Vcx of the cylinder with the mean flow velocity

U in the oscillation and stationary regimes. As predicted by Eq. (5) for viscous flows, Vcx

increases linearly with U in both cases. For a same cylinder diameter (D = 1.45 mm) and

a same fluid (N1) the velocity Vcx in the oscillation regime is lower than in the stationary

one at all velocities U as suggested above ((△) and (N) symbols in Fig. 3); the slope of the

variation with U is also slightly larger in the oscillation regime.
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As also observed by Dvinsky and Popel3, the sedimentation velocity V 0

cx in a stationary

fluid (U = 0) decreases with the confinement: more generally, at a same velocity U , the

cylinder velocity Vcx is always slightly lower for D/H = 0.54 than for D/H = 0.48 and

significantly lower for D/H = 0.7 ((△), (◦) and (�) symbols in Fig. 3). This would have

been the opposite for cylinders falling in a tank of size much larger than their diameter

(D/H ≪ 1): in this unconfined case, the sedimentation rate increases with D because the

mass m per unit of length varies faster (as D2) than the drag force.

In the confined case, instead, Ben Richou et al.9 found numerically in the lubrication

approximation that the geometrical factor λs increases like D5/2 for D/H > 0.1. Combin-

ing the variations of m and λs in Eq. 6, the velocity V 0

cx must then decrease with D (or

equivalently with D/H) as is indeed observed.

Finally, the experiments confirm that increasing the fluid viscosity for a given cylinder

reduces the value of Vcx and result in a transition from an oscillation to a stationary regime

((◦) and (•) symbols in Fig. 3). For a significantly larger cylinder density, Vcx increases

strongly, even for more viscous fluids ((▽) symbols in Fig. 3).

In these experiments, the factor λs is deduced by means of Eq. 6 from the experimental

data for V 0

cx: the corresponding values are plotted in Fig. 4.

In both the stationary and oscillation regimes, the experimental variation of λs with D/H

is similar to that predicted by Ben Richou et al.8,9 (also plotted on the figure). The difference

between the experimental and predicted values is at most 15%: it is likely due to inertial

effects, in agreement with the variations of the drag with the Reynolds number reported by

Hu6 and Ben Richou9. Note that the influence of the space between the ends of the rod and

the lateral sides of the cell cannot account for this difference : the corresponding bypass flow

would indeed instead reduce the measured value of λs (see Fig.9 in Ref. 18).

For D/H = 0.48, the transition from the stationary to the oscillation regime leads to

a small increase (∼ 15%) of λs. This variation reflects the complex interplay between the

rolling motion of the cylinder and its displacement across the gap during the oscillations.

The values in the two regimes are however remarkably similar.

The second geometrical factor λp is determined from the slope of the curves Vcx vs U

in Fig. 3; from Eq.(5), this slope must indeed be equal to λp/λs. Again, the experimental

values of λp are higher than the theoretical ones due to inertial effects (Fig. 4).
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Figure 4. Top: Variations of λs (top) and λp (bottom) vs D/H. (◦),(•) : experimental values of

λs (top) and λp respectively with and without oscillations; dashed lines: numerical data from ref.9

(for λs) and ref.8 (for λp).

IV. OSCILLATION REGIME

A. Time variation of the transverse displacement in the gap

Examples of variations with time of the transverse displacement δyc of the cylinder from

its mean position in the gap are displayed in Fig. 5 for different flow velocities U . The

amplitude of the oscillations close to the threshold (U ∼ −2 mm.s−1) is small (∼ 0.3 mm)

but it increases rapidly with U and reaches a saturation value of the order of 1.3 mm for

U ≤ −4 mm.s−1. This maximum is close to the clearance between the cylinders and the cell

walls (H − D ≃ 1.55mm): it corresponds then to cylinders coming very close to the walls

during their motion as shown by the curve corresponding to Re = 19. Fig.5 also shows that

the period of the oscillation is equal within 10 % for U = −12 and −4 mm.s−1 and only

25 % lower for −2 mm.s−1. This variation with the velocity is qualitatively much slower

than for vortex shedding and tethered cylinders (see 17 and references therein.
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Figure 5. (a) variation of the transverse deviation δyc of a PMMA cylinder (D = 1.45 mm) in the gap

as function of time for different mean velocities U of solution N1. Dashed line: (U = −2 mm.s−1,

Re = 14), solid line: (U = −4 mm.s−1, Re = 15), dashed dotted line: (U = −12 mm.s−1, Re = 19).

The transverse velocity dδyc/dt reaches a maximum |V 0

cy| for δyc ≃ 0. The values of

|V 0

cy| measured for different cylinders in both solutions N1 and N2 are plotted in Fig. 6 as

a function of the Reynolds number Re. After a sharp increase over a narrow range of Re

values (14 < Re < 15), |V 0

cy| reaches a constant limit. This upper value decreases as the

diameter D of the cylinder increases ((△) and (◦) symbols in Fig. 6); it depends also on the

cylinder density and on the fluid viscosity ((△) and (▽) symbols).

B. Time variation of the roll angle α.

The variations with time of the both the roll angle α and the transverse displacement

δyc are plotted in Fig. 7. Both parameters vary periodically with the same frequency but

the shape of the variation of α is more triangular. This reflects very fast changes of the

direction of the rotation which last for less than 0.05 s: they take place shortly after the

distance between the cylinder and the cell walls has reached its minimal value (≃ 200µm).

As the cylinder moves towards one of the walls, it rotates always in the direction opposite

to the local vorticity corresponding to the mean flow (see Fig.1); the rotation changes direc-

tion while it moves away so that it is again opposite to the local vorticity when it reaches
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Figure 6. Maximum velocity |Vcy|
0 of the transverse oscillations inside the gap as a function of the

Reynolds number Re defined by Eq. 1. (△), (◦): PMMA cylinders of respective diameters D = 1.45

and D = 1.63mm in solution N1. (▽): carbon cylinder in solution N2 (D = 1.45 mm).
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Figure 7. Oscillations of a PMMA cylinder D = 1.45mm in solution N1 flowing at U =

−12.7 mm.s−1 (Re = 18). Solid line: roll angle α; dashed line: transverse displacement δyc.

The origin of the α axis is arbitrary.
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the other wall. The corresponding absolute tangential velocity |α̇|D/2 of the surface of the

cylinder at that time is close to 9 mm.s−1 and is of the order of the absolute flow velocity

|U |. Note that the velocity of the cylinder surface facing the nearest wall has always the

same sign: both the rotation direction and the side of the cylinder involved change indeed

from one half period to the next.

C. Variation of the vertical velocity of the particle

-202

21.221.020.8

12

8

4

0

21.020.8 21.2

P1 P1

P2

CCC

-201

-200

-199

-198 1.5

1.0

0.5

0.0

-0.5

|dxc/dt |

[mm/s]

xc 

[mm]

δyc 

[mm]

t  [s]

Figure 8. Time variation of the vertical coordinate xc (solid line) and of the transverse displacement

δyc (dashed line) as a function of time for the same experiment as in Fig. 7. Inset : variation of the

absolute value vertical velocity Vcx = dyc/dt as a function of time.

Figure 8 displays the vertical position of the cylinder as a function of time during three

oscillations together with the corresponding position of the particle in the gap. In this

oscillation regime, the vertical coordinate xc of the cylinder still follows a global linear trend

with time but the velocity Vcx = dxc/dt displays significant oscillations clearly visible in the

inset of Fig.8. These variations reflect those of the drag as the cylinder moves across the

gap.

The variation with time of the absolute velocity |Vcx| displays two minima for each period

of the oscillation when the cylinder is near the first or the second wall ((P1) and (P2)
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respectively). One of the minima is close to zero and the other much shallower, suggesting

a lack of symmetry of the oscillation with respect to the mid-plane; this may indicate an

offset of the mean transverse location of the cylinder from the mid plane or an asymmetry

of the experimental setup. The absolute velocity has also two maxima during each period:

again, the maximum following the lowest minimum of the velocity is significantly shallower

than the other.

D. Variation of the oscillation frequency with the flow parameters.

Re

3.4

3.2

3

2.8

10

S
t.

R
e

20 Re 30

10 20 302515

0.25

0.2

0.15

0.1

St

Figure 9. Variation of the Strouhal number St = fD/U as a function of Re for different cylinders

and Natrosol concentrations. Inset: variation of the product St.Re as a function of Re. Open

symbols: PMMA cylinders of diameters: (△) D = 1.45mm, (▽) D = 1.63mm, (�) D = 1.77mm

and solution N1; (N): carbon cylinder of diameter D = 1.45mm and solution N2; (�): PMMA

cylinder of diameter D = 1.77mm and solution WG.

In the oscillatory regime, it is convenient to characterize the variations of the frequency

f by those of the dimensionless Strouhal number:

St =
f.D

|U∗|
(7)

Figure 9 displays the variations of St with the Reynolds number Re for all the experiments

realized. Despite the use of fluids and cylinders of different characteristics, all data follow
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a same master curve. The value of St decreases from 0.25 to 0.1 as Re increases from 12

to 30. The inset of figure 9, shows that the product St.Re is nearly constant with Re and

equal to 3± 0.15. The frequency f of the oscillation is then given by:

f =
6ν

D2

(

H

D
− 1

) : (8)

with ν = µ/ρf . While f depends on the fluid viscosity, on the diameter of the cylinder and

on the ratio H/D, it is thefore almost independent of the velocity of the fluid (as suggested

above by Fig. 5).

V. DISCUSSION AND CONCLUSION

The experiments reported here have demonstrated that cylinders free to rotate and trans-

late in a vertical confined Hele Shaw cell may display oscillations at Reynolds numbers

10 < Re < 30, well below those corresponding to vortex shedding19. These oscillations are

observed over a broad range of values of the confinement parameter 0.37 < D/H < 0.7 and

for different fluid viscosities ν. In contrast to the instability observed for tethered cylinders

in a similar geometry17, the present one induces additional oscillations at the same frequency

f of both the roll angle of the cylinders about their axis and their translation velocity.

A remarkable feature is the weak dependence of the frequency f on the velocity U while,

for tethered cylinders, it varies linearly with U ; f is in particular the same for a cylinder

sedimenting in a static fluid (U = 0) and for an imposed mean flow (U 6= 0). For a

given velocity the frequency f is also significantly smaller than for a tethered cylinder and

the maximum amplitude of the oscillations of the transverse velocity is reached at a lower

Reynolds number (see Fig. 6). One deals therefore with a very different type of instability.

Quantitatively, f is related to U , D and H/D by Eq. (8). This formula implies that f

is proportional to the inverse of the characteristic viscous diffusion time τd = D2/ν over

the diameter D of the cylinder; the proportionality coefficient (H/D − 1)/6 accounts for

the blockage of the flow by the cylinder. In terms of dimensionless variables, the Strouhal

number St is not constant but increases from 0.1 to 0.25 with Re (Fig. 9); for tethered

cylinders, instead, St varies slowly and is significantly higher (0.65 ≤ St ≤ 0.75). Here, the

relevant combination is the product StRe of the Strouhal and Reynolds numbers which is

proportional to 1/τd and constant with Re.
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These results have direct implications on the transverse velocity in the gap at large

amplitudes: assuming a constant absolute value of |Vcy| during the oscillations, it can be

estimated by |Vcy| ≃ 2f(H −D). Using Eq. (8), this leads to:

|Vcy| ≃
6ν

D
. (9)

The velocity |Vcy| is then also independent of the mean flow velocity (and, therefore, of the

Reynolds number for a given viscosity ν): this is indeed observed in Fig.6 for Re ≥ 15. Eq. 8

also predicts that |Vcy| increases with ν and decreases as the diameter D increases, also in

agreement with the data plotted in Fig. 6.

The variations with time of the transverse displacement in the gap and of the rolling angle

are antisymmetrical with respect to the midplane: the absolute transverse and rotational

velocities are the same when the cylinder moves towards a wall or away from it. This

symmetry is not as well satisfied by the vertical velocity component (and therefore by the

vertical drag force on the cylinder).

The above results suggest that the growth of the oscillations of the cylinder is determined

by the relative values of their period 1/f and of τd. At low f values (≪ 1/τd), momentum

diffusion is fast enough so that the flow field around the cylinder reaches a quasistatic profile

identical to that of a fixed cylinder at the same location. At high frequencies (f ≫ 1/τd),

there is a phase shift between the motion of the cylinder and the corresponding variations

of the flow and pressure fields (particularly in quasiparallel flow regions in the gaps between

the cylinder and the walls). At Reynolds numbers large enough (here ≥ 14) so that non

linear terms appear, the resulting force on the cylinder may then change sign due to the

phase shift and amplify the oscillations instead of damping them.

At the largest values of the confinement parameter D/H , more complex dynamical phe-

nomena were observed. In addition to the instability reported above, the cylinder displayed

flutter with lower frequency oscillations of its angle with respect to the horizontal and of

its lateral position. Numerous studies have analyzed similar motions involving the coupling

between the vertical motion of objects and lateral oscillations: these are encountered in such

problems as the fluttering motion of falling leaves or paper sheets20,21 or that of bubbles ris-

ing in a liquid22. It will be necessary in future work to quantify the effect of the confinement

on these observations and consider the low Reynolds limit.

Finally, we considered only cylinders of length Lc close to the width W of the cell. With
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shorter cylinders for which Lc < W , the bypass of the flow between the tips of the cylinders

and the lateral walls will reduce the influence of the flow blockage and thus influence the

motion. This, too, represents an important parameter of the problem.
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