inria-00548660, version 1
Combining Appearance Models and Markov Random Fields for Category Level Object Segmentation
Diane Larlus 1, 2Frédéric Jurie 3
CVPR 2008 - IEEE Conference on Computer Vision & Pattern Recognition (2008) 1-7
Résumé : Object models based on bag-of-words representations can achieve state-of-the-art performance for image classification and object localization tasks. However, as they consider objects as loose collections of local patches they fail to accurately locate object boundaries and are not able to produce accurate object segmentation. On the other hand, Markov random field models used for image segmentation focus on object boundaries but can hardly use the global constraints necessary to deal with object categories whose appearance may vary significantly. In this paper we combine the advantages of both approaches. First, a mechanism based on local regions allows object detection using visual word occurrences and produces a rough image segmentation. Then, a MRF component gives clean boundaries and enforces label consistency, guided by local image cues (color, texture and edge cues) and by long-distance dependencies. Gibbs sampling is used to infer the model. The proposed method successfully segments object categories with highly varying appearances in the presence of cluttered backgrounds and large view point changes. We show that it outperforms published results on the Pascal VOC 2007 dataset.
- 1 : LEAR (INRIA Grenoble Rhône-Alpes / LJK Laboratoire Jean Kuntzmann)
- INRIA – Laboratoire Jean Kuntzmann – Université Joseph Fourier - Grenoble I – Institut polytechnique de Grenoble (Grenoble INP) – CNRS : UMR5224
- 2 : Laboratoire Jean Kuntzmann (LJK)
- CNRS : UMR5224 – Université Joseph Fourier - Grenoble I – Université Pierre-Mendès-France - Grenoble II – Institut Polytechnique de Grenoble - Grenoble Institute of Technology
- 3 : Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen (GREYC)
- CNRS : UMR6072 – Université de Caen Basse-Normandie – Ecole Nationale Supérieure d'Ingénieurs de Caen
- Domaine : Informatique/Vision par ordinateur et reconnaissance de formes
- Mots-clés : Markov processes – image colour analysis – image representation – image sampling – image segmentation – image texture – random processes
- inria-00548660, version 1
- http://hal.inria.fr/inria-00548660
- oai:hal.inria.fr:inria-00548660
- Contributeur : Team Lear
- Déposé pour le compte de :
- Soumis le : Lundi 20 Décembre 2010, 10:24:53
- Dernière modification le : Vendredi 3 Janvier 2014, 16:10:27