inria-00548655, version 1
Object Recognition by Integrating Multiple Image Segmentations
Caroline Pantofaru 1Cordelia Schmid 2, 3Martial Hebert 1
ECCV 2008 - 10th European Conference on Computer Vision 5304 (2008) 481-494
Résumé : The joint tasks of object recognition and object segmentation from a single image are complex in their requirement of not only correct classification, but also deciding exactly which pixels belong to the object. Exploring all possible pixel subsets is prohibitively expensive, leading to recent approaches which use unsupervised image segmentation to reduce the size of the configuration space. Image segmentation, however, is known to be unstable, strongly affected by small image perturbations, feature choices, or different segmentation algorithms. This instability has led to advocacy for using multiple segmentations of an image. In this paper, we explore the question of how to best integrate the information from multiple bottom-up segmentations of an image to improve object recognition robustness. By integrating the image partition hypotheses in an intuitive combined top-down and bottom-up recognition approach, we improve object and feature support. We further explore possible extensions of our method and whether they provide improved performance. Results are presented on the MSRC 21-class data set and the Pascal VOC2007 object segmentation challenge.
- 1 : The Robotics Institute
- Carnegie Mellon University
- 2 : LEAR (INRIA Grenoble Rhône-Alpes / LJK Laboratoire Jean Kuntzmann)
- INRIA – Laboratoire Jean Kuntzmann – Université Joseph Fourier - Grenoble I – Institut polytechnique de Grenoble (Grenoble INP) – CNRS : UMR5224
- 3 : Laboratoire Jean Kuntzmann (LJK)
- CNRS : UMR5224 – Université Joseph Fourier - Grenoble I – Université Pierre-Mendès-France - Grenoble II – Institut Polytechnique de Grenoble - Grenoble Institute of Technology
- Domaine : Informatique/Vision par ordinateur et reconnaissance de formes
- inria-00548655, version 1
- http://hal.inria.fr/inria-00548655
- oai:hal.inria.fr:inria-00548655
- Contributeur : Team Lear
- Déposé pour le compte de :
- Soumis le : Lundi 20 Décembre 2010, 10:24:31
- Dernière modification le : Vendredi 3 Janvier 2014, 20:00:01