inria-00546222, version 2
Strategies for processing images with 4D-Var data assimilation methods
Isabelle Herlin 1, 2Dominique Béréziat
3Nicolas Mercier
1, 2
N° RR-7495 (2010)
Résumé : Data Assimilation is a well-known mathematical technic used, in environmental sciences, to improve, thanks to observation data, the forecasts obtained by meteorological, oceanographic or air quality simulation models. It aims to solve the evolution equations, describing the dynamics of the state variables, and an observation equation, linking at each space-time location the state vector and the observations. Data Assimilation allows to get a better knowledge of the actual system's state, named the reference. In this article, we first describe various strategies that can be applied in the framework of variational data assimilation to study various image processing issues. Second, we detail the mathematical setting and the analysis of pros and cons of each strategy for the issue of motion estimation. Last, results are provided on synthetic images and satellite acquisitions.
- 1 : CLIME (INRIA Paris-Rocquencourt)
- INRIA – École des Ponts ParisTech (ENPC)
- 2 : Centre d'Enseignement et de Recherche en Environnement Atmosphérique (CEREA)
- EDF – École des Ponts ParisTech (ENPC)
- 3 : Laboratoire d'Informatique de Paris 6 (LIP6)
- CNRS : UMR7606 – Université Pierre et Marie Curie (UPMC) - Paris VI
- Domaine : Informatique/Traitement des images
- Référence interne : RR-7495
- Versions disponibles : v1 (14-12-2010) v2 (19-12-2010)
- inria-00546222, version 2
- http://hal.inria.fr/inria-00546222
- oai:hal.inria.fr:inria-00546222
- Contributeur : Dominique Béréziat
- Soumis le : Vendredi 17 Décembre 2010, 19:09:31
- Dernière modification le : Lundi 20 Décembre 2010, 11:48:17