inria-00484993, version 2
Clark-Ocone type formula for non-semimartingales with finite quadratic variation
Cristina Di Girolami a, 1, 2Francesco Russo
2, 3
Comptes-Rendus de l'Académie des Sciences, Série 1, Mathématiques 349, 3-4 (2011) 209-214
Résumé : We provide a suitable framework for the concept of finite quadratic variation for processes with values in a separable Banach space $B$ using the language of stochastic calculus via regularizations, introduced in the case $B= \R$ by the second author and P. Vallois. To a real continuous process $X$ we associate the Banach valued process $X(\cdot)$, called {\it window} process, which describes the evolution of $X$ taking into account a memory $\tau>0$. The natural state space for $X(\cdot)$ is the Banach space of continuous functions on $[-\tau,0]$. If $X$ is a real finite quadratic variation process, an appropriated Itô formula is presented, from which we derive a generalized Clark-Ocone formula for non-semimartingales having the same quadratic variation as Brownian motion. The representation is based on solutions of an infinite dimensional PDE.
- a – Università LUISS Guido Carli
- 1 : Libera Universita Internazionale degli Studi Sociali Guido Carli di Roma (Luiss Guido Carli)
- Libera Università Internazionale degli Studi Sociali
- 2 : Unité de Mathématiques Appliquées (UMA)
- ENSTA ParisTech
- 3 : MATHFI (INRIA Rocquencourt)
- INRIA – École des Ponts ParisTech (ENPC) – Université Paris-Est Créteil Val-de-Marne (UPEC)
- Domaine : Mathématiques/Probabilités
- Mots-clés : Calculus via regularization – Infinite dimensional analysis – Clark-Ocone formula – Dirichlet processes – Itô formula – Quadratic variation – Hedging theory without semimartingales.
- Versions disponibles : v1 (20-05-2010) v2 (26-10-2010)
- inria-00484993, version 2
- http://hal.inria.fr/inria-00484993
- oai:hal.inria.fr:inria-00484993
- Contributeur : Francesco Russo
- Soumis le : Mardi 26 Octobre 2010, 10:53:35
- Dernière modification le : Vendredi 2 Mars 2012, 19:00:04