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Abstract. Semi-algebraic sets occur naturally when dealing with im-
plicit models and boolean operations between them. In this work we
present an algorithm to efficiently and in a certified way compute the
connected components of semi-algebraic sets given by intersection or
union of conjunctions of bi-variate equalities and inequalities. For any
given precision, this algorithm can also provide a polygonal and isotopic
approximation of the exact set. The idea is to localize the boundary
curves by subdividing the space and then deduce their shape within
small enough cells using only boundary information. Then a systematic
traversal of the boundary curve graph yields polygonal regions isotopic to
the connected components of the semi-algebraic set. Space subdivision is
supported by a kd-tree structure and localization is done using Bernstein
representation. We conclude by demonstrating our C++ implementation
in the CAS Mathemagix.

Key words: subdivision algorithm, semi-algebraic set, connected com-
ponent, algebraic curve, topology computation

1 Introduction

Planar semi-algebraic sets are unions of subsets S of R2 that satisfy a set of bi-
variate polynomial equalities and inequalities. These sets appear naturally when
polynomial constraints are used for instance to describe regions of validity for
a physical problem. Piecewise algebraic representation of shapes is commonly
used in Computer Aided Geometric Design, for instance in B-spline parametric
representation of curves, or even surfaces of volumes, that also belong to the
class of real semi-algebraic sets. Constructive Solid Geometry models also used
in CAGD are semi-algebraic sets if the involved solid primitives are algebraic.
In domains such as optimization, an important problem is the computation of
global optimum of (polynomial) functions under (polynomial) constraints. These
constraints define a semi-algebraic set as the solution space, in which the optimal
points will be searched [15], [12]. In other words, semi-algebraic sets provide a
general framework to handle many shape representations that are commonly
used in Shape Modeling.
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2 Angelos Mantzaflaris and Bernard Mourrain

In the present paper we present a new technique to handle semi-algebraic
sets in the plane. We note that our method can be extended to dimension three,
without theoretical obstacles. Indeed, the implementation is done in a generic
programming framework that allows extension to dimension three without rela-
tively little additional effort, since abstract types and templated data structures
are heavily used.

The study of real semi-algebraic sets has a long historical background [18],
with important theoretical contributions for instance on their triangulation [11],
[13]. More algorithmic questions have also been tackled, essentially using the
well-known Cylindrical Algebraic Decomposition [6]. This approach is based on
performing successive projections of semi-algebraic sets onto subspaces of dimen-
sion one less and then lifting back to the projected set. It yields a decomposition
of a semi-algebraic set S into (connected) components, defined by sign conditions
deduced from some “subresultant” polynomial sequences [5], [8], [3].

One of the bottlenecks for practical applications of C.A.D.-based approaches,
even in small dimension, is its double exponential complexity behavior. This is
due mainly to computations with algebraic numbers of possibly high degree.
Other obstacles include the lack of extension to approximate computation, re-
quired by applications in CAGD and the problem of robust description of the
components. Our approach refrains from costly algebraic manipulations, hence
avoids the high complexity of exact computation. It is based on real root isola-
tion techniques, which are well suited for approximate yet certified computations.
Moreover, it gives an answer to the problem of representing the semi-algebraic
set in a way that is both topologically correct and suitable for applications. This
overcomes the inflexible description by sign conditions or other implicit descrip-
tions, for instance the one in [2], where each connected component is described
itself as a semi-algebraic set.

We propose a subdivision approach that concentrates on rectangular domains
of R2 and computes a piecewise linear approximation of a semi-algebraic set in
the domain, which is topologically equivalent to it. The defining equations of the
set are transformed to tensor-Bernstein form. This gives a numerically stable
way to subdivide this representation into sub-domains, until certain regularity
conditions are fulfilled. During the subdivision process the cells that touch the
boundary of the semi-algebraic set are identified and their adjacency structure
is represented as a graph. When this process terminates, we follow this graph to
recover contours that define the geometry of the set. A tolerance ε > 0, given in
the input, controls the precision of the computed approximation. Nevertheless,
the regularity conditions imply a topologically correct result. In this sence, the
algorithm extends the approach in [1] on the topology of algebraic curves, by
providing a efficient way to deal with semi-algebraic regions and to perform
boolean operations on these regions.

We start by defining the family of sets that we are interested in.

Definition 1. The family S ⊆ 2R2
of semi-algebraic sets is the closure under

union and intersection of subsets of R2 of the form{
(x, y) ∈ R2 : f(x, y) = 0

}
and

{
(x, y) ∈ R2 : g(x, y) > 0

}

in
ria

-0
04

63
49

1,
 v

er
si

on
 2

 - 
30

 O
ct

 2
01

0



A Subdivision Approach to Planar Semi-algebraic Sets 3

where f, g ∈ R[x, y].

We call the above sets basic semi-algebraic sets. These definitions extend natu-
rally to higher dimension.

If S ∈ S, its complement Sc = R2\S is easily seen to belong to S. The family
S is thus stable by intersection, union and complementary. Another important
property of semi-algebraic sets is that the projection of a semi-algebraic set is a
semi-algebraic set [3].

Our algorithm has as input an initial frame D0 = [a, b] × [c, d] and a semi-
algebraic set S, given in disjunctive normal form, that is, in the form S1∪· · ·∪Sk

where each Si is an intersection of basic semi-algebraic sets, hence defined as a
subset {(x, y) ∈ R2 : g1 = 0, . . . , gm = 0, f1 > 0, . . . , fn > 0}. It outputs
a boundary effective representation of the connected components of this semi-
algebraic set.

Given a precision ε > 0, it can also output a polygonal approximation of the
set inside the domain D, within the precision ε, which moreover is isotopic to S
in the following sense:

Definition 2. Two semi-algebraic sets S1,S2 of R2 are isotopic if there exists a
continuous application F : R2 × [0, 1] 7→ R2 such that F |t=0 is the identity map,
F (S1, 1) = S2 and for all t ∈ [0, 1], F |t : R2 7→ ImF |t is a homeomorphism.

We introduce some notation. Throughout the text S will refer to an input
semi-algebraic set. By a slight abuse of notation we might denote by S both the
semi-algebraic set and the set of underlying defining polynomials. The meaning
will be clear from the context. Let f be a polynomial of the input. We refer to
parts of the real algebraic curve f = 0 that belong to ∂S, the boundary of S, as
boundary curves. Points where boundary curves intersect (or a single boundary
branch, part of some f = 0 is self-intersecting), are called crossing points. Also,
we will refer to a branch of a curve, defined by two endpoints p, q, as the part
of the curve between these points, e.g. the image of a continuous parametrized
curve r : [0, 1]→ R2 s.t. r(0) = p, r(1) = q and f ◦ r = 0.

This paper is organized as follows: In Sect. 2 we provide details on the repre-
sentation of the main objects in memory. Then in Sect. 3 we describe a subdivi-
sion process that computes a collection of cells covering ∂S. This representation
is used to compute the connected regions of S, in Sect. 4. We specialize the main
functions that appear in the algorithm first for the case of basic sets, in Sect. 5
and then for a general set of S in Sect. 6. We conclude with examples and an
overview of our implementation in Sect. 7.

2 Representation

We begin by describing the main objects in the algorithm, called hereafter cells,
and how they are represented in memory.

A cell carries local information for S in a rectangular domainD = [a, b]×[c, d].
This information includes the Bernstein representation over D of the defining
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4 Angelos Mantzaflaris and Bernard Mourrain

equations of Si, whenever Si ∩ C 6= ∅. It also carries the intersections of every
branch of ∂S that crosses the cell with the cell frame ∂C. The cells of interest
are exactly the cells that contain branches of boundary curves, i.e. parts of ∂S.
These cells are identified during the subdivision process.

A local description of S in a cell is achieved using the tensor-Bernstein rep-
resentation over D of every polynomial that defines S. This representation is
computed using DeCasteljau’s algorithm. It yields for f ∈ R[x, y], an expansion

f(x, y) =
dx∑
i=0

dy∑
j=0

γi,j B
i
dx

(x; a, b)Bj
dy

(y; c, d) ,

where dx, dy is the degree of f in x, y resp. and Bi
dx

(x; a, b) the i−th Bernstein
polynomial of degree dx over the interval [a, b], namely Bi

dx
(x; a, b) =

(
dx

i

)
(x −

a)i(b−x)dx−i (b−a)−dx , 0 ≤ i ≤ dx, b < a. Consequently we store an (dx +1)×
(dy+1) matrix in memory to represent f , i.e. a dense Bernstein representation. A
number of properties of this basis, e.g. convexity, variation diminishing, positivity
etc, make it suitable for stable approximate computations. See [10] for more
information.

The first cell C that is computed as soon as the algorithm is launched is
the one corresponding to the initial frame D0. This initial cell carries all the
polynomials of the input. When a sub-cell is computed, if ∂Si does not cross
that cell, for some i, S = S1 ∪ · · · ∪ Sr, then the polynomials of Si are not kept
in the representation of it.

Another object is the region, which is a linear approximation of a 2-dimensional
connected component of the semi-algebraic set. It is described as a collection of
contours, that are closed loops properly oriented to delimit the region: The outer
contour, or shell, is oriented counter-clockwise (CCW for short) whereas any in-
ternal contours, or holes are clockwise (CW) oriented. See Fig. 4 for a region
defined by three contours.

Every contour is essentially a simple polygon described as a list of vertices
that lie on the boundary of the exact set.

We also employ graph structures to keep adjacency information between cells.
These are internally saved in memory using adjacency-list representation [7].

More specifically, we compute an undirected graph A, in which the points
where ∂S intersects ∂C correspond to edges and subdivision cells C correspond
to vertices. We shall compute the restriction of the semi-algebraic set in a given
initial domain, thus the border of this domain is from a computational point of
view a limit for the regions to compute. For this reason, we also keep a directed
graph containing the cells where boundary curves touch the initial frame and
the four corner cells of D0. This forms a CCW loop and is used to complete any
open contours that touch the boundary.

The space subdivision is tracked using a kd−tree, rooted at D0. The leaves
of this tree is a partition of D0 into cells. The inner nodes represent the sequence
of subdivisions that took place.
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A Subdivision Approach to Planar Semi-algebraic Sets 5

Example. In Fig. 3(left), we have a partition of the domain into 8 regular cells.
The semi-algebraic set is the grayed area, described by a single contour. Here the
graph A is the closed path of cells 2,7,6,8,3,2. The border graph is the directed
closed path 2,1,7,6,4,3,2.

3 Subdivision process

The subdivision of the initial domain into regular cells is a main operation of
the algorithm. It consists in splitting the initial domain into smaller cells until
certain local properties are satisfied. These properties will allow in a later step
the construction of a topologically correct approximation of the (boundary of
the) set in each cell.

During this process we construct a graph A whose vertices are the cells that
span ∂S. Alg. 3.1 presents the general process. Here a cell is regarded as an
abstract object that supports the following operations:
• Regularity test(IsRegular). A cell is considered regular if the topology of
S inside the cell is known, i.e. it can be deduced using only discrete data stored
in the cell, namely the points in ∂C ∩∂S, or even the sign of some derivatives on
them. Hence interesting cases are the cells that contain branches of boundary
curves. Some characteristic examples of this are presented in Fig. 1. If there is

(c)(b)(a)
1

2

3

4

1

2

3

4

1

2

3

4

Fig. 1. Examples of cells that are regular and intersect S: (a) intersection of two basic
sets, (b) union of two basic sets with a crossing, (c) union of two sets.

more than one crossing point in the cell, that is, branches that intersect each
other, then there is ambiguity on how the region behaves in the cell. Thus the
regularity implies that we have at most one crossing point inside the cell and that
the branches inside C have a monotone behavior. This behavior is connected to
special points on the boundary curves, namely points with vertical or horizontal
tangents.
• Boundary curve intersection test(OnBoundary). It is used to identify if
a cell is intersecting ∂S, i.e. C ∩∂S 6= ∅. This can be done by inspecting the sign
variations of Bernstein coefficients of the polynomials that define S. Descartes’
Rule of Signs implies that if there is a branch of ∂S in C, then there will be sign
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6 Angelos Mantzaflaris and Bernard Mourrain

variations on the coefficients of some boundary equation. On the other hand, by
the positivity property of the Bernstein basis, if the coefficients over a cell C of a
curve f = 0 have no sign variations, then there cannot be a branch of this curve
in C.

Algorithm 3.1: Subdivision algorithm
Input: A cell C0 corresponding to the initial domain D0.
Output: A partition of C0 into regular cells and a cell graph A.
Initiate a kd−tree K and set its root to C0;
Initiate a graph A with a vertex C0;
for all unvisited leaves C in K do

if OnBoundary(C) and not IsRegular(C) then
subdivide C into two children CL and CR ;
put an edge in A between CL and CR;
distribute the A−neighbors of C to CL, CR;
remove C from A;

else
mark C as visited;

end
return K, A;

end

During the subdivision process the following information is computed:

– Space partition information in the kd-tree structure.
– Local information in the subdivided cells: the tensor-Bernstein representa-

tion over the cell, critical points contained in the cell, intersection points of
∂S with the cell frame.

– Adjacency information between the cells, in horizontal and vertical direction.
The cells in which the boundary curves touch the border ∂D0 are also con-
nected in a counter-clockwise loop, to serve the purpose of limiting the com-
putation inside D0.

• Space Partition. The cells that derive from successive subdivisions are or-
ganized in a kd-tree structure [4], rooted at the initial domain D0. The nodes in
this tree have pointers to their left and right children, as well as to the parent
node. The coordinate in which the subdivision takes place at every level of the
tree is not fixed; it is implied every time by the dimensions of the current cell,
thus at the same level of the tree we may have cell subdivisions either in x or y
coordinate.

This structured partition allows to perform fast point location queries. The
reason we have chosen a kd-tree rather than a quad-tree is economy wrt the
overall number of cell subdivisions as well as the modularity that it offers, for
instance it’s direct adaptation to three or more dimensions.

There are two basic tests to be defined, to guide the subdivision process. The
first identifies that a cell is regular, i.e. the topology of the semi-algebraic set in
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A Subdivision Approach to Planar Semi-algebraic Sets 7

the cell is known. In this case the subdivision stops at this branch of the kd-tree.
The second test identifies if ∂S intersects the current cell. If not, then either
C ⊆ S or C ∩ S = ∅, thus there is no need to subdivide it any further.
• Cell subdivision. Subdividing a cell C along some coordinate is essentially to
compute, starting from the Bernstein representation over C, representations over
some sub-domains of C. This operation is carried out by one call of DeCasteljau’s
algorithm [10].

Moreover, along the line where the splitting takes place, we solve a univariate
Bernstein polynomial for every boundary curve that intersects the cell, in order
to compute intersection with the new frame sides. The existing crossing points
and frame intersection points are distributed to the resulting sub-cells, Fig. 2.
• Adjacency graph update. At each subdivision step, a former leaf of the
kd-tree obtains two children. To update the cell graph, we disconnect this node
and distribute it’s neighbors to the new children, according to the direction of
splitting. Finally, we introduce a new edge that joins the two children along the
corresponding direction. These steps, demonstrated in Fig. 2, assure that at any
point of the subdivision, the leaves of the kd-tree, which form a partition of D0,
are connected to the neighboring cells in all four sides.

Fig. 2. Cell subdivision along x−direction. Neighbors of the parent (left) are dis-
tributed to the children(right). An edge is added between the latter.

4 Region recovery

In this section we explain how we pass from the cell description to a polygonal
approximation of the (connected components of the) semi-algebraic set. We will
demonstrate that as soon as the subdivision Alg. 3.1 terminates, we are able to
recover the shape of the semi-algebraic set, and guarantee the correctness of the
construction.

The output is a list of regions that correspond to connected components of
the semi-algebraic set. The set of cells that intersect a region can readily provide
a triangulation of the region, which can be outputted for use in rendering. Each
region is represented as a set of closed oriented contours. The orientation of every
contour reveals whether it is the exterior boundary, or shell of the region, or an
internal gap, or a hole. There is a unique shell for every region of S.
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8 Angelos Mantzaflaris and Bernard Mourrain
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67

Fig. 3. Left: Subdivision process, with marked subdivided cells and intersections.
Right: Computed polygonal region, marked with the oriented list of contour points.

To compute the regions, it suffices to traverse the cell graph A in a suitable
way and recover the shell and holes of every region in the set. The algorithm for
region computation is summarized in Alg. 4.1.

Algorithm 4.1: Region computation
Input: A cell graph A covering the semi-algebraic set S.
Output: A list L of polygonal regions, one for every connected component of S.
L← ∅;
for all boundary cells C in A do

if C is not visited then
F ← DiscoverContour(C);
if F IsCCW then

Initialize region R with F ;
push R to L;

else
attach hole F to it’s containing shell

end

end

end
return L;

The orientation check IsCCW depends only on the contour F . Every closed
contour can be assigned an orientation; if one walks around the curve in such a
way as to keep the bounded region on one’s left at all times, the contour is said to
be positively oriented. If the contour is traversed in the opposite direction, then
it is said to be negatively oriented. Let c = (p1, p2, . . . , pn) with pi = (xi, yi),
pn+1 = p1 be a list of points defining a closed polygonal contour. The sign of the
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A Subdivision Approach to Planar Semi-algebraic Sets 9

quantity
s∑

i=1

(xiyi+1 − xi+1yi) determines weather c is positively or negatively

oriented. This sum is twice the (signed) area of the contour.

Fig. 4. A region defined by it’s oriented border. All the contours are CCW-oriented
wrt the grayed region. This leaves the holes CW oriented with respect to the bounded
domain they define.

The function DiscoverContour, presented in Alg. 4.2, returns a contour
that crosses the cell C and is oriented CCW wrt the region it delimits. For
instance, both the holes and the shell of the region in Fig. 4 are CCW oriented
wrt the grayed region. It is required that the cell argument is regular, so that
the global shape of the contour can be determined by following the known local
topology in the cell. This is ensured by the subdivision process of Sect. 3.

Apart from the cells containing branches of the boundary contours, there are
special cells that are needed in order to constrain the computation in the initial
frame D. These are the boundary cells that touch the frame as well as the four
corners of D. They are connected in a CCW loop during the subdivision process
that is used to complete the contours that escape D and would not be closed
otherwise.

4.1 Following the boundary curves around a region

The main function in Alg. 4.1 is DiscoverContour, which is in turn based on
two routines, Pair and StartingPoint.
• Pair. If a cell intersects both a region and the region’s boundary, then for
every intersection point p there is a unique point q that is connected to p via a
segment of ∂S that lies inside the cell. If the cell in question is also regular, q
can be computed using sign conditions along ∂C. We define this point q to be
the result of Pair(C, p). If this point q is different from p, then evidently it is
connected to p via a branch of some boundary contour of the region. Alg. 4.3
presents a general strategy to compute q.
Example. In Fig. 1 the result of Pair is: (a)1 → 2, (b)4 → 3, (c)2 → 3. Note
that in case (c), the branch 1 → 4 will not occur in the computation, since it
does not belong to ∂S.
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10 Angelos Mantzaflaris and Bernard Mourrain

• Starting Point. A contour has to be traversed with the correct orientation,
otherwise we would not be able to distinguish between shells and holes of a
region. For this, it suffices to provide the first two points in the point list of
the contour with the correct orientation. This is the task of the Starting-
Point(C) routine. It returns a point p on ∂C s.t. the oriented branch with end-
points p, Pair(p) has on it’s left side the region to be computed. This is a special
case of the Pair computation described in the next paragraph.
Example. For Fig. 1 the result of StartingPoint is: (a)2, (b)3, (c)2. Indeed,
the respective branches (a)2 → 1, (b)3 → 4 and (c)2 → 3, are CCW-oriented
wrt S.

Looking at the graph A induced by Alg. 3.1, we distinguish two kinds of
regular cells:

– Cells that contain non-crossing branches of ∂S.
– Cells that contain branches that intersect at one crossing point.

Recall that the outcome of Pair(C) is the point connected to p via a branch
which lies inside C. The general algorithm is presented in Alg. 4.3. The essential
tool for this computation is an efficient way to check if a given point on ∂C is
contained in S. This is done using the sign of the Bernstein coefficients. For
every polynomial f of C, there are four extreme coefficients that are equal to
it’s value on the four corners of ∂C. Now taking into account that the sign of f
along ∂C alternates every time we pass a boundary intersection point, we can
determine the sign on any point of ∂C by starting from an extreme coefficient
and counting points along ∂C, up to the desired point.

If there is one crossing point in C the topology of ∂S∩C is conic (Fig. 1(a,b)).
To choose the correct pair of a given point on ∂C ∩ ∂S, we check whether a
∂C−neighborhood on the left of p belongs to S or on the right of p. We output
accordingly the point on the side where the test was positive.

If there is no crossing point, (Fig. 1(c)) it suffices to return the other end of
the branch that starts from p. We shall see in the sequel how this information is
recovered on regular cells.
Example. In the case of Fig. 3(left) we execute Alg. 4.2. Starting from cell 2,
we obtain a first point of the contour, using StartingPoint routine. Succesive
calls of the pair function give the sequence of points shown in Fig. 3(right). The
process stops when we reach the cell 2 again, thus completing the contour.

It remains to specialize these functions. We continue by doing so, first in the
case of basic algebraic sets and then in the case of intersection and union.

5 The case of basic semi-algebraic sets

A basic semi-algebraic set is defined by one polynomial, S = {(x, y) : f > 0}, or
S = {(x, y) : f = 0}. In both cases the treatment is quite the same, and depends
on the boundary curve f = 0, hence we shall suppose S = {(x, y) : f > 0}.
In the case of equality it is only the contour lines that will be outputted rather
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A Subdivision Approach to Planar Semi-algebraic Sets 11

Algorithm 4.2: DiscoverContour(C)
Input: A regular cell C of A.
Output: A list F of points in the plane that define a closed contour.
p← StartingPoint(C);
Initialize a contour F and push p to it;
C0 ← C;
repeat

mark C as visited;
p← Pair(C, p);
push p to contour F ;
C ← the A−neighbor of C that contains p;

until C = C0 ;
return F ;

Algorithm 4.3: Pair

Input: A regular cell C and an intersection point p on ∂C.
Output: The intersection point q such that {p, q} lie on a branch of ∂S.
if there is a crossing in C then

Let l, r be the CCW previous and next point, resp., of p, in ∂C ∩ {f = 0};
Based on which of the segments lp or pr lies in S, return either l or r ;

else
return the other end of the C−branch starting from p;

end

than two-dimensional regions. After fully treating this case, we shall generalize
by extending the operations to the cases of intersection and union.

This case is closely related to the topology computation of an implicit real
algebraic curve. The latter is the partition of space into points, edges and faces
defined by the curve f = 0. See Figure 5 for an example. Note that recovering
the topology of the real algebraic curve f = 0 is a special case of our algorithm.
Indeed, it suffices to execute the subdivision algorithm on S = {f = 0} and
then run the region recovery twice, once with S = {f > 0} and once with
S = {−f > 0}. The union of these two outputs is exactly the set of faces defined
by the curve f = 0.

5.1 Regularity test

We describe the regularity criteria that are used for the boundary curve of the
set. We shall provide a brief overview and refer the reader to [1, Sect. 4] for an
extended presentation.

The regularity depends on special points on the curve, that reveal the local
shape of the curve in a neighborhood around them. These are:

Definition 3. The set of extremal points of f ∈ R[x, y] is the solutions of the
system ∂xf(x, y) = ∂yf(x, y) = 0.
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12 Angelos Mantzaflaris and Bernard Mourrain

Fig. 5. The 23 faces in the topology of the degree 8 curve f = 2 + 7x − 7y − 14x3 + 7x5 −

x7 − 16y2 + 14y3 + 20y4 − 7y5 − 8y6 + y7 + y8 − 42y2x− 70y3x2 + 35xy4 + 70y2x3 + 42yx2 − 35x3y4 + 7x6y−

21x5y2 − 35x4y + 21x2y5 + 35y3x4 − 7xy6 computed by running our algorithm on S = {f > 0},
S = {f < 0} and D = [−4, 4]× [−3, 3].

The set of singular points of f is the subset of extremal points that also satisfy
the equation f(x, y) = 0.
The set of x-critical ( y-critical) points of f is the solution set of ∂xf(x, y) =
f(x, y) = 0} (∂yf(x, y) = f(x, y) = 0}).

Computing these points, approximately but also efficiently, is a vital ingredi-
ent of the algorithm. In [16], an algorithm is presented that acts on polynomials
in Bernstein form. It uses domain subdivision as well as enveloping and pre-
conditioning techniques to provide a robust polynomial solver. We rely on this
solver to obtain good approximations of the points in Def. 3. These points are
precomputed and during the subdivision process they are isolated between the
cells, i.e. we do not allow more than one of them in a single cell. As a result,
after the subdivision process terminates, we obtain a partition of D0 into regular
cells of the following type:

– x-regular cells, those that contain no x-critical points (similarly for y−regular).
– simply singular cells, that contain a single singular point and all branches of
∂S ∩ C intersect it.

• Regular cells. If a cell is x−regular, it contains a number of x−monotone
branches. In short, the direction of the tangential gradient vector (∂yf,−∂xf)
evaluated at the points in ∂C∩∂S yields the connection of the branches inside C.
The Bernstein representation of the derivatives themselves are easily computed,
since they are given as differences of Bernstein coefficients of f . A sufficient
condition for f to be x-regular is that the Bernstein coefficients of ∂xf maintains
a constant sign. By Descartes’ law, this statement implies that the sign variations
in x−direction should be at most one.

Note that in special cases where the critical point is on ∂C two branches may
share a starting or ending point.

in
ria

-0
04

63
49

1,
 v

er
si

on
 2

 - 
30

 O
ct

 2
01

0



A Subdivision Approach to Planar Semi-algebraic Sets 13

• Simply singular cells. If there is a single singular point in a cell C, and no
additional extremal points, one must test whether all the branches inside C cross
this point. This would imply that the topology inside C is a cone starting from the
singular point. The test is based on computing the topological degree, or Gauss
map [17] of the vector field ∇f = (∂yf, ∂xf) around the closed curve ∂C. This
breaks down to isolating the real roots of ∂xf and ∂yf along ∂C. Khimshiashvili’s
theorem [14] relates the number of branches that reach the singular point to the
topological degree deg(∇f, C); it states that the number of branches is exactly
2 (1 − deg(∇f, C)). If this number coincides with the cardinality of ∂C ∩ ∂S
then we can treat this cell, otherwise there are additional branches in C and the
subdivision will continue until they are isolated from the singular point.

6 The general case

To treat semi-algebraic sets with more than one defining equation, it suffices
to extend the main operations in this case. Our aim is to have a covering of
the boundary curves of ∂S by regular cells. The main difference is that crossing
branches in a cell can correspond to two basic sets in a union, or two basic sets
in an intersection. Treating correctly these cases will extend our algorithm to
the whole family of semi-algebraic sets. Again, we assume that the basic sets
are defined by inequalities, since restricting to (in the case of intersection) or
attaching (in the case of union) a curve segment to the output is not essentially
different from treating boundary curves of two dimensional components. In par-
ticular, the cell graph A that we obtain from the subdivision Alg. 3.1 will span
any components of lower dimensions.

Let S = S1 ∪ · · · ∪ Sk. Recall that a cell C carries the polynomials of Si if
∂Si∩∂C 6= ∅. For all the other parts Sj , it is either Sj ∩C = ∅ or C ⊆ Sj , hence
C does not interfere with the boundary curves of these components.

We define a regular cell to be a cell in which every attached polynomial is
regular (in the sense of Sect. 5.1) and conforms to any of the following properties:

1. There is only one set Si in C and at most one (self-)intersection.
2. There are two sets Si and Sj and one intersection between a branch of f ∈ Si

and g ∈ Sj .

These intersection points are also computed using the Bernstein solver [16] and
are isolated among the cells during the subdivision process.

Deciding if a region spans ∂S is done by checking whether it belongs to the
boundary of every Si that is carried by C, and consists again in checking signs
on the boundary.

To simplify the process, we rely on basic cells (cells that have branches of a
single basic set contributing to S) for determining the orientation of regions, i.e.
applying StartingPoint. This is a mild assumption, since in any case, bound-
ary curves away from crossings define basic semi-algebraic sets. This assumption
also simplifies the way we deal with cells like Fig. 1(c), since we only need to
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14 Angelos Mantzaflaris and Bernard Mourrain

know the connection inside the cell in order to traverse them and choose the
correct branch (for instance, in Fig. 1(c), discard the locally redundant curve).

We describe how we compute Pair in the above two cases:
• Case 1. There is a set of branches in the cell that intersect in one point only,
similar to 1(b). Since the corresponding basic sets are combined by intersec-
tion we search around ∂C for a part that attains positive sign on all involved
polynomials, to decide the Pair routine.
• Case 2. Two branches intersect, corresponding to basic sets combined by
union, for instance 1(c). We propagate the search to points around parts of ∂C
that satisfy any of the sign conditions implied by Si or Sj . When we reach a
part that is outside S, we return the last point found.

7 Implementation and demonstration

Our implementation is generic, working on abstract classes of cells, that define
internally a small number of predicates. We chose to use the open-source project
Mathemagix1, for the fast data structures it provides for polynomials and it’s
support to certified arithmetic primitives. Our code is written in the frame of
the shape module, which is the part of Mathemagix providing a variety of
geometric operations in two or three dimensions.

Solution of univariate and bi-variate systems of polynomial is performed using
the algorithm in [16], which is hosted in the module realroot. This module also
provides algebraic operations, Bernstein dense representation and a variety of
zero-dimensional system solvers. Hardware accelerated rendering of output has
been made possible using Axel2 platform.

A first example is given in Fig. 6, where we can see the cells deduced by the
subdivision process together with the defining curves (left), and the computed
regions (right) based on this cell graph. The boxes span only the actual boundary
curves of ∂S, but we also draw the full defining curves to give an idea of the
situation.

A precision of ε = 0.05 is used, that is, the cells are subdivided down to this
size, to obtain a smooth visual result. Note the two branches that are almost
tangent near the bottom left corner. They cause the subdivision to continue
further around this area until the branches are properly separated.

In Fig. 7 we compute a set S = {(x, y) : f1 > 0, f2 > 0} defined by a
degree 6 and a degree 32 polynomial. The domain of computation is [−1.5, 1.5]2

and precision set as before, ε = 0.05. The running time for this example is less
than one second. Our implementation is able to handle polynomials of quite
higher degree, up to 100 or more. Here the resulting regions contain holes, which
are correctly recognized. Finally, Fig. 7 presents the complementary set, Sc =
{(x, y) : −f1 > 0} ∪ {(x, y) : −f2 > 0} given by 4 connected components.

The purpose of the third example is to demonstrate how our implementation
can handle degenerate cases, namely cusps. We treat a single curve of degree 28,
1 http://www.mathemagix.org
2 http://axel.inria.fr

in
ria

-0
04

63
49

1,
 v

er
si

on
 2

 - 
30

 O
ct

 2
01

0



A Subdivision Approach to Planar Semi-algebraic Sets 15

Fig. 6. S = {(x, y) : f1 > 0, f2 > 0} with f1 = x4 + 2x2y2 + y4 + 3x2y − y3, f2 = −105y2x4 − 80y3 +

140x3y3 − 140y3x + 35y4 − 105y4x2 + 48y5 + 42xy5 − 42x2 + 35x4 − 7x6 + 32y + 84xy − 140x3y + 42x5y +

210x2y2 − 42y2 − 7y6 − 8y7 + 7 over the box [−1, 1]2.

having several cusps. This curve is taken from a real application in non-linear
computational geometry, namely the computation of the Voronoi diagram of
ellipses, see recent paper [9]. We compute all regions defined by the curve, in the
domain [−7, 3]2 and set precision to ε = 0.5. Detailed output is shown in Fig. 9.
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18 Angelos Mantzaflaris and Bernard Mourrain

Fig. 10. Semi-algebraic set defined by: f1 = −105y2x4−80y3 +140x3y3−140y3x+35y4−105y4x2 +

48y5+42xy5−42x2+35x4−7x6+32y+84xy−140x3y+42x5y+210x2y2−42y2−7y6−8y7+7, f2 = x2+3y2−1,

f3 = x6 + y2x4 − y4x2 − 2x4 − y6 + 2y4 + x2 − y2 + xy in domain [−3, 3]2.
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A Subdivision Approach to Planar Semi-algebraic Sets 19

Fig. 11. Topology of a degree 76 curve coming from the self-intersection locus of a 3D
surface.

Fig. 12. A (degree 12) apparent contour of 3D surface with cusps.
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20 Angelos Mantzaflaris and Bernard Mourrain

Fig. 13. Regions in the arrangement of three curves, of resp. degrees 32,4,4(top),
32,4,13 (bottom) computed using our algorithm on the underlying semi-algebraic do-
mains.
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