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Abstract. Following the translation validation approach to high-
assurance compilation, we describe a new algorithm for validating a
posteriori the results of a run of register allocation. The algorithm is
based on backward dataflow inference of equations between variables,
registers and stack locations, and can cope with sophisticated forms of
spilling and live range splitting, as well as many architectural irregular-
ities such as overlapping registers. The soundness of the algorithm was
mechanically proved using the Coq proof assistant.

1 Introduction

To generate fast and compact machine code, it is crucial to make effective use
of the limited number of registers provided by hardware architectures. Register
allocation and its accompanying code transformations (spilling, reloading, coa-
lescing, live range splitting, rematerialization, etc) therefore play a prominent
role in optimizing compilers.

As in the case of any advanced compiler pass, mistakes sometimes happen
in the design or implementation of register allocators, possibly causing incorrect
machine code to be generated from a correct source program. Such compiler-
introduced bugs are uncommon but especially difficult to exhibit and track down.
In the context of safety-critical software, they can also invalidate all the safety
guarantees obtained by formal verification of the source code, which is a growing
concern in the formal methods world.

There exist two major approaches to rule out incorrect compilations. Com-
piler verification proves, once and for all, the correctness of a compiler or compi-
lation pass, preferably using mechanical assistance (proof assistants) to conduct
the proof. Translation validation checks a posteriori the correctness of one run of
compilation: a validator, conceptually distinct from the compiler itself, is given
the intermediate code before and after a compilation pass, and verifies that they
behave identically using static analysis or (specialized) theorem proving tech-
nology [1–4]. For additional confidence, the validator can itself be mechanically
verified once and for all; this provides soundness guarantees as strong as compiler
verification and reduces the amount of compiler code that needs to be proved
correct, at the expense of weaker completeness guarantees [5].
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2 Silvain Rideau and Xavier Leroy

This paper describes a new algorithm to validate (in one pass) register allo-
cation plus splitting, reloading, coalescing, live range splitting, dead code elimi-
nation, and enforcement of calling conventions and architectural constraints on
registers. This algorithm is based on a backward dataflow analysis that refines
standard liveness analysis. It comes accompanied with a machine-checked proof
of soundness, conducted using the Coq proof assistant [6, 7]. Our algorithm im-
proves on an earlier algorithm by Huang, Childers and Soffa [8] because it is
mechanically proved and because it can deal with overlapping registers. (See
section 6 for a discussion.)

This work is part of the CompCert project, which aims at formally verifying
a realistic optimizing compiler for the C language, usable in the context of criti-
cal embedded systems [9]. Currently, CompCert follows the compiler verification
approach for its register allocation and spilling/reloading passes. While the veri-
fied register allocator is a state-of-the-art George-Appel graph coloring allocator
[10], the spilling strategy that was proved correct is very naive: it inserts spills
after every definition and reloads before every use of a temporary that could
not be allocated to a register, reserving some registers specially for this purpose
[11, section 11]. This strategy is adequate for a register-rich target architecture
such as the PowerPC, but more sophisticated strategies are needed to retarget
CompCert to a register-poor architecture like x86. Proving those sophisticated
strategies is a daunting task. The verified validation algorithm presented in this
paper offers an attractive alternative, reducing the amount of code that needs
to be proved and enabling the use of advanced spilling strategies. Moreover, we
can experiment with various register allocation algorithms and spilling strategies
without having to re-do any proofs.

The remainder of this paper is organized as follows. Section 2 outlines the
source and target languages for the untrusted register allocator and characterizes
the code transformations it is allowed to make. Section 3 describes our valida-
tion algorithm. Section 4 sketches its proof of soundness. Section 5 discusses
experience gained with a prototype implementation. Related work is reviewed
in section 6, followed by concluding remarks in section 7.

2 A Bird’s Eye View of Register Allocation and Spilling

2.1 Source Language

As input for register allocation, we consider the RTL intermediate language
of the CompCert compiler [11, section 6]. This is a standard Register Transfer
Language where control is represented by a control flow graph (CFG). Each node
of a CFG carries an abstract instruction, corresponding roughly to one machine
instruction but operating over variables x (also called temporaries) instead of
hardware registers. Every function has an unlimited supply of variables and
their values are preserved across function calls. Each variable has a machine
type comprising a register class (typically, int or float) and a bit size (8, 16,
32, 64).

in
ria

-0
05

29
84

1,
 v

er
si

on
 1

 - 
28

 O
ct

 2
01

0



Validating Register Allocation and Spilling 3

Control-flow graphs:
g ::= p 7→ I finite map

CFG nodes:
p, s ∈ N

RTL instructions:
I ::= nop(s) no operation

| op(op, ~x, xd, s) arithmetic operation
| load(κ,mode, ~x, xd, s) memory load
| store(κ,mode, ~x, xs, s) memory store
| call(τ, id, ~x, xd, s) function call
| cond(cond , ~x, strue , sfalse) conditional branch
| return(x) function return

Each RTL instruction carries the list of its successors s in the CFG. For ex-
ample, nop(s) performs no computation and continues at node s, like an uncon-
ditional branch. op(op, ~x, xd, s) applies the arithmetic operation op (taken from
a machine-dependent set of operators) to the values of variables ~x, stores the
result in variable xd, and continues at s. load(κ,mode, ~x, xd, s) loads a memory
quantity κ (e.g. “8-byte signed integer” or “64-bit float”) from an address deter-
mined by applying addressing mode mode to the values of registers ~x, stores the
result in xd, and continues at s. store(κ,mode, ~x, xs, s) is similar, except that the
value of xs is stored at the computed address instead. cond(cond , ~x, strue , sfalse)
evaluates the boolean condition cond over the values of ~x and continues at strue
or sfalse depending on the result. return(x) terminates the current function, re-
turning the value of x as the result. Finally, call(τ, id, ~x, xd, s) calls the function
named id, giving it the values of ~x as arguments and storing the returned result
in xd. The τ parameter is the type signature of the call, specifying the number
and types of arguments and results: this is used during register allocation to de-
termine the calling conventions for the call. The full RTL language, described in
[11], supports additional forms of function calls such as calls through a function
pointer and tail calls, which we omit here for simplicity.

RTL functions:
f ::= {name = id; typesig = τ ; params = ~x;

code = g; entrypoint = p}

An RTL function is defined by its name, its type signature, the list of param-
eter variables, a CFG, and a node in the CFG that corresponds to the function
entry point.

2.2 Target Language

The purpose of register allocation is to transform RTL functions into LTL func-
tions. LTL stands for “Location Transfer Language” and is a minor variation on
RTL where variables are replaced by locations. A location is either a machine
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4 Silvain Rideau and Xavier Leroy

register r or a slot S(δ, n) in the activation record of the function; δ is the byte
offset and n the byte size of the slot.

Locations:
` ::= r machine register

| S(δ, n) stack slot
Control-flow graphs:

g′ ::= p 7→ I ′

LTL instructions:
I ′ ::= nop(s) no operation

| op(op, ~̀, `, s) arithmetic operation
| load(κ,mode, ~̀, `d, s) memory load
| store(κ,mode, ~̀, `s, s) memory store
| call(τ, id, s) function call
| cond(cond , ~̀, strue , sfalse) conditional branch
| return function return

LTL functions:
f ′ ::= {name = id; typesig = τ ;

code = g′; entrypoint = p}

Most LTL instructions are identical to RTL instructions modulo the replace-
ment of variables x by locations `. However, function calls and returns are treated
differently: the locations of arguments and results are not marked in the call
and return instructions nor in the params field of functions, but are implic-
itly determined by the type signature of the call or the function, following the
calling conventions of the target platform. We model calling conventions by the
following three functions:

– arguments(τ): the list of locations for the arguments of a call to a function
with signature τ . The LTL code is responsible for moving the values of
the arguments to these locations (registers or stack slots) before the call
instruction.

– parameters(τ): the list of locations for the parameters of a function with
signature τ . On entrance, the LTL function expects to find the values of its
arguments at these locations, and is responsible for moving them to other lo-
cations if desired. parameters(τ) is usually identical to arguments(τ) mod-
ulo relocation of stack slot offsets.

– result(τ): the location used to pass the return value for a function with
signature τ .

2.3 The Effect of Register Allocation on the Code

The essence of register allocation is to replace variables by the locations that
were assigned to it in each instruction of the source RTL code, leaving the rest of
the instruction unchanged. For example, the RTL instruction op(add, x.y, z, s)
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Validating Register Allocation and Spilling 5

can become the LTL instruction op(add, EAX.EBX, EAX, s) if the allocator decided
to assign x and z to register EAX and y to register EBX at this program point.
However, this is not the only effect of register allocation on the code: it can also
insert or delete some instructions in the following cases.

– Spilling: a move from a register r to a stack slot is inserted at some point
after an instruction that assigns r, to save the result value on the stack and
free the register r for other uses.

– Reloading: symmetrically, a move from a stack slot to a register is inserted
at some point before a use of r.

– Coalescing: some variable copies op(move, x, y, s) present in the input RTL
code may disappear if the register allocator assigned the same location to x
and y. We model this deletion as replacing the op(move, . . .) instruction by
a nop instruction.

– Live range splitting: if the allocator decided to split a live range of a
variable x into several variables x1, . . . , xn connected by move instructions,
some of these moves may remain in the generated LTL code as newly inserted
instructions.

– Enforcement of calling conventions: additional moves may be inserted
in the generated LTL code to deposit arguments to function calls and return
values of functions in the locations dictated by the calling conventions, and
fetch function parameters and return values from these locations.

– Enforcement of architectural constraints: the register allocator can
also introduce move instructions to work around irregularities of the target
architecture: two-address instructions, special registers, etc.

– Dead code elimination: the register allocator can also eliminate side
effect-free instructions such as op and load whose result variables are never
used. Dead code elimination can be performed in a separate pass prior to
register allocation, but the availability of liveness information during register
allocation makes it convenient to perform dead code elimination at the same
time.

The validation algorithm we present next is able to cope with all these modifi-
cations of the code performed during register allocation. Other code transforma-
tions that sometimes accompany register allocation, such as rematerialization,
are discussed in section 7.

3 The Validation Algorithm

Like intraprocedural register allocation itself, the validator proceeds function per
function. It takes as input an RTL function f , the corresponding LTL function
f ′ produced by the untrusted register allocator, and a partial map ϕ from the
CFG nodes of f ′ to those of f .

The purpose of ϕ is to connect the computational instructions of the LTL
code back to the corresponding instructions in the original RTL. Since deleted
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6 Silvain Rideau and Xavier Leroy

instructions are not actually removed but simply turned into LTL nop instruc-
tions, ϕ also maps these nop instructions back to the corresponding deleted RTL
instruction. Finally, LTL move instructions that were inserted during register al-
location are not in the domain of ϕ, indicating that they are new. (All these
properties of ϕ are checked during validation.) We assume that the register al-
locator has been lightly instrumented to produce this mapping ϕ and give it as
additional argument to our validator.

The validation algorithm proceeds in two steps:

– A set of structural checks (section 3.1) verifies that the computational in-
structions in the two CFGs match properly, that their successors agree, and
that the ϕ mapping is consistent.

– A backward dataflow analysis (section 3.2) establishes that the same values
flow in both CFGs.

The combination of these two steps suffices to ensure that the two functions f
and f ′ behave identically at run-time (as proved in section 4).

3.1 Structural Checks

The main structural check is performed on each pair of RTL instructions and
LTL instructions that match according to the ϕ mapping. For each mapping
p′ 7→ p in ϕ, the validator calls the following check_instr predicate:

check instr(f, f ′, ϕ, p, p′) =
let I = f.code(p) and I ′ = f ′.code(p′) in
let s1, . . . , sn be the successors of I
and s′1, . . . , s

′
m be the successors of I ′ in

I and I ′ are structurally similar
and path(f ′, ϕ, si, s

′
i) for i = 1, . . . , n

An RTL instruction I is structurally similar to an LTL instruction I ′ if they
are identical modulo changes of successors and replacement of registers by loca-
tions, or if I is an op or load and I is a nop (dead code elimination). Table 1

Instruction I Instruction I ′ Condition

nop(s) nop(s′)

op(op, ~x, x, s) op(op, ~̀, `, s′) if ~x ∼ ~̀ and x ∼ `
op(op, ~x, x, s) nop(s′)

load(κ,mode, ~x, x, s) load(κ,mode, ~̀, `, s′) if ~x ∼ ~̀ and x ∼ `
load(κ,mode, ~x, x, s) nop(s′)

store(κ,mode, ~x, x, s) store(κ,mode, ~̀, `, s′) if ~x ∼ ~̀ and x ∼ `
call(τ, id, ~x, x, s) call(τ, id)

cond(cond , ~x, s1, s2) cond(cond , ~̀, s′
1, s

′
2) if ~x ∼ ~̀

return(x) return

Table 1. Structural similarity between RTL and LTL instructions
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Validating Register Allocation and Spilling 7

gives a more precise definition. The ∼ relation (pronounced “agree”) between a
variable x and a location ` means that x and ` agree in register class and in size.
For example, a variable of class int and size 32 bits agrees with the x86 register
EAX and the stack slot S(0, 4), but not with the register AX (wrong size) nor with
the register XMM0 (wrong class) nor with the stack slot S(0, 8) (wrong size).

Besides structural similarity, check_instr also verifies the consistency of the
successors of the two instructions I and I ′. Naively, if ϕ maps the program point
of I ′ to the program point of I, one could expect that the i-th successor of I ′ is
mapped to the i-th successor of I. In the example below, this is the case for the
left successors of the cond instructions.

condI

op load

cond I ′

op move

move

load

ϕ

ϕ
ϕ

/∈ Dom(ϕ)

/∈ Dom(ϕ)

This is not always the case because of the fresh move instructions that can be
inserted during register allocation. However, there must exist a (possibly empty)
path from the i-th successor of I ′ to a CFG node that is mapped to the i-th
successor of I. This path must consist of move instructions that are not in the
domain of ϕ. (See example above, right successors of the cond instructions.) This
condition is checked by the auxiliary predicate path:

path(f ′, ϕ, p, p′) =
false if the node p′ was previously visited;
true if ϕ(p′) = p;
path(f ′, ϕ, p, s′) if p′ /∈ Dom(ϕ) and f ′.code(p′) = op(move, , , s′);
false, otherwise.

Besides calling check_instr on each pair (p, p′) of matching program points,
the structural check pass also verifies that the two functions f, f ′ agree in name
and type signature, and that there exists a valid path (in the sense above) from
the entry point of f ′ to a point that maps to the entry point of f . (Typically,
this path corresponds to move instructions that shuffle the parameters of the
function.)

check structure(f, f ′, ϕ) =
f.name = f ′.name and f.typesig = f ′.typesig
and path(f ′, ϕ, f.entrypoint, f ′.entrypoint)
and for each p, p′ such that ϕ(p) = p′,

check instr(f, f ′, ϕ, p, p′)
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8 Silvain Rideau and Xavier Leroy

There is one last family of structural checks that we omitted here: enforce-
ment of architectural constraints on the uses of locations. In the case of a RISC
load-store architecture, for instance, argument and result locations must be hard-
ware registers for all instructions except move operations, for which one of the
source and destination can be a stack slot, but not both. CISC architectures
like the x86 tolerate stack slots as arguments or results of some operations, but
impose other constraints such as the result location being identical to the first
argument location in the case of two-address instructions. These checks can be
performed either during validation or as part of a later compiler pass; we omit
them for simplicity.

3.2 Dataflow Analysis

To show that the original RTL function f and the register-allocated LTL function
f ′ compute the same results and have the same effects on memory, we use a
dataflow analysis that associates to each program point p′ of f ′ a set E(p′) of
equations between variables and locations:

E(p′) = {x1 = `1; . . . ;xn = `n}

The semantic meaning of these equations is that in every execution of the code,
the value of xi at point ϕ(p′) in f is equal to the value of `i at point p′ in f ′.

There are two ways to build and exploit these sets of instructions: the forward
way and the backward way. For concreteness, assume that we have structurally-
similar op instructions at points p′ in f ′ and p = ϕ(p′) in f :

f.code(p) = op(op, ~x, x, s) f ′.code(p′) = op(op, ~̀, `, s′)

These instructions use ~x and ~̀ and define x and `, respectively.
In the forward approach, we assume given a set E of variable-location equa-

tions that hold “before” points p, p′. We can then check that {~x = ~̀} ⊆ E. If
so, we know that both op instructions are applied to the same argument values,
and since the operator op is the same in both instructions, they will compute
the same result value and store it in x and `. To obtain the equations that hold
“after” these instructions, we remove from E all equations invalidated by the
parallel assignment to x and ` (see below for a discussion), then add the equation
x = `.

In the backward approach, we are given a set E of equations that must hold
“after” points p, p′ for the rest of the executions of f, f ′ to produce identical
results and effects. We first check that the assignment to x and ` performed by
the two op instructions does not render unsatisfiable any of the equations in
E. If this check succeeds, we can remove the equation x = ` from E, since it
is being satisfied by the parallel execution of the two op instructions, then add
the equations {~x = ~̀}, since these are necessary for the two op instructions to
produce the same result value. This gives us the set of equations that must hold
“before” points p, p′.
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Validating Register Allocation and Spilling 9

In this work, we adopt the backward approach, as it tends to produce smaller
sets of equations than the forward approach, and therefore runs faster. (To build
an intuition, consider a long, straight-line, single-assignment sequence of instruc-
tions: the forward approach produces sets whose cardinal grows linearly in the
number of instructions, while the backward approach produces sets whose car-
dinal is only proportional to the length of the live ranges.)

Unsatisfiability and Overlap. We mentioned the need to check that assigning
in parallel to x and ` does not render unsatisfiable any equation in a set E.
An example of this situation is E = {y = `} where x 6= y. The LTL-side op
instruction overwrites ` with a statically-unknown value, while the RTL-side op
instruction leaves y unchanged. Therefore, there is no way to statically ensure
that y = ` after executing these two instructions. In register allocation terms,
this situation typically occurs if the allocator wrongly assigned ` to both x and
y, despite x and y being simultaneously live and not being copies of one another.

The determination of unsatisfiable equations is made more complicated by
the fact that LTL locations can overlap, i.e. share some bits of storage. Two over-
lapping locations contain a priori different values, yet assigning to one changes
the value of the other. Overlap naturally occurs with stack slots: for instance, the
slots S(0, 8) (eight bytes at offset 0) and S(4, 4) (four bytes at offset 4) clearly
overlap. Some processor architectures also exhibit overlap between registers. For
example, on the x86 architecture, the 64-bit register RAX contains a 32-bit sub-
register EAX, a 16-bit sub-register AX, and two 8-bit sub-registers AL and AH. All
these registers overlap pairwise except AL and AH. In summary, for two locations
`1 and `2 there are three mutually-exclusive possibilities:

– Equality (written `1 = `2): both locations always contain the same value.
– Disjointness (written `1 ⊥ `2): assigning to one location does not change the

value of the other.
– Partial overlap (written `1 # `2): the values of the locations are a priori

different, yet assigning to one affects the value of the other.

For stack slots, we have the following definitions:

S(δ1, n1) = S(δ2, n2)⇐⇒ δ1 = δ2 ∧ n1 = n2

S(δ1, n1) ⊥ S(δ2, n2)⇐⇒ [δ1, δ1 + n1) ∩ [δ2, δ2 + n2) = ∅

For registers, the precise definitions of ⊥ depends on the target architecture.
Armed with these notions of overlap and disjointness, we can formally define

the compatibility between a pair x, ` of destinations and a set of equations E,
written (x, `) ⊥ E:

(x, `) ⊥ E def= ∀(x′ = `′) ∈ E, (x′ = x ∧ `′ = `) ∨ (x′ 6= x ∧ `′ ⊥ `)

Note that if (x, `) ⊥ E holds, assigning in parallel the same value to x and ` will
satisfy the equation x = ` and preserve the satisfiability of all other equations
appearing in E. (See lemma 2 in section 4.)

in
ria

-0
05

29
84

1,
 v

er
si

on
 1

 - 
28

 O
ct

 2
01

0



10 Silvain Rideau and Xavier Leroy

transfer(f, f ′, ϕ, p′, E) =
if E = > then > (1)
else if ϕ(p′) = p then:

if f.code(p) = nop( ) and f ′.code(p′) = nop( ): (2)
E

if f.code(p) = op(move, xs, xd, ) and f ′.code(p′) = nop( ): (3)
E[xd ← xs]

if f.code(p) = op( , ~x, x, ) or load( , , ~x, x, ) and f ′.code(p′) = nop( ): (4)
if (x = ) ∈ E then > else E

if f.code(p) = op( , ~x, x, ) and f ′.code(p′) = op( , ~̀, `, ) (5)

or f.code(p) = load( , , ~x, x, ) and f ′.code(p′) = load( , , ~̀, `, ):

if (x, `) ⊥ E then (E \ {x = `}) ∪ {~x = ~̀} else >
if f.code(p) = store( , , ~x, x, ) and f ′.code(p′) = store( , , ~̀, `, ): (6)

E ∪ {x = `} ∪ {~x = ~̀}
if f.code(p) = call( , , ~x, x, ) and f ′.code(p′) = call(τ, ): (7)

if (x, result(τ)) ⊥ E and E does not mention caller-save locations
then (E \ {x = result(τ)}) ∪ {~x = arguments(τ)}
else >

if f.code(p) = cond( , ~x, , ) and f ′.code(p′) = cond( , ~̀, , ): (8)

E ∪ {~x = ~̀}
if f.code(p) = return(x) and f ′.code(p′) = return: (9)
{x = result(f ′.typesig)}

else if p′ /∈ Dom(ϕ) then:
if f ′.code(p′) = op(move, `s, `d, ): (10)

E[`d ← `s]

Fig. 1. The transfer function for backward dataflow analysis

The Transfer Function. In preparation for a backward dataflow analysis,
we now define the transfer function transfer(f, f ′, ϕ, p′, E) that computes the
set E′ of equations that must hold “before” program point p′ in order for the
equations E to hold “after” point p′. Here, E and E′ range over sets of equations
plus the symbolic constant > denoting inconsistency, or in other words the fact
that the analysis failed to validate the flow of data.

The transfer function is defined in figure 1. We now explain its various cases.
First, inconsistency propagates up, therefore E′ = > if E = > (case 1). Then,
we discuss whether the instruction at p′ in f ′ is mapped to a structurally-similar
instruction at p in f (i.e. ϕ(p′) = p) or is new (i.e. p′ /∈ Dom(ϕ)).

If ϕ(p′) = p, we examine the shape of the two similar instructions. For
instructions that perform no definitions, such as store and cond, we simply add
equations {xi = `i} to E, where x1, . . . , xn are the uses of the RTL instruction
and `1, . . . , `n those of the LTL instruction (cases 6 and 8). These equations
must be satisfied “before” for the two instructions to behave the same.

For instructions that define a variable x or a location `, such as op and load,
we first check compatibility between (x, `) and E, and return > if false; for in
this case there is no way to ensure that the equations E will be satisfied after
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Validating Register Allocation and Spilling 11

the assignments to x and `. Otherwise, we remove the equation x = ` because
the execution of the two instructions will satisfy it, then add equations {xi = `i}
before the uses as in the case of store or cond instructions.

The cases of call and return instructions are similar, except that the uses
and defs of these LTL instructions are not marked in the instructions (as in RTL),
but are implicitly determined from a type signature. Therefore, the uses and defs
of an LTL call(τ, . . .) are respectively arguments(τ) and result(τ) (case 7),
and the uses of an LTL return are {result(f ′.typesig)} (case 9). Moreover, not
all registers and stack slots are preserved across an LTL function call, but only
those marked as callee-save by the application binary interface used. The call
case therefore returns > if the set E of equations “after” contains any equation
x = ` where ` is caller-save: since the value of ` after the call is unpredictable,
this equation cannot be satisfied.

Two cases remain that correspond to RTL instructions that were eliminated
(turned into nop) during register allocation. Case 3 corresponds to one step of
coalescing: a move instruction from xs to xd was eliminated because xs and xd

were assigned the same location. In this case, any equation xd = ` holds “after”
provided that xs = ` holds “before”; and any equation x = ` with x 6= xd holds
after if only if it holds before. Therefore, the set E′ of equations “before” is

E[xd ← xs] def= {(xs = `) | (xd = `) ∈ E} ∪ {(x = `) | (x = `) ∈ E ∧ x 6= xd}

Case 4 corresponds to dead code elimination: an op or load instruction was
removed because its destination variable x is not used later. We check that this
is the case by making sure that no equation x = ` for some ` occurs in E,
returning E if so and > if not.

Finally, let us consider the case p′ /∈ Dom(ϕ), indicating that the instruction
at p′ was inserted during register allocation. By our assumptions on what an
allocator is allowed to do, this new LTL instruction must be a move (case 10).
Let `s be its source and `d its destination. By a similar reasoning as in case 3, an
equation x = `d is satisfied after the move if x = `s is satisfied before. Moreover,
the move preserves satisfiability of any equation x = ` such that ` ⊥ `d. However,
equations x = ` where ` # `d are not satisfiable because of overlap. The set E′

of equations before point p′ is, therefore:

E[`d ← `s] = > if there exists (x = `) ∈ E such that ` # `d

E[`d ← `s] = {(x = `s) | (x = `d) ∈ E} ∪ {(x = `) | (x = `) ∈ E ∧ ` ⊥ `d}
otherwise

The Dataflow Analysis and Its Uses. Armed with the transfer function of
figure 1, we set up backward dataflow equations of the form

E(p′) =
⋃
{transfer(f, f ′, ϕ, s′, E(s′) | s′ successor of p′ in f ′}

The unknowns are E(p′), the set of equations that must hold after each program
point p′ of the transformed function f ′. By convention on >, we take > ∪ E =
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12 Silvain Rideau and Xavier Leroy

E∪> = >. We then solve those equations by standard fixpoint iteration, starting
with E(p′) = ∅ for all points p′. (In our case, we reused a generic implementation
of Kildall’s algorithm provided by the CompCert compiler.)

Interestingly, this dataflow analysis generalizes liveness analysis, in the fol-
lowing sense: if {x1 = `1; . . . ;xn = `n} are the equations “after” inferred at a
program point p′ mapped to p by ϕ, then the first projection {x1, . . . , xn} is
the set of variables live in the original function f after point p and the second
projection {`1, . . . , `n} is the set of locations live in the transformed function f ′

after point p′.
The validator then considers the set E0 of equations “before ” the function

entry point:

E0
def= transfer(f, f ′, ϕ, f ′.entrypoint, E(f ′.entrypoint))

If E0 = >, an unprovable equation was encountered at some reachable instruc-
tion; validation therefore fails. Otherwise, we need to make sure that the equa-
tions in E0 always hold. The only variable-location equations that hold with
certainty are those between the RTL function parameters and the corresponding
LTL locations:

Eparams
def= {f.params = parameters(f ′.typesig)}

The validator could, therefore, check that E0 ⊆ Eparams and signal an error
otherwise. However, this check is too strong for C programs: it amounts to im-
posing Java’s “definite assignment” rule. Indeed, E0 ⊆ Eparams implies that all
variables live at the beginning of the RTL function are parameters of this func-
tion. This is not always the case in RTL code generated from valid C functions
such as:

int f(int x) {

int y;

if (x != 0) y = 100 / x;

if (x != 0) return y; else return -1;

}

Here, the local variable y is live at the beginning of f, yet the function is semanti-
cally well-defined. Performed on the corresponding RTL code and a correct LTL
register allocation of this code, the dataflow analysis of our validator produces
an E0 containing the equation y = ` for some `. (This equation arises from the
use of y in the “then” branch of the second “if”, combined with the lack of a
definition of y in the “else” branch of the first “if”.)

How, then, can we avoid rejecting such correct codes at validation time? We
take advantage of two very reasonable assumptions:

1. The semantics of RTL, like that of C, states that a program has undefined
behavior if at run-time it uses the value of an undefined variable.

2. When establishing the correctness of a run of register allocation via valida-
tion, we are only interested in RTL programs that have well-defined behav-
ior. For source programs with undefined behaviors, the register allocator can
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Validating Register Allocation and Spilling 13

produce arbitrary code. (Most compilers take this “garbage in, garbage out”
view of optimization.)

Now, an equation x = ` at a program point where x is guaranteed to be unini-
tialized can safely be considered as always satisfied: since the RTL program has
well-defined semantics, it is not going to use the value of x before defining it,
therefore the actual value of x does not matter, and we might just as well as-
sume that it matches the value of ` in the LTL code. The check performed by
the validator on the initial equations E0 is, therefore,

E0 ∩ f.params ⊆ Eparams

where the intersection E ∩ X between a set of equations E and a set of RTL
variables X is defined as

E ∩X def= {(x = `) | (x = `) ∈ E ∧ x ∈ X}

3.3 The Validation Algorithm

Combining the definitions of sections 3.1 and 3.2, we obtain the main validation
function:

check function(f, f ′, ϕ) =
if check structure(f, f ′, ϕ) = false, return false
compute the solutions E(p′) of the dataflow equations

E(p′) =
⋃
{transfer(f, f ′, ϕ, s′, E(s′) | s′ successor of p′ in f ′}

let E0 = transfer(f, f ′, ϕ, f ′.entrypoint, E(f ′.entrypoint))
check E0 6= > and E0 ∩ f.params ⊆ {f.params = parameters(f ′.typesig)}

Typically, this validator is combined with an untrusted implementation of a
register allocator regalloc, as follows:

validated regalloc(f) =
let (f ′, ϕ) = regalloc(f) in
if check function(f, f ′, ϕ) then return f ′ else abort compilation

4 Soundness Proof

There are two properties of interest for a translation validator. One is sound-
ness: if the validator says “yes”, the transformed code behaves identically to the
source code. The other is relative completeness: the validator never raises a false
alarm; in other words, it accepts all valid instances of the code transformation
considered. The completeness property is, necessarily, relative to a limited class
of program transformations such as those listed in section 2.3: otherwise, vali-
dation would boil down to checking semantic equivalence between two arbitrary
programs, which is undecidable.
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14 Silvain Rideau and Xavier Leroy

We have formally proved the soundness of the validation algorithm presented
in section 3. The proof was mechanized using the Coq proof assistant, bringing
near-absolute confidence. This section gives a simplified sketch of this soundness
proof. Relative completeness is difficult to even state formally, so we did not
attempt to prove it. Testing shows no false alarms (see section 5). We conjecture
that our validator is complete for all program transformations that can only
rename variables, insert move operations, and delete operations and loads, but
treat as uninterpreted (and therefore preserve) all other computations.

4.1 Dynamic Semantics

In preparation for stating and proving soundness, we need to give formal seman-
tics to the RTL and LTL languages. The full semantics of RTL is described in
[11, section 6]. Here, for simplicity, we outline the semantics of the fragment of
RTL that excludes function calls and returns, and therefore is given relative to
a single function f .

The semantics is presented in small-step style as a transition relation →
between execution states. States are triples (p, e,m) where p is the current pro-
gram point (a CFG node), e is a partial map from variables to values, and m is
the memory state: a partial map from (pointer, memory quantity) pairs to val-
ues. Values are the discriminated union of integers, floating-point numbers, and
pointers. (In the full semantics of RTL, the state contains additional components
such as the function currently executing and an abstract call stack.)

f.code(p) = nop(s)

(p, e,m)→ (s, e,m)

f.code(p) = op(op, ~x, x, s) op(e(~x)) = v

(p, e,m)→ (s, e[x← v],m)

f.code(p) = load(κ,mode, ~x, x, s) mode(e(~x)) = vad m(vad, κ) = v

(p, e,m)→ (s, e[x← v],m)

f.code(p) = store(κ,mode, ~x, x, s) mode(e(~x)) = vad m[(vad, κ)← e(x)] = m′

(p, e,m)→ (s, e,m′)

f.code(p) = cond(cond , ~x, s1, s2) s =

{
s1 if cond(e(~x)) = true

s2 if cond(e(~x)) = false

(p, e,m)→ (s, e,m)

Fig. 2. Transition rules for the simplified semantics of RTL

The transition relation → between states is defined by the rules of figure 2.
The rules discriminate on the instruction at the current program point p, then
update the three components of the state accordingly. The partial functions op,
mode and cond are the semantic interpretations of operators, addressing modes
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Validating Register Allocation and Spilling 15

and conditions as functions over values. We make no assumptions about these
interpretations, except that the move operation is the identity: move(v) = v.
The notation e[x← v] stands for the variable environment mapping x to v and
all other variables y to e(y). The initial state is (f.entrypoint, [f.params 7→
~vargs],minit) where ~vargs are the values of the arguments given to function f .
The final state is (p, e,m) where p points to a return instruction.

The semantics of LTL is essentially isomorphic to that of RTL, at least for the
fragment considered here. (The full LTL treats function calls somewhat differ-
ently from RTL, to reflect the passing of function arguments and results through
conventional locations.) LTL states are triples (p′, e′,m′) of a program point p′

in f ′, an environment e′ mapping locations to values, and a memory state m′.
The main difference between RTL and LTL is the update e′[`← v] of a location
` by a value v: it sets ` to v, but as collateral damage is also sets overlapping
locations `′ # ` to unspecified values:

e′[`← v](`) = v

e′[`← v](`′) = e′(`′) if `′ ⊥ `
e′[`← v](`′) is unspecified if `′ # `

Note that the values of stack locations S(δ, n) are stored in the location environ-
ment e′ and not in the memory state m′. This simplifies the proof. A separate
proof, detailed in [11, section 12], shows that accesses to stack locations can later
be reinterpreted as memory loads and stores within the activation record.

4.2 Equation Satisfaction

The crucial invariant of the soundness proof is the following: whenever control
reaches point p′ in the LTL function f ′ and matching point ϕ(p′) in the RTL
function f , the corresponding environments e and e′ satisfy the equations E “be-
fore” point p′ inferred by the validator. Equation satisfaction is written e, e′ |= E
and defined as

e, e′ |= E
def= ∀(x = `) ∈ E, x ∈ Dom(e) =⇒ e(x) = e′(`)

This predicate enjoys nice properties that are keys to the soundness proof. First,
satisfaction implies that the argument values to matching RTL and LTL opera-
tions are identical. (This lemma is used in the parts of the soundness proof that
corresponds to cases 3, 6, 7, 8 and 9 of the transfer function.)

Lemma 1. If e, e′ |= E ∪ {~x = ~̀} and e(~x) is defined, then e′(~̀) = e(~x).

Second, satisfaction is preserved by several kinds of parallel or unilateral
assignments. (For each lemma we indicate the corresponding cases of the transfer
function.)

Lemma 2 (Parallel assignment – cases 5 and 7). If e, e′ |= E \ (x = `)
and (x, `) ⊥ E then e[x← v], e′[`← v] |= E
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16 Silvain Rideau and Xavier Leroy

Lemma 3 (RTL assignment to a dead variable – case 4). If e, e′ |= E
and (x = ) /∈ E then e[x← v], e′ |= E

Lemma 4 (Coalesced RTL move – case 3). If e, e′ |= E[xd ← xs] then
e[xd ← e(xs)], e′ |= E

Lemma 5 (Inserted LTL move – case 10). If E[`d ← `s] 6= > and e, e′ |=
E[`d ← `s] then e, e′[`d ← e′(`s)] |= E

Finally, satisfaction holds in the initial states, taking ~x = f.params and
~̀= parameters(f ′.typesig) and ~v to be the values of the function parameters.

Lemma 6. If E ∩ ~x ⊆ {~x = ~̀}, then for any e′ such that e′(~̀) = ~v, we have
[~x 7→ ~v], e′ |= E.

4.3 Forward Simulation

The soundness proof takes the form of a forward simulation diagram relating
one transition in the RTL code to one or several transitions in the LTL code,
starting and ending in matching states. (The “or several” part corresponds to
the execution of move instructions inserted during register allocation.)

s1

s2

s′1

s′2

(RTL) + (LTL)

≈

≈

The relation ≈ between RTL and LTL states is defined as follows:

(p, e,m) ≈ (p′, e′,m′) def=
ϕ(p′) = p ∧ e, e′ |= transfer(f, f ′, ϕ, p′, E(p′)) ∧ m = m′

That is, the program points must match according to the ϕ mapping; the variable
and location environments must satisfy the dataflow equations “before” point p′;
and the memory states are identical.

Theorem 1 (Forward simulation). Assume that check function(f, f ′, ϕ) =
true. Let E(p′) be the solutions to the dataflow equations. If s1 → s2 and s1 ≈
s′1, there exists s′2 such that s′1

+→ s′2 and s2 ≈ s′2.

The proof of this theorem proceeds in two steps. First, we show that the
LTL code can make one transition from s′1 to some state (p′, e′,m′) that does
not necessarily match s2 (because ϕ(p′) can be undefined) but is such that
e, e′ |= transfer(f, f ′, ϕ, p′, E(p′)). This part of the proof proceeds by case
analysis on the RTL and LTL instructions pointed to by s1 and s′1, and exercises
all cases of the structural checks and the transfer function except the path check
and case 10. Then, the following lemma shows that we can extend this LTL
transition with zero, one or several transitions (corresponding to executions of
inserted move instructions) to reach a state matching s2.
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Validating Register Allocation and Spilling 17

Lemma 7 (Execution of inserted moves). Assume path(f ′, ϕ, p, p′) = true
and e, e′ |= transfer(f, f ′, ϕ, p′, E(p′)). Then, there exists p′′ and e′′ such that
(p′, e′,m) ∗→ (p′′, e′′,m) and ϕ(p′′) = p and e, e′′ |= transfer(f, f ′, ϕ, p′′, E(p′′)).

From the forward simulation theorem 1, semantic preservation for whole
programs (that is, agreement between the observable behaviors of the source
RTL code and transformed LTL code) follows easily using the general results of
[11, section 3.7].

5 Implementation and Experimental Results

We implemented the validation algorithm and a prototype register allocator
within the CompCert verified compiler [9]. Like all other verified parts of this
compiler, the validator is written directly in the Gallina specification language
of the Coq proof assistant, in pure functional style. Sets of equations are imple-
mented as persistent AVL trees, using the FSet standard library of Coq. This
implementation supports insertion and removal of equations in O(log n) time,
but the compatibility check (x, `) ⊥ E requires an O(n) traversal of the set E.
Whether a better data structure could support compatibility check in logarith-
mic time is an open question.

The Gallina implementation of the validator lends itself immediately to pro-
gram proof within Coq. Efficient Caml code is automatically generated from the
Gallina code using Coq’s program extraction facility. The generated Caml code
is then linked with a register allocator hand-written in Caml.

The prototype register allocator we experimented with is a standard Chaitin-
style graph coloring allocator, using George and Appel’s iterated register coa-
lescing algorithm to color the interference graph [10]. If some variables x were as-
signed stack slots and are used by instructions that demand a hardware register,
spill and reload instructions to/from fresh temporary variables are introduced
and register allocation is repeated. Two spilling strategies were experimented.
The first simply inserts a reload before every use of a spilled variable and a
spill after every definition. The second splits the live ranges of a spilled variable
at every definition and every use, in the hope that reloaded values can stay in
a register across several reloads in parts of the code where register pressure is
low. (This is a less aggressive form of splitting than that considered by Appel
and George [12].) Since we are targeting a register-rich architecture (the Pow-
erPC), spilling occurs rarely. To stress the validator, we reduced the number of
callee-save registers, forcing considerable spilling across function calls.

On the CompCert test suite, the validator performed as expected: it did
not raise any false alarms, but found several mistakes in our implementation of
the second spilling strategy. The compile-time overhead of the validator is very
reasonable: validation adds 20% to the time taken by register allocation and 6%
to the whole compilation time.

From a proof engineering viewpoint, the validator is a success. Its mechanized
proof of correctness is only 900 lines of Coq, which is quite small for a 350-line
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18 Silvain Rideau and Xavier Leroy

piece of code. (The typical ratio for Coq program proofs is 6 to 8 lines of proof
per line of code.) In contrast, 4300 lines of Coq proof were needed to verify
the register allocation and spilling passes of the original CompCert compiler.
Even this earlier development used translation validation on a sub-problem: the
George-Appel graph coloring algorithm was implemented directly in untrusted
Caml code, then followed by a verified validator to check that the resulting as-
signment is a valid coloring of the interference graph. Later, Blazy, Robillard
and Appel conducted a Coq proof of the graph coloring algorithm [13]. This is
a fairly large proof: in total, more than 10000 lines of proof are needed to com-
pletely verify the original CompCert register allocation and spilling passes. In
summary, the translation validation approach delivers a ten-fold reduction in the
proof effort compared with the compiler verification approach, while providing
soundness guarantees that are just as strong. Of course, the compiler verifica-
tion approach offers additional formal guarantees: not just soundness, but also
completeness (register allocation never fails at compile-time). In contrast, the
verified validator approach cannot rule out the possibility of a spurious compile-
time error.

6 Related Work

The idea of translation validation goes back at least to Samet’s 1975 Ph.D. the-
sis [14]. It was rediscovered and popularized by Pnueli et al. ten years ago [1].
Some translation validators proceed by generation of verification conditions fol-
lowed by model checking or automatic theorem proving [1, 15–17]; others rely on
less powerful but cheaper and more predictable approaches based on symbolic
evaluation and static analyses [2–5, 8, 18]. For another dividing line, some val-
idators are general-purpose and apply to several compilation passes [2] or even
to a whole compiler [3], while others are specialized to particular families of
optimizations, such as software pipelining [15, 19, 18], instruction scheduling [5],
partial redundancy elimination [4], or register allocation [8]. The present work
falls squarely in the cheap, specialized, static analysis-based camp.

The earlier work most closely related to ours is that of Huang, Childers and
Soffa [8]: a validator for register allocation that was prototyped within SUIF.
Their validator proceeds by forward dataflow analysis and global value num-
bering. A nice feature of their validator, which ours lacks, is the production of
meaningful explanations when an error is detected. On the other hand, their val-
idation algorithm was not proved sound. Such a proof appears delicate because
the semantic interpretation of global value numbers is difficult.

The general-purpose validators of Necula [2] and Rival [3] can also validate
register allocation among other program transformations. They proceed by sym-
bolic evaluation: variables and locations in the source and transformed code are
associated symbolic expressions characterizing their values, and these expres-
sions are compared modulo algebraic identities to establish semantic equivalence.
Symbolic evaluation is a very versatile approach, able to validate many program
transformations. On the particular case of register allocation and spilling, it ap-
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Validating Register Allocation and Spilling 19

pears no more powerful, but more costly, than the specialized techniques used
by Huang et al. and by us.

7 Conclusions and Future Work

The validation algorithm for register allocation and spilling presented in
this paper is simple enough to be integrated in production compilers and
efficient enough to be invoked on every compilation run. At the same time, the
mechanically-checked proof of soundness brings considerable confidence in its
results.

Our validator can be improved in several directions. One is to design a more
efficient data structure to represent sets of equations. As mentioned in section 5,
the simple representation of equation sets as AVL trees performs compatibil-
ity checks in linear time. A more sophisticated data structure might support
logarithmic-time operations over equation sets.

Another direction is to introduce additional forms of equations to enable the
validation of even more code transformations related to register allocation. For
example, rematerialization of constants [20] could probably be validated if we
were able to keep track of equations of the form x = constant . Likewise, the
parts of the function prologue and epilogue that save and restore used callee-
save registers to/from stack slots (currently treated in CompCert by a separate,
verified pass) could be validated along with register allocation if we had equations
of the form init(r) = `, where init(r) is a symbolic constant denoting the value
of callee-save register r on entrance to the function.
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