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Risk based motion planning and navigation in
uncertain dynamic environment

Chiara Fulgenzi, Anne Spalanzani, Christian Laugier and Christopher Tay

Abstract—Navigation in large dynamic spaces has been often
adressed using deterministic representations, fast updating and
reactive avoidance strategies. However, probabilistic representa-
tions are much more informative and their use in mapping and
prediction methods improves the quality of obtained results. The
paper proposes a new concept to integrate a probabilist collision
risk function linking planning and navigation methods with the
perception and the prediction of the dynamic environments.
Moving obstacles are supposed to move along typical motion
patterns represented by Gaussian Processes. The likelihood of
the obstacles’ future trajectory and the probability of occupation
are used to compute the risk of collision. The proposed planning
algorithm is a sampling-based partial planner guided by the
risk of collision. The perception and prediction information
are updated on-line and reused by the planner. The decision
takes into account the most recent estimation. Results show the
performance for a robotic wheelchair in a simulated environment
among multiple dynamic obstacles.

Index Terms—autonomous navigation, dynamic environment,
probabilistic planning, typical patterns, Gaussian Processes.

I. INTRODUCTION

AUTONOMOUS navigation in populated environments is
one of the most challenging topic in robotics research.

Unlike static or controlled environments where global planning
is suitable, dealing with highly dynamic and uncertain environ-
ments requires to address many difficult issues: the detection
and tracking of the moving obstacles, the prediction of the
future state of the world and the on-line motion planning and
navigation. The decision about motion must be related with the
on-line perception of the world, and must take into account
all the sources of uncertainty involved: perception accuracy,
modeling of the world, configuration of the robot.... In the last
few years, the problem of incomplete, uncertain and changing
information in the navigation problem domain has gained
even more interest in the robotic community and probabilistic
frameworks aiming to integrate and elaborate properly such
information have been developed.

The problem addressed in this paper is the autonomous
navigation in an uncertain and dynamic environment. The
purpose is to develop techniques allowing a robot to move
autonomously and safely in an environment which is not
perfectly known a priori and in which static and moving
obstacles are present. The task of the robot is to find and
execute a sequence of actions to reach a given position,
avoiding collisions with the obstacles. We aim to give a robot
the possibility to exploit the fact that pedestrians and vehicles
usually do not move at random in the given environment but
often engage in typical behaviors or motion patterns. The robot

may use this information to better predict the future position
of these moving obstacles and adapt its behavior accordingly.

A. Realistic Perception

We address particularly the problem of putting in relation
the decision and action process with a realistic perception
input, assuming that the robot has little a priori knowledge
about the static environment and about the surrounding moving
obstacles. We investigate the problems and limits inherent to
sensor perception and future prediction and focus on envi-
ronmental models that best express the changing information
and uncertainty coming from perception. We focus on the
following considerations:

– The uncertainty and incompleteness of the information
perceived by the robot is not negligible and some mean
to take it into account into the decision process should
be introduced;

– The fact that the environment is dynamic cannot be
ignored: the robot performance is influenced by the fact
that obstacles move in the environment and the robot
should be able to take safe and good decisions at anytime
and act promptly in the dynamic environment.

The unknown dynamic environment is perceived and mapped
by the robot during navigation. To properly map the uncer-
tainty and incompleteness of the sensing information regarding
both static and dynamic environments probabilistic represen-
tations are chosen. The static environment is mapped by an
occupancy grid [1]; moving obstacles are detected and their
dimension, position and velocity are estimated thanks to a
target tracking method

B. Probabilistic prediction: Gaussian processes for typical
patterns representation

In a given environment, pedestrians and vehicles often
engage in typical behaviors or motion patterns. Supposing
that the environment has been observed for enough time and
that the typical patterns have been learned, the information
gathered provides a more reliable prediction in the medium
and long term with respect to a simple linear and conservative
model [2], and an hint of the zones from where new obstacles
are likely to enter the scene. In our planner the typical
trajectories are represented by Gaussian Processes [3]. This
representation provides a prediction which is continuous in
the space and time dimensions. These issues, together with the
meaningful probabilistic framework with which the prediction
is generated, enhance the performance of the planner over
kinematics based prediction.
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C. Risk-RRT: motion planning based on the risk of collision

Risk-RRT (Risk Rapidly exploring Random Tree) is the new
approach we propose for planning and navigation based on the
following concepts:

1) Probabilistic risk of collision: we consider unknown
dynamic environments. The probabilistic risk of colli-
sion is computed on the basis of the probabilistic models
which map the static and the dynamic obstacles.

2) Risk guided search: the search of safe paths is guided
by the risk of collision. The search method is based on
the well known RRT framework [4].

3) Real-time decision update: the search algorithm is
integrated in an anytime planning and re-planning ap-
proach: the probabilities of collision and the decisions
of the robot are updated on-line with the most recent
observations.

Results show how the navigation algorithm deals with un-
known static environment and multiple moving obstacles with
uncertain trajectories.

This article is structured as follows : in Section II, related
works on navigation and planning are presented. Section III
describes the perception and prediction models used and how
the probabilistic risk of collision is evaluated (see point 1)
Section IV describes the planning algorithm developed (point
2) and its integration in real-time navigation strategy (point
3). Section V shows results for a two wheeled robot among
simulated pedestrians. Section VI discusses conclusions about
the work and Section VII present future work and perspectives.

II. RELATED WORKS

The aim of this work is to propose a method to navi-
gate autonomously among static and moving obstacles while
handling the uncertainty due to the robot’s perception of the
environment and the real time constraints due to the dynamic
and evolutive nature of the information. Let’s consider the
following classification of sources of uncertainty [5]: Con-
figuration Sensing (CS), Configuration Predictability (CP ),
Environment Sensing (ES) and Environment Predictability
(EP ) uncertainty. A real-world system is usually affected by
all four of these sources, but depending on the quality of the
mechanical system (sensors, actuators) and of the complexity
of the environment and the corresponding models, one or the
other source affects the navigation problem with more or less
importance.

The problem presents the following characteristics:

1) The state of the robot is known.
2) The future configuration of the robot deterministically

depends on the current configuration and the applied
controls.

3) The static environment is unknown. The occupation of
observed parts of the environment is probabilistically
estimated.

4) There are obstacles that move in the workspace and that
can appear during navigation.

5) The present state of moving obstacles must be estimated.

6) The future position of moving obstacles can only be
predicted according to an estimated motion model and
known typical environmental patterns.

We address the environmental sensing uncertainty ES (see
points 3-4) and environmental prediction uncertainty EP (see
points 5, 6). We will discard the configuration sensing CS and
configuration prediction CP uncertainty (respectively points 1
and 2). As the environment is dynamic, we need to address
also the time-constraint problem, making use of an anytime
algorithm. Table I synthesizes the properties needed (+) by
our navigation algorithm.

ES EP CS CP Dynamic
Needed Properties + + - - +

TABLE I
PROPERTIES NEEDED BY THE NAVIGATION ALGORITHM IN UNKNOWN

DYNAMIC ENVIRONMENTS.

The next paragraphs revise the main approaches developed
to face the various issues of the problem. Paragraph II-A
summarizes some of the main approaches used to represent
typical motion patterns; paragraph II-B presents some litera-
ture on navigation among obstacles presenting typical motion;
paragraph II-C synthesizes the state of the art in navigation in
dynamic environment; paragraph II-D presents the approaches
where probabilistic uncertainty has been taken into account.
Finally, paragraph II-E discusses the different methods and
introduces the contribution of this paper.

A. Typical motion models

The learning of typical patterns and the representation of
pattern based motion models has been the subject of extensive
study and many different approaches have emerged. Typical
trajectories are usually represented as a sequence of points
in the continuous state-space. Most approaches do not model
the time variable explicitly and assume that the points in
the sequence are regularly spaced in time. Sometimes, a
measure of the ”width” of the cluster is also included in
the representation [6], [7]. In [8] a probabilistic model is
proposed in which the width of the trajectory is represented
as the variance of the distance between the trajectories that
belong to the same cluster. Another probabilistic model of
width has been proposed by [9]: every point of the trajectory
prototype is modeled as a Gaussian and it is assumed that
all such Gaussians have the same covariance matrix. A novel
approach has been proposed by Tay in [10] where trajectories
are represented by Gaussian Processes. In this case both the
typical trajectory and its ”width” (mean and covariance) are
probabilistically estimated by a proper Bayesian framework.
The advantages of the Gaussian Processes representation is
that they present a solid probabilistic theory for the repre-
sentation of the mean and covariance of the different paths
and the future prediction. Also, trajectories are represented
by continuous functions, which allows to use different time
steps for prediction and for observation, thereby limiting the
necessary interpolations at the learning phase. Finally, the
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Gaussian representation allows the prediction to be very fast
and computationally cheap.

B. Navigation using pattern based motion models

Literature on navigation with pattern based motion models
is quite poor. An early work on navigation in changing
environments and in presence of typical motion suggests to
divide the state space in hazardous and shelter regions [5]. A
shelter designates an area in which the robot is guaranteed to
avoid collision, while an hazardous region designates an area
in which other obstacles can move. The cost of traversing an
hazardous or dynamic region directly corresponds to the risk
of encountering a moving obstacle.

In more complex environments however, this representation
may reveal too simplistic: there may be no shelter areas at all,
or they can be interleaved with the hazardous ones, so that
having a spatial and temporal hint of where moving object
actually are becomes a necessity.

In [11], the robot applies an A∗ algorithm to find a path on
a 2D space cost grid: the cost of passing through a cell at time
t is given by the probability of collision plus the probability
that a person covers the cell at that time. The algorithm
is applied in an office-like environment where each typical
pattern is represented by a fixed number of Gaussians that
specify the probability of a position at a stage of the trajectory.
Re-planning is performed whenever information changes. In
[12], the use of these motion models is shown to improve
the navigation performance in comparison with the case of a
model based only on target tracking.

However, the problem of A∗ and of all complete methods
is that the computational time depends on the environment
structure and obstacles: these methods are more adapted to
low dynamic environments, where the information does not
change frequently, the obstacles velocity is limited and the
robot can stop often and plan its future movements.

C. Motion Planning in dynamic environments

Navigation methods are usually classified in path planning
approaches, which look for a complete path from the initial
configuration to the goal and reactive approaches, which just
look for the next action of the robot. A global planner
is usually combined with a reactive obstacle avoidance or
trajectory deformation techniques [13], [14] when operating
in partially known and dynamic environments. Most of the
navigation methods described in literature rely on a deter-
ministic representation of the world. Pure globall planning
methods assume that the trajectory of the moving obstacle
is known a priori and skip the problem of uncertainty: either
the information gathered is assumed as true or a worst-case
approach is used. Under these assumptions, the global path
planning methods used in static environments are extensible
to the dynamic case just by adding the time dimension. This
is the case of optimal combinatorial algorithms, complete or
discretized ([15], [16], [13]) and sampling based algorithms
([17], [18], [19], [20], [4]).

In reactive techniques, either the obstacles are assumed to
be static and the algorithm relies on the high frequency of

iteration to face dynamic obstacles [21] or it is assumed that
the velocity is known and constant [22].

As a hybrid method, we can cite Anytime RRTs, proposed
by [23]: the algorithm plans a complete path at the beginning
using the classical RRT method [4]. If the path is invalidated
by the observations at execution time, the tree (which is
maintained in memory) is locally ”repaired”: the invalid nodes
are deleted, while new configurations are searched to repair the
tree from the root to the branches that have been isolated by the
unexpected obstacles. In Partial Motion Planning (PMP) [24]
the time constraints of the dynamic environment are explicitly
taken into account: a search tree is grown using a sampling
based algorithm and a state is added to the tree only if it is safe
with respect to the known trajectories of moving obstacles.
During execution of the partial path selected, another partial
path is elaborated starting from the end of the previous
elaborated path. In this way, PMP is able to give a safe partial
path at anytime.

D. Motion Planning with probabilistic uncertainty

While a probabilistic model requires much more informa-
tion than a deterministic one (since it is based on statistics),
it is also much more expressive and it is able to quantify the
risk of the robot in each configuration. The probabilistic rep-
resentation has been exploited so far only for low dimensional
problems.

The state of the system and the control space are discretized
and uncertainty is modeled as an action taken by a particular
agent called nature. This action influences the next state of
the system and is unknown. If the state of the system is
perfectly observable at each instant, the problem is referred
as a Markov Decision Process (MDP) Solving the problem
means finding the optimal strategy through a weighted graph
where nodes represent configurations and branches represent
actions. Each action is given a cost, which is function of the
action of nature and represents the risk that the action is not
successful. The problem can be solved applying graph search
algorithms, like A∗ and value iteration. If also the state of
the system is not perfectly observable, the problem can be
formulated as a Partially Observable MDP (POMDP). This
new class of problems is however much complex and harder
to solve.

When the a priori knowledge on the workspace and on
the obstacles motion model is too poor, the complexity of
the problem is too high to be addressed with a complete
algorithm in reasonable time. If the world is static, the robot
may interleave planning and execution phases, as it can stop
and has time to plan a new path when something different
or unexpected is perceived. In order to slim the re-planning
phase, some algorithms have been proposed to take advantage
of the previous planning phases. D∗, proposed in [25], is a
generalization of the A∗ in the case of partially known environ-
ments. The optimal path is found with the initial information;
if a change is detected, only the affected configurations are
considered and the optimal path is updated in a reduced time.

Only in more recent works sampling-based methods, which
are more suited to high dimensional problems, have been ex-
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tended to take into account probabilistic uncertainty: Particle-
RRTs [26], for instance, extend the RRT algorithm to an
environment with uncertain slipping conditions. A probabilis-
tic motion model is considered, dependent of the unknown
friction of the terrain. Each vertex of the search tree is a
cluster of the possible configurations of the robot sampled
from motion model, as in particle filters.

E. Contribution

Table II shows some of the main approaches in state of the
art, if they are able to represent (+) the various kind of uncer-
tainty or not (-) and their answer in terms of time constraint,
i.e. if they are adapted not only to unknown environments but
especially to navigation among dynamic obstacles. Optimal

ES EP CS CP Dynamic
Optimal D* + + - - -

MDP - + - + -
POMDP + + + + -

Sampling AnytimeRRTs - +- - - -
Based ParticleRRTs + - - + -

PMP - +- - - +

TABLE II
COMPARISON BETWEEN PLANNING METHODS.

methods take into account probabilistic uncertainty, but their
complexity scales badly with the dimensions of the environ-
ment. This can prevents them to be used among unknown
moving obstacles. Also, in our case, the dimension of the space
is initially unknown and changes during the task. Finally, the
discretization required, especially in the action space, is not
adapted to maneuver in cluttered environments. In particular
the POMDP formulation, which presents the largest range of
uncertainty representation, also requires the discretization of
the observation space, and exact or approximate algorithms
(see, for instance [27]) have been developed only for very low
dimensional scenarios.

Sampling-based methods operate in a continuous state
space, which is a more natural approach in real world
navigation. Also, they seem more adapted to the dynamic
environment and to handle time-constraints, as they are ex-
pressly dedicated to high dimensional spaces. However while
AnytimeRRTs and PMP both lack an explicit representation of
uncertainty, Particle-RRT is not easily extensible to dynamic
environments. The complexity of sampling is in fact exponen-
tial in the number of dimensions and in the dynamic case, the
dimension of the space to sample would be proportional the
number of possible states of the obstacles.

We need then to develop a new algorithm which is able to
represent and update uncertainty simultaneously, in real-time,
with respect to the changes of the environment. Among the
sampling-based path planning algorithm presented, the RRT
algorithm presents some important advantages:

– it easily handles non-holonomic constraints;
– it is incremental, which seems a natural requirement when

exploring an unknown environment.
We propose to use this algorithm as basis for the exploration of
the configuration-time space and introduce two basic novelties:

– the probabilistic representation of the configuration-time
space;

– the real-time updating of such a representation and the
associated decision process.

We propose to represent the uncertainty in the static en-
vironment by mean of an occupancy grid; the uncertainty in
the dynamic environment is instead given by the probabilistic
prediction of the moving obstacles, represented by a mixture
of Gaussians at each timestep.

III. PROBABILISTIC RISK OF COLLISION ASSESSMENT

The contribution of this paper can be summarized in the
three main points:

1) Probabilistic risk of collision
2) Risk guided search
3) Real-time decision update

This Section presents how the probabilistic risk of collision is
evaluated on the basis of the perception and prediction model
used (point 1). The following paragraph (§III-A) describes how
prediction is performed on the basis of the work developed
in [10] to use Gaussian Processes for representing typical
patterns. Paragraph III-B describes how the probability of
new obstacles entering the workspace is taken into account.
Paragraph III-C details the valuation of the risk of collision
associated to each configuration of the robot.
Points 2 and 3 will be detailed in Section IV.

A. Probabilistic Prediction using Gaussian Processes
A Gaussian Process is a generalization of the Gaussian prob-

ability distribution in function space. Given the set of Gaussian
distributed random variables {f(x1), f(x2), ..., f(xN )}, it can
be represented mathematically using the mean function and
covariance function [3]:

f(x) ∼ G(m(x), k(x, x′)) (1)
m(x) = E[f(x)] (2)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (3)

Where G(µ, Σ) represents a Gaussian distribution with mean
µ and covariance Σ. k(x, x′) is the covariance function with
domains from the input space. E[.] stands for expected value.
It is assumed that the observation of paths belonging to an
exemplar path are generated by a Gaussian process. The
movements in the x and y axes are assumed to be independent,
so each prototype is represented with 2 Gaussian processes,
one for each axis respectively. The mean of these Gaussian
processes is the mean function representing the path.
A single observation of a path is represented as two vectors
(x, y) of dimension D, where D is the number of positions
observed along the path. One vector represents the sequence
of positions along the Cartesian x axis and the other for the
corresponding sequence in the y axis. The likelihood based on
the N training sequences is then:

Lx =
N∏

n=1

G(xn|µx, Σx) (4)

Ly =
N∏

n=1

G(yn|µy, Σy) (5)
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Where xn and yn are vectors of x and y positions for the
nth observation. µx, µy , Σx and Σy are the mean vectors and
covariances of the x and y positions for the typical path. The
typical velocity is learned and noted in the trajectory prototype.
A single typical motion path is a D dimensional Gaussian
distribution. To represent several typical motion paths, a mix-
ture model is used. Considering K components, the likelihood
based on the N training data sequences is then:

P (x|z, µx, θ) =
N∏

n=1

K∏

k=1

G(xn|µx,k, C(θk))Znk (6)

P (y|z, µy, θ) =
N∏

n=1

K∏

k=1

G(yn|µy,k, C(θk))Znk (7)

In this equation, z is the vector of component weights, µ
the mean function of the Gaussian process, and C(θk) the
covariance matrix of the Gaussian process parameterized by
θ, the Gaussian process hyperparameters.

1) Prediction: The proposed model enables one to pose
questions in a probabilistic manner such as the distribution of
predicted trajectories. When performing path prediction, the
input is a partially observed path of dimension M < D. For
the case of a D dimensional Gaussian with x1 of dimension
M and x2 of dimension D −M :

P ′(x1, x2) ∼ G

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(8)

The probability of a partial path observation x1 is evaluated
by integrating over the D − M dimensions of the Gaussian
distribution to yield the marginal Gaussian distribution:

P ′(x1) ∼ G(µ1, Σ11) (9)

This probability is evaluated for each cluster k. The prediction
of a path x2 given observation x1 can be obtained by the
Gaussian conditional distribution for each cluster k:

P ′k(x2|x1) ∼ G
(
µ2 + Σ21Σ11(x1 − µ1),Σ22 − Σ21Σ−1

11 ΣT
21

)
(10)

The prediction obtained considering all the clusters is then
a Gaussian mixture: the weight wk of each cluster k is
given by the likelihood of the observation sequence x1 given
the considered Gaussian process normalized over the set of
clusters:

P (x1|Gk) = G(x1, µk,1, Σk,11) (11)

wk =
P (x1|Gk)∑

k′ 6=k P (x1|G′k)
(12)

where G(x1, µk,1,Σk,11) is the Gaussian Process k,
G(µk, Σk) evaluated for sequence x1 (see also equation 9).
In order to reduce the number of considered clusters, an
appropriate threshold is defined according to the Mahalanobis
distance between the observation sequence and each GP.

B. New obstacles entering the scene

As the obstacles are supposed to move along typical pat-
terns, they can enter the field of view only from points
along those patterns. Also, their motion model is defined by

the motion pattern itself. The probability of a new obstacle
entering in the workspace during a certain time interval can be
modeled as an homogeneous Poisson process. The probability
that at least one obstacle enters the scene is given by:

P [Nk(t2)−Nk(t1) ≥ 1] = 1− e−λkτ (13)

where Nk(t2) − Nk(t1) is the number of obstacles entering
from typical pattern k in time interval (t1, t2] where t2− t1 =
τ . The rate parameter λ, is the expected number of arrivals
per unit time. A different frequency coefficient λk is chosen
for each typical pattern k. These coefficients can effectively
be defined on the basis of the observations gathered in the
learning phase, and can change in time: for example it is
possible to consider different coefficients for different hours
during the day or different days in a week etc... The obstacles
are then supposed to move along one pattern or another with
probability proportional to the learned λk.

C. Probabilistic Risk of Collision

When searching for a safe path, the algorithm must de-
termine how much is the risk of collision of taking an action
u ∈ U when in configuration q(t1). This risk can be written as
P (coll(q(t1), u) = 1), the probability of collision and will be
referred as Pc in the rest of the paper. The risk is computed
on the basis of the probability of occupation of the surface
swept by the robot moving from q(t1) under control u in the
interval to [t1, t2[:

q(t2) = f(q(t1), u, τ) (14)

A =

t2∫∫

t1

q(t)dt (15)

where f(.) is the motion model of the robot and τ = t2−t1 is
the timestep. The risk of collision must take into account both
the static and the moving obstacles. We make the hypothesis
that moving obstacles and static obstacles cannot overlap, and
consequently that collision with a static obstacle and collision
with each one of the moving obstacles are mutually exclusive
events, which yields:

Pc = Pcs + (1− Pcs) · Pcd (16)

Pcd = 1−
M∏

m=1

1− Pcd(om) (17)

where Pcs is the probability of collision due to the static
obstacles, Pcd(om) is the probability of collision due to the
dynamic obstacle om and Pcd is the probability of collision
due to all the dynamic obstacles.

The static obstacles are represented in the occupancy grid
which is assumed to be stationary. Given M(t0) with t0 ≤
t1 the most recent estimation of the static map, the risk of
collision with a static obstacle is given by the max probability
over the subset S ⊂ M(t0) of cells which is the minimal
approximation of surface A:

S = {(x,y) ∈M(t0), (x,y) ∩A 6= ∅} (18)
Pcs = max

S
(P (Occ(x,y) = 1)) (19)
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The risk of collision with a moving obstacle om is approx-
imated by the probability that the area swept by the robot
intercepts the one swept by the obstacle in the considered
interval:

Pcd(m) = P (om(t) ∩Ae 6= ∅, ∀t ∈ [t1, t2[) (20)

The prediction om(t) is given by a weighted sum (mixture)
of Gaussian Processes, as explained in §III-A1. To do the
computation we consider the area Ae which is A enlarged
by the estimated radius of the obstacle. First, each Gaussian
component k is considered separately, then all the Gaussian
components are summed:

Pcd(m, k) =
∫

A

G(om(t), µk, Σk) (21)

Pcd(m) =
K∑

k=1

wmk · Pcd(m, k) (22)

where Pcd(m, k) is the probability of collision with the
obstacle m moving along pattern k; G(om(t), µk,Σk) is the
Gaussian Process representing pattern k, given the observation
history of object om (see also eq 9). The probability is
marginalized over the set of possible patterns to yield Pcd(m),
where wmk is the weight of the k component for object m (see
equation 12).

The probability of collision with new entering obstacles
is computed in the same way and then multiplied by the
probability that the obstacle enters the scene (see equation
13) before being used in equation 17.

In order to choose an appropriate path, the Risk-RRT
algorithm makes pass from the risk of collision of an action
to the risk of partial paths:

π(qN ) = {qn}n=0...N | qn+1 = f(qn, un, τ) (23)

Pc,π(qN ) = 1−
N∏

n=1

(1− Pc(qn)) (24)

Lπ(qN ) = 1− Pc,π(qN ) =
N∏

n=1

(1− Pc(qn)) (25)

where q0 is the position of the robot at the current time t0,
and π(qN ) represents the path from q0 to qN . Lπ(qN ) is the
”likelihood” or ”probability of success” of the path, and is
given by the probability of not encountering a collision along
the path.

IV. RISK RAPIDLY-EXPLORING RANDOM TREES

In this section, we present our partial motion planning
algorithm Risk-RRT and the collision risk assessment taken
into consideration by the algorithms.

At a given instant, the robot knowledge about the state of
the world is represented by:

1) An estimation of the state of the robot:

[x, y, θ, v, ω]T

where (x, y, θ) is the position and orientation of the
robot in the plane and (v, ω) are its linear and angular
velocity respectively.

2) A set of Gaussian Processes which represent the typical
patterns of the obstacles:

G = {Gk}k=1...K

with K the total number of known typical patterns.
3) A goal position:

g = [x, y]T

4) An occupancy grid which represents the structure of the
static environment around the robot according to the
previous observations:

M(t) = {pocc(x, y)}x∈X,y∈Y

where pocc is the probability of occupation, X and Y
are finite sets representing the discrete coordinates of the
cells of the grid.

5) A list of moving objects their estimated position, veloc-
ity and previous observations:

O = {om}m=1...M = {[x, y, vx, vy]Tm,Hm}m=1...M

where Hm represents the history of observation related
to obstacle om.

The occupancy grid and the state of the robot are estimated by
a Simultaneous Localization And Mapping algorithm based on
scan matching; the position, velocity and track of the obstacles
is estimated thanks to a Multiple Target Tracking algorithm
[28]. The typical patterns are supposed to have been learned
by an off-board platform before navigation and to be known
by the robot.

A. The Risk-RRT algorithm

The motion planning algorithm proposed is described in
Algorithm IV-A. It combines a task dedicated to perception
(of static and moving obstacles), a task for planning partial
but safe trajectories and another one for navigating along
planned safe trajectories. In practical, navigation and planning
are done in parallel. The prediction done for forecasting the
position of moving obstacles in the near future can be done by
different ways, depending on the knowledge the robot has on
the environment. If the robot does not have any model of the
future, it can base its planning a short-term prediction based
on conservative behavior [29]. If the robot has models of the
future, it can anticipate the behavior of the obstacles by a long-
term prediction. Section III-A describes Gaussian Processes
based method for predicting moving obstacles trajectories.
The selection of the best trajectories is done by computing
a probability of collision between the robot following these
trajectories and the moving obstacles following the predicted
trajectories.

In Fig. 1, the tree of trajectories generated by the algorithm
is shown at 4 instants during navigation. The initial position of
the robot is at the left bottom corner, while the goal is at the
right top corner. At the beginning, the most likely paths are
explored in the two possible directions and the most promising
one is chosen: the more promising path is drawn in red in
Fig.1(a). Fig.1(b) shows the tree after some steps: the tree has
been updated: the branch in the right direction has been cut
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7

Risk-RRT
1: procedure RISK-RRT
2: trajectory = empty
3: Tree = empty
4: Goal = read()
5: t= clock()
6: while Goal not reached do
7: if trajectory is empty then
8: brake
9: else

10: move along trajectory for one step
11: end if
12: observe (X);
13: delete unreachable trajectories(T, X)
14: observe(Map, movingobstacles)
15: t= clock()
16: predict moving obstacles at time t, ..., t + Nτ
17: if environment different then
18: update trajectories(T,Map,moving obstacles)
19: end if
20: while clock()< t + τ do
21: grow trajectories with depth<= N in T
22: end while
23: trajectory = Choose best trajectory in T
24: t = clock()
25: end while
26: brake
27: end procedure

as it became unreachable and the tree has been grown a little
toward the promising direction. Fig.1(c) and (d) show the tree
and the new partial path found when a bigger portion of the
space is visible.

B. Risk guided search

This paragraph explains how the configuration-time space
is searched and how a path is chosen. These operations
correspond respectively to line 21 and line 23 in Algorithm
IV-A.
The search algorithm has his basis in the well known Rapidly-
exploring Random Tree algorithm [4]. The configuration-time
space is searched randomly and a tree T is grown from
the initial configuration all over the configuration space. The
algorithm chooses a point P in the configuration space and
tries to extend the current search tree toward that point. In
the classical RRT algorithm, P is chosen randomly in the
free configuration space. In our problem there is little or no
knowledge on the structure of the environment: P is sampled
from the rectangular region between the robot and the goal
enlarged by some amount to take into account for possible
local minima. P can be in an occupied or in an unknown
zone. At the beginning, and then once on 100 times, the goal
is chosen; this bias, which has been empirically set, speeds up
the exploration toward the goal. The node chosen for extension
is the most promising node: all the nodes in T are weighted
taking into account the risk of collision and the estimated

(a) (b)

(c) (d)

Fig. 1. Risk-RRT: Growing tree evolving in time.

length of the total path:

w̃(qN ) =
N
√

Lπ(qN )
dist(q0, qN , P )

(26)

w(qN ) =
w̃(qN )∑

q w̃q
(27)

At numerator, the likelihood of π(qN ) is normalized with
respect to the length of the path N ; at denominator, dist(.)
is the sum between the length of the path from the root q0 to
the node qN (which is known) and an estimation of the length
of the path to P : this estimation is an underestimate; in case
of car-like robot, we have chosen a maximum steering plus
straight line trajectory. The weights are normalized over the set
of nodes in the tree (27). The node to grow next is then chosen
taking the maximum over the weights or drawing a random
node proportionally to the weight. In our implementation we
choose the second approach which appeared to be more robust
to local minima. The new node q+ is obtained applying an
admissible control from the chosen node q toward P . The
weight of q+ is computed. If w(q+) ≥ w(q) the tree is grown
again from q+ toward P otherwise another point is sampled
from the space. When the available time for planning is over,
the best partial path with the highest weight for the goal is
retrieved and passed to execution.

C. Real-time decisions update

This paragraph explains how the search tree is updated and
how the information coming from perception is integrated in
it (see respectively lines 13 and 18 of Algorithm IV-A).
In a dynamic environment the robot has a limited time to
perform planning which depends on the time-validity of the
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8

models used and on the moving objects in the environment.
The conditions used for planning could be invalidated at
execution time: for example an obstacle could have changed
its behavior or some new obstacle could have entered the
scene. The idea of Partial Motion Planning [24] is to take
explicitly into account the real-time constraint and to limit
the time available for planning to a fixed interval. After each
planning cycle, the planned trajectory is generally just a partial
trajectory. Execution and planning are done in parallel: while
the robot moves a step along the planned partial path, the tree
is updated with the information coming from the perception
algorithm, the tree is grown and the new partial path is passed
for execution when the timestep is over. In order to do this,
the expected state of the robot at next step becomes the root
of the new search tree. If there is no error in the execution
of the robot, the robot expected state is a node along the best
partial path already explored. In this case, the subtree of this
node becomes the current search tree. If there is some error
and the robot is far away of the configuration it is expected
to reach, the new tree is constituted only by the new expected
position and search must begin from scratch.
The updating step is done in two phases. The likelihood of
each partial path (see equation 25) can also be expressed
as the multiplication of the independent static and dynamic
components:

Lπ(qN ) =
N∏

n=0

(1− Pcs(qn)) ·
N∏

n=0

(1− Pcd(qn)) (28)

this two values are both stored in the nodes, so that they
can be updated separately and only when needed. When
an observation comes in from the perception algorithm, the
planner checks for differences in the observed grid at first and
in the tracked obstacles then. The incoming grid and the old
one are subtracted; where a difference is found, the Pcs of the
corresponding node is updated. For the moving obstacles, the
algorithm checks for difference in the weights wm, k, and the
Pcd of the affected nodes is correspondingly updated. The tree
is grown in the rest of available time.
When the static environment is known and free of moving ob-
stacles, the algorithm degenerates to a classical RRT approach:
the likelihood of the nodes is either 0, when the corresponding
space is occupied, either it depends only on the distance to the
goal, which is the case for the deterministic RRT algorithm.
Also, the new observations do not give any new information,
so there is no need to update the tree and the search can
continue till the goal is reached.

V. EXPERIMENTS AND RESULTS

Methods presented above have been validated in an indoor
environment using described Section V-A. Section V-B illus-
trates the way the GP predicts the behavior of the obstacles
in the near future, Sections V-C and V-D give some results
based on real data perception.

A. Experimental Setup
Methods presented above have been validated in simulation

using real pedestrian trajectories. A dataset of people trajec-
tories in the entrance hall at INRIA Rhône-Alpes has been

Fig. 2. Trajectory dataset in the hall at INRIA Rhône Alpes

Fig. 3. Learned GP means corresponding to the trajectory dataset

recorded using a fixed camera (see Figure 4(b)). Trajectories
have been collected during a week at different moments of the
day obtaining more than 3000 observation sequences. People
are tracked on the images and their position is projected to
the ground plane using the omography matrix of the camera.
After filtering those sequences which where too short (less
than 50 observations) or too long (more than 250) a total
of 2048 sequences were kept, which are shown in Figure 2.
Figure 3 shows the corresponding set of GP that have been
learned using the dataset. Section V-B shows how prediction
is performed. We made experiments of our algorithm using
the perception possibilities and the kynematic model of the
wheelchair robot in figure 4(a). The robot is a two wheeled
robot that can turn on the spot and that is equipped with
encoders on the two wheels and a laser range finder SICK,
parallel to the ground, positioned in the front side at an
height of 9cm. Results have been obtained using the cycabtk
simulator ([30]). This allows to analyse the performance of
Risk-RRT method in many conditions with a chosen number of

Fig. 4. (a) The wheelchair robot; (b) the hall at INRIA Rhône Alpes: view
from fixed camera.
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obstacles. The map of the hall has been acquired off-line with
the real wheelchair robot and inserted in the cycabtk simulator
([30]). The recorded trajectories have been linearly interpo-
lated to simulate people moving along them. The simulated
pedestrians move along trajectories that are randomly selected
from the recorded dataset. Section V-C shows simulation re-
sults obtained when perception, localization and execution are
supposed to be perfect. This allows to alalyse the performance
of our method alone. Static obstacles are represented by known
polygons, while moving obstacles are represented by circular
objects. The current state of the moving obstacles is known,
while their future trajectory is predicted on the basis the
learned GPs. The robot moves in the environment, looking
for a randomly drawn goal.
Section V-C shows the results obtained in the simulator when
the mapping, pedestrian detection and tracking, localization
algorithm have been implemented. A fast control algorithm
based on a non-linear feedback law has also been implemented
to efficiently track the planned trajectory. Tests have been
running into the Cycabtk simulator and on going work aims
at having experiments with the real robot. A map of a priori
known ”virtual” obstacles have been considered. The virtual
obstacles represent forbidden or untraversable areas that are
impossible to detect with the sensor equipment (descending
stairs, tables, windows and mirrors). The virtual obstacles are
summed to the perceived map in the planning phase, while
they are ignored by the mapping and localization processes.
The goals are designed by the user at anytime. Moving
obstacles are simulated pedestrians which are detected and
tracked using the laser observations. Examples and results are
shown in Section V-D.

B. Prediction of moving obstacles

Figure 5 shows the Gaussian mixture prediction at 4
different timesteps. Column (a) shows the environment, the
observation points (red dots) and the prediction obtained.
The gray lines show the means of all the typical patterns
of the environment; the colored lines are the patterns that
are retained for prediction after the gating. The ellipses
represent the Gaussian mixture predicted for the next 10s
with a discretization of 0.5s. The center of one ellipse is on
the mean of the Gaussian component of the prediction and
its radius is equivalent to one time its covariance. Column
(b) shows the estimated likelihood for the GPs retained for
prediction. In the first timestep all the trajectories originating
at the door where the pedestrian is observed are likely. The
prediction gets more precise as the history of observations
gets longer: after some more observations, only the patterns
going toward the right are retained and in the following
timesteps the red path becomes prominent with respect to the
others.

C. Risk-RRT Results on INRIA hall

We simulated the robot navigating among circular obstacles
with trajectories that are chosen randomly from the trajectory
dataset. The static environment is supposed to be known and

(a) (b)
Fig. 5. Trajectory prediction based on Gaussian Processes representation:
Fig.s(a) show the considered observation history (red dots) and the prediction
obtained for 15 timesteps ahead: circles are centered on the mean of each
Gaussian component and have radius equal to 1 time the standard deviation.
Fig.s(b) show the likelihood corresponding to each GP in the mixture. Only
likelihoods bigger than 0.05 are shown.

the perception of the robot is simulated. The timestep chosen
is of 0.5s. Figure 6 shows some snapshots from the obtained
results. The robot is the green rectangle and perceives the
circular obstacle (red full point). The goal of the robot is the
black cross on the right. Colored lines represent the portion
of the GPs means retained for prediction at each time from
the nearest point to the last observation to the end. Colored
ellipses represent the prediction, as explained in Figure 5. The
tree explored by the robot is drawn by the blue lines. Lighter
blue means lower likelihood. The red line is the path chosen
each time. Fig. 6(a) shows the planning at the first timestep,
when no obstacle has been detected yet: the path leads straight
toward the goal. In Fig. 6(b) an obstacle has been detected for
the first time. Many patterns are possible: the probabilities of
collision on the search tree are modified and the most likely
path now gets the robot further from the obstacle. In Fig. 6(c)
the pedestrian is believed to go toward the bottom part of the
environment: the robot plans to drive directly toward the goal.
Few timesteps after (Fig. 6(d)) the prediction is modifed: the
pedestrian will go toward the right. The robot finds itself on
the trajectory of the pedestrian: the trajectory searched are not
safe. After some timesteps, a new solution is found: in Fig. 6(e)
the robot plan is to get away from the path of the pedestrian
before going toward the goal. In Fig. 6(f) the robot approaches
the goal from upwards to avoid crossing the trajectory of the
obstacle.
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(a) (b)

(c) (d)

(e) (f)
Fig. 6. The robot moves in a simulated environment with a moving obstacle. The prediction of the obstacle is given by a Gaussian mixture based on the
pre-learned Gaussian processes (green). The exploration tree maintains an estimation of the likelihood of the path that is adapted to the incoming observation.

Figure 7 shows snapshots of this environment where the robot
(green rectangle) aims to reach a goal (black cross) while
avoiding pedestrians crossing the hall (colored points). For
clarity, the predicted covariance and the search tree are not
shown; only the mean of the Gaussian elements with proba-
bility bigger than 0.05 are shown: the prediction corresponding
to a pedestrian is of its same color; the color intensity is
proportional to the weight of the element in the Gaussian
mixture. In this examples, there are 6 pedestrians in the
environment. In each line an avoidance maneuver is shown. In
Fig.7(a) the robot plans a trajectory to go toward the goal and
avoid P1. In Fig.7(b) the prediction of P2 and P3 is changed,
which oblige the robot to an avoiding maneuver. In Fig.7(c) the
robot passes the crossing point safely, after that the obstacles
have passed, and can go straight to the goal. Similarly, in
Fig.7(d) the robot plan a trajectory which avoids P1; after the
change in prediction of P2, the robot changes its plan and lets
the obstacle pass (Fig.7(e) and (f)) before directing toward the
goal.

Table III shows results obtained making the robot reach 100
goals in the INRIA hall environment and simulating various
number of pedestrians. Due to the randomized nature of the
planning algorithm, experiments have been repeated several
times, and the average results are shown. Pedestrians move

independently of the robot and of each other, they follow
passively a predefined trajectory. A collision is detected when
the distance between the rectangular robot and the position of
the pedestrian is less than 30cm. All collisions were detected
when the robot is stopped: the robot does not collide with static
obstacles and the collisions with moving obstacles happen
when the robot is already stopped (third column). The number
of passive collisions augments with the number of obstacles
in the environment. This is mostly due to the dimensions and
the physical capabilities of the robot, which can find itself
trapped by multiple moving obstacles or between a moving
and a static obstacle with the impossibility to quickly move
backward or accelerate or steer as much as necessary to avoid
collision. In this case the safest maneuver is to stop as soon
as possible. It is possible to notice that the obstacles simply
follow their trajectory ignoring the presence of other obstacles
and of the robot. In a real environment one could argue that
the detected collisions would be avoided by the obstacles and
that in general a collision means that the robot ”bothered” the
obstacle along its preferred trajectory. Also, a collision can be
caused by the position of a goal near a door and the sudden
appearance of a pedestrian. Tests done giving to the robot
littler dimension or augmenting the maximum steering angle
or just allowing a bigger ending distance from the goal show

in
ria

-0
05

26
60

1,
 v

er
si

on
 1

 - 
19

 O
ct

 2
01

0



11

(a)

(b)

(c)

(d)
Fig. 7. Partial trajectories avoiding moving obstacles in INRIA Hall.

a sensible reduction in the number of collisions. The fourth
column of the table indicates the mean time needed for the
robot to accomplish the navigation task; last column indicates
the percentage of this time relative to the case where there are
no moving obstacles in the environment.

D. Navigation Results

To test the navigation strategy, the localization and mapping
algorithm, the pedestrian detection and a control law for
the wheelchair have been implemented. The laser sensor, the
odometry and the execution error are simulated in Cycabtk
[30]. The perception process, the planning process and the
execution process are developed respectively as independent
modules, which run in parallel and at different frequencies.
Information is passed from one module to the others using
a shared memory system (Hugr, see [30]). The perception

# pedestrians # collisions # collisions
with robot
vel.6= 0

total time (s) % time

0 0 0 663.5 1
4 1.5 0 754 1.14
6 2.3 0 951.5 1.43
8 3.8 0 1094.8 1.65
10 6.3 0 1187.6 1.79
12 7.4 0 1240.7 1.87

TABLE III
RESULTS FOR 100 GOALS REACHED AND DIFFERENT NUMBER OF

PEDESTRIANS. AVERAGE RESULTS WITH GP PREDICTION, OBTAINED
REPEATING THE EXPERIMENT 10 TIMES.

module concerns the localization and mapping algorithm and
the pedestrian detection and tracking algorithm: the algorithms
described and developed by Vu in [28] have been used. The
perception module runs at about 10Hz. The planning takes
in input the static map, the tracked obstacles, the estimated
position of the robot and the goal defined by the user. The
localization information is used to update the search tree and
reset it if the robot is far from what expected. After performing
prediction on the basis of the known GPs, a trajectory is
elaborated in the remaining time and passed in output. We
imposed a frequency of 2Hz to the planning module. The
execution process works at high frequency (∼ 50Hz). The
localization and the odometry data are used to estimate the
current position. The last trajectory planned is interpolated to
extract the desired pose of the robot at each instant. The error
is used by a non-linear feedback law to choose the best control.
Fig. 8 shows a screenshot of the cycabtk simulator (on the left)
and the visualization of the map and the planned trajectory: the
robot is in green; the gray represents unknown areas, the black
and white are respectively free and occupied area. Tracked
pedestrians are represented as red circles, along with their
velocity vector. Fig. 9 shows screenshot during navigation in a

Fig. 8. Screenshot from simulation results: on the left the cycabtk simulator,
with the entrance hall environment, the wheelchair and a pedestrian; on the
right, the map and planned trajectory.

scenarion with 3 moving obstacles. Fig. 10 shows the reference
trajectory and controls versus the obtained trajectory. We can
see that the reference trajectory is not continuous: this is due to
the reinitialization of the search tree caused by localization and
execution error during navigation. In this example, the robot
stops to let an obstacle pass (see t = 25) before continuing
toward the goal. The results obtained are promising: even with
localization and execution error, and with lower computational
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(a) (b) (c) (d) (e) (f)
Fig. 9. Navigation example: the robot stops to let an obstacle pass (c-d) and avoids a second one (d-e-f).
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Fig. 10. Reference (blue) versus real (red) values: (a) robot trajectory; (b) linear velocity; (c) angular velocity.

power available, the planner gives in output a safe trajectory.
With respect to the results presented in the previous section we
observed that the robot tends to brake and stop more often. In
our opinion this is due to the localization and execution error
on one side and on the low computational power available:
all the processes (perception,prediction, planning, control, and
sensor simulation) run on the same CPU, which shortens the
time available for planning: the resulting search tree is often
quite poor. Also we observed collisions due to miss detections
of the pedestrians approaching from outside the field of view
of the laser.

VI. CONCLUSIONS

In this article, we proposed a way to integrate motion
prediction uncertainty in a partial motion planning. Results
highlight the possibility and importance to take into account
the knowledge about the behavior of moving obstacles such
as pedestrians. Predicting the obstacles position on the basis
of the typical patterns enables the robot to rely on a good
knowledge of the environment configuration in the near future.
The uncertainty of the prediction of the position of the objects
has a finite dispersion and the robot has a more precise idea
of where new obstacles may come from. From the point
of view of navigation, this means that the robot can plan
longer paths, the necessity of re-planning is reduced and
better global performance are observed (shorter global path,
shorter time to reach the goal). However, it is worth being

noticed that the algorithm does not depend on the way motion
prediction is done and if no typical pattern is observed or
known by the robot, a prediction based on Kalman filter with a
conservative hypothesis is used. Complete work using motion
prediction based on Kalman filters and Hidden Markov Models
is described in [31].

VII. PERSPECTIVES

Our algorithm has been tested on many scenarios in simu-
lated environments reproducing observed typical behaviors in
real environments. The perception used for learning typical
patterns was done on an off-board dedicated architecture and
the obtained information is strictly correlated with the con-
sidered environment. Also, the information gathered discards
correlation between the movements of multiple obstacles.
On going work deals with real world experiments with the
wheelchair. In future work we would consider the case where
the behavior prediction depends not only on typical patterns,
but also on the configuration of other obstacles and the robot
itself. We plan to take into consideration interaction between
people and to give the robot this information to perform better
prediction and compliant motion.
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