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Abstract—Smart sensors arrays (SSAs) provide a flexible ap-
proach to deal with the interference problem typical of ion-selec-
tive electrodes (ISEs). The development of the core of a SSA, the
signal processing algorithm, often requires a dataset containing
input-output measurements. Motivated by that, this letter presents
a set of experiments with arrays of ISEs. The acquired dataset is
publicly available in a web page where published results with these
data can be added for benchmarking.

Index Terms—Chemical sensor arrays, dataset, ion-selective
electrodes (ISEs), signal processing.

I. INTRODUCTION

I ON-SELECTIVE ELECTRODES (ISEs) offer a simple
way for estimating the ionic activity, a measure of effective

concentration of an ion in aqueous solution [1]. However, ISEs
usually lack selectivity, i.e., they may respond to interfering
ions other than the target one. In a possible approach to deal
with the interference problem, the data acquisition is performed
by an array of sensors that are not necessarily selective. Then,
in a second moment, signal processing tools are used for
extracting the relevant information. This approach, which is
known as smart sensor arrays (SSAs), has been widely applied
on chemical sensing systems such as electronic tongues [2].

Recently, we considered quantitative analysis via smart ISE
arrays based on blind source separation (BSS) methods [3]. Dif-
ferently from the typical supervised solutions considered in ISE
arrays, such as artificial neural network-based regressors, BSS
methods operate in an unsupervised fashion, i.e., without re-
quiring a training stage (calibration) prior to the effective use of
the array. That is, the parameters of the SSA are adjusted based
exclusively on the array outputs. For this to be possible, the ionic
activities must present some temporal variation during the mea-
surements and, moreover, some information on the source sig-
nals must be available [3].
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Although BSS methods do not need a training database
during its effective operation, it is still important that a set
of input-output measurements be available during the devel-
opment stage. Indeed, such a dataset allows one to obtain a
parametric model for the array response, which is fundamental
in BSS methods, and to assess the BSS algorithm. Therefore,
whatever the adopted approach, it is important to have access to
training datasets when developing signal processing algorithms
for smart ISE arrays. Motivated by this observation and by
the absence of publicly available datasets, we describe in this
work a set of experiments with ISE arrays in three distinct
scenarios. The obtained datasets are publicly available at
www.gipsa-lab.inpg.fr/isea.

II. EXPERIMENTAL

The goal of our experiments is to acquire a dataset having ba-
sically the following entries: 1) activity of the ions under anal-
ysis and 2) the response of each ISE within the array.

A. Materials

Manufactured ISEs (Consort) were used in the experiments.
Two titrators Dosimat 765 (Metrohm) were responsible for in-
jecting solutions in a beaker. The solution under analysis was
stirred through a Fisher Bioblock magnetic stirrer. The acqui-
sition block was composed of a Consort C835 desktop ana-
lyzer and of an acquisition software developed by researchers
of the LAAS-CNRS laboratory. All solutions were prepared
using deionized water and, in contrast to common practice, no
buffer solution to keep the pH fixed was used. The motivation
for working in such a crude situation is related to the benefits
brought by unsupervised SSAs, which reside exactly in the sim-
plification of laboratory procedures.

B. Scenarios

The following three scenarios were considered.
1) Analysis of a solution containing and KCl using

one -ISE, one -ISE and one -ISE.
2) Analysis of a solution containing NaCl and KCl using two

-ISE, one -ISE and one -ISE.
3) Analysis of a solution containing NaCl and using

two -ISE and one -ISE.
The first scenario is a well-known example of interference be-
tween monovalent ions in ISEs. In the second one, the goal was
to check if there is enough diversity within electrodes of the
same type so the signal processing can take advantage of it. Fi-
nally, in the third scenario, we analyze the situation in which
the ions have different valences. This is a difficult situation for
BSS methods as the resulting mixing model becomes extremely
nonlinear [3] in this case.
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Fig. 1. Experimental setup.

C. Experimental Details and Dataset Organization

In Fig. 1, a diagram illustrating the experimental setup is pre-
sented. As mentioned in Section II-B, for each scenario, there
were two chloride salt solutions, represented here by and

, where and denote the cations associated with the
chlorine anion. The concentrations of these cations were varied
according to the following injection scheme: 1) initially, a so-
lution of with concentration and volume
was set; 2) then, in a first period of approximately 1 h, only
the first titrator was active and it injected the salt solution
(concentration ) with an injection period of 30 s. The
total injected volume was 5 mL; and 3) finally, in a second pe-
riod of approximately 1 h, the first titrator was deactivated and
the second titrator started the injection of the salt solution
(concentration ). The total injected volume was 110 mL
with an injection period of 30 s.

As a result of this injection scheme, the concentrations of the
cations and vary in the range – . Given that a
linear injection scheme (same amount of solution at each injec-
tion) was considered, it became necessary to define two injection
periods (steps2 and 3) in order to obtain measurements in the con-
centration range – . This explains why only 5 mL
of solution is injected during the first hour of the experiment.

In each scenario, the same injection procedure was performed
eight times (each realization took approximately 2 h), being the
difference the initial concentration of : we considered
concentrations close to , . At the
end of these four experiments, we repeated the same procedure
but with an inversion of salt solutions, i.e., we started with an
initial volume of solution and then an injection of solution

took place. The electrodes were rinsed with distilled water
between each experiment.

The following notation was defined to identify each experi-
ment: , where , , , and refer to the sce-
nario number, the initial salt solution present in the beaker, its
(approximate) concentration, and the injected solution, respec-
tively. For example, denotes an experiment of
the first scenario where an initial solution of with con-
centration of approximately was set, and where KCl
was injected by the two titrators according to the procedure de-
scribed above. Hence, the first scenario is composed of the fol-
lowing eight experiments: for and

Fig. 2. Left: �� -ISE response. Right: � -ISE response. Electrode re-
sponses (black) and responses predicted by the NE model (gray).

for . The activities were estimated
through the Debye–Hückel formalism [1]

III. MODELING THE ISE ARRAY

The acquired data were modeled by the Nicolsky–Eisenman
(NE) equation (see [1] for instance). A good fit between the NE
equation and the data was observed when modeling each experi-
ment of given scenario separately. However, when all the exper-
iments of a same scenario were treated altogether, large regres-
sion errors were observed. This discrepancy points out that the
NE equation could only provide a local description of the data.
Indeed, modeling the whole data is difficult because of the lack
of repeatability; the simple fact of immersing the electrodes in
a new solution causes a considerable drift in the measurements.
This was even more pronounced for the -ISE. It is worth men-
tioning here that the effects of drift can be mitigated in BSS-based
solutions since these methods do not rely on calibration steps [3],
only requiring an one-point calibration to retrieve the sources’
scale. Conversely, in supervised solutions, a complete calibration
stageshouldbedonewhenever thearray’scharacteristicchanges.

The highest interference level was observed in the first sce-
nario. In particular, the more interesting situation to the study
of sensor arrays1 was given by the experiments
and . Indeed, in this case, both ISEs suffered from
a relevant interference. The array responses obtained in these
experiments are plotted2 in Fig. 2. The modeling of this data
through the NE model has led to a relative error of 6% for the

-ISE and of 1% for the -ISE.

IV. CONCLUSION

In this work, we described a set of experiments with ion-se-
lective electrode arrays. The acquired data, which is publicly
available, may be helpful in the development of signal pro-
cessing algorithms tailored for smart ISE arrays.
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1For instance, these experiments were considered in [3]
2Note here that the depicted responses are for time-varying ionic activities.


