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of Multiple Sources
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Abstract—In this paper, a new method is introduced to blindly
estimate the transmit power of multiple signal sources in multi-
antenna fading channels, when the number of sensing devices and
the number of available samples are sufficiently large compared
to the number of sources. Recent advances in the field of large
dimensional random matrix theory are used that result in a
simple and computationally efficient consistent estimator of the
power of each source. A criterion to determine the minimum
number of sensors and the minimum number of samples required
to achieve source separation is then introduced. Simulations are
performed that corroborate the theoretical claims and show that
the proposed power estimator largely outperforms alternative
power inference techniques.

Index Terms—Cognitive radio, G-estimation, power estimation,
random matrix theory, statistical inference.

I. INTRODUCTION

At a time when radio resources become scarce, the alterna-
tive offered by cognitive radios [1] is gaining more and more
interest. A cognitive (or flexible) wireless network is a set of
opportunistic entities, referred to as the secondary network,
that benefit from unused spectrum resources to establish
communication while generating little or even no interference
to the licensed networks, collectively referred to as the primary
network. This is achieved by letting the secondary devices
sense the communication channel for the presence of active
transmissions and exchange the collected information among
the secondary network, in order to perform optimal decisions
on the opportunistic communication strategy to apply. The
difficulty for the secondary network does not lie in the de-
tection of downlink transmissions from fixed access points to
licensed mobile users in the primary network, but rather in the
reliable detection of the uplink transmissions from the mobile
licensed users to the primary access points. If, in addition to
detecting active transmissions, the secondary devices can, at
all time, detect the exact number of primary mobile sources
and evaluate the power used by every individual source, the
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transmission policy in the secondary network can be accurately
and dynamically adapted. An example of use is found in the
recent development of femtocells, i.e., small area cells that op-
erate indoors by overlaying the spectrum licensed to outdoors
macrocells. Closed access femtocells have the capabilities to
self-organize and to dynamically access spectrum resources
[2]-[3]; specifically, the first requirement of a femtocell is to
minimally interfere the overlaid licensed macrocell network,
while simultaneously trying to optimize transmission data
rates within the femtocell. This requires that the femtocells
be constantly aware of the outdoor activity of the macrocell
mobile users. As such, macrocell-femtocell networks are cog-
nitive wireless networks in which the established macrocell
network is seen as the primary network, while the femtocell
network plays the role of the opportunistic secondary network.
In [4], the achievable rates of a two-tier macrocell-femtocell
network are derived in the very general case where all entities
in the networks are embedded with multiple antennas. The
optimal coverage of the secondary networks is computed under
several assumptions on the side information available at the
femtocells. Among these assumptions, [4] supposes that the
femtocells have perfect knowledge of the distances to the
macrocell user equipments. This last assumption suggests that
the femtocells have a means, either global positioning system
or some sort of detection mechanism, to perfectly evaluate the
distances to the active primary users. In the present work, we
address the problem of the estimation of the distance of the
secondary network to each primary user or, more exactly, the
problem of the estimation of the individual source transmit
powers. We provide a framework for the secondary network
(i) to identify the number of primary sources, (ii) to determine
the number of transmit antennas for every source and (iii) to
estimate the transmit power from each source.

The difficulty of estimating transmit powers lies in the little
information known a priori by the secondary network: the
transmitted data and the transmission channels are usually
inaccessible. This has motivated much work in the direction of
blind signal source detection methods, based on the Neyman-
Pearson test in Gaussian channels [5], Rayleigh fading chan-
nels [6], multiple antenna channels [7] and large dimensional
multi-antenna channels [8], but these successive works are
designed to answer a binary hypothesis test on the presence or
absence of a signal source. Alternatively, in [9], a method is
derived to separate signal sources and estimate the number
of those sources. To solve the harder problem of power
inference, it is necessary to assume that the amount of sensors
in the secondary network is larger than the number of active
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sources, e.g., individual secondary users are equipped with
many antennas, or a large number of secondary users, each
of them equipped with few antennas, collect their received
data via a central backbone; this assumption is valid in the
context of femtocells that can communicate through wired
private or public networks. The condition on the number of
sensors allows one to model the multi-dimensional channel H
from the joint primary sources to the secondary users, the joint
source transmit data X and the additive received noise W as
large dimensional random matrices with independent entries
(no specific matrix size definition is required at this point).
Denoting P a diagonal matrix whose entries are the source
powers with multiplicities the number of transmit antennas
of each user, the power detection problem boils down to
estimating the entries of P from the sole knowledge of the
received data matrix Y = HP

1
2X + W, as all system

dimensions (number of antennas per transmit source, number
of sensors, number of available samples) are large. If the
available samples largely outnumber the sensors (of several
orders of magnitude), and the number of sensors are much
larger than the number of transmit antennas, the strong law
of large numbers ensures that the diagonal entries of P can
be retrieved directly from the eigenvalues of YYH, and the
problem is immediately solved. When all dimensions are large
but are of the same order of magnitude, the law of large
numbers no longer applies and one has to consider results from
the theory of large dimensional random matrices, e.g., [10],
used in the present article to derive the asymptotic eigenvalue
distribution of YYH as a function of P. To this day and to the
best of our knowledge, no computationally-efficient consistent
estimator for the entries of P has been proposed.1 Among the
existing techniques are discretization and convex optimization
strategies [11], [12], which tend to directly invert the result
from [10] (although an explicit inverse was not available at
that time), and moment-based approaches [13], [14], which use
the empirical moments of the eigenvalue distribution YYH to
infer the entries of P. Some of these moment-based methods
are computationally cheap, but provide in general consistent
estimators of the moments of the eigenvalue distribution of P,
instead of estimators of the sought powers. These techniques
are therefore expected to perform worse than methods that
would fully exploit the eigenvalue distribution of YYH, and
not only a few moments of the distribution. This problem is
successfully addressed in [15] for the simpler sample covari-
ance matrix model Y′ = P

1
2X, where strongly consistent

estimators for the individual entries of P are provided, which
are based on the full eigenvalue distribution of XHPX.

The present work generalizes this result to infer the entries
of P from the observed matrix Y = HP

1
2X+W. The novel

estimator proposed here is strongly consistent with respect
to growing number of sensors, sources and samples, has a
very compact form, is computationally efficient and is shown
in simulations to largely outperform alternative approaches,
such as moment-based methods. The estimator is moreover
robust to small system dimensions. We specifically show

1an estimator P̂i of the ith entry Pi of P is said to be consistent if P̂i −
Pi → 0 almost surely when the relevant system dimensions grow large.

Fig. 1. A cognitive radio network

that, if the number of sensing entities is larger than the
number of active transmitters in the primary network, it is
possible to evaluate both the exact number of transmitters
and their respective transmit powers (and, for that matter, the
number of transmit antennas per source can also be estimated).
Otherwise, ambiguous scenarios might arise where multiple
transmitters may be confused as a single transmitter with
estimated transmit power the average of the true transmit
powers of these transmitters. Additionally, we provide an
expression of the minimum number of sensors required to
separate transmit sources of similar power.

The remainder of this paper is structured as follows: Section
II introduces the system model. In Section III, we study the
asymptotic spectrum of the eigenvalues of YYH. In Section
IV, the novel power estimator is derived. Section V provides
simulation results. Section VI concludes this work.

Notations: In the following, boldface lower case symbols
represent vectors, capital boldface characters denote matrices
(IN is the size-N identity matrix). The transpose and Hermi-
tian transpose operators are denoted (·)T and (·)H, respectively.
We denote by C+ the set {z ∈ C,=[z] > 0} and by C− the
set {z ∈ C,=[z] < 0}. The left-limit in x of a function f is
denoted f(x−).

II. SYSTEM MODEL

Consider a wireless (primary) network in which K entities
are transmitting data simultaneously on the same frequency
resource. Transmitter k ∈ {1, . . . ,K} has transmission power
Pk and is equipped with nk antennas. We denote n =∑K
k=1 nk the total number of transmit antennas of the primary

network. Consider also a secondary network composed of a
total of N , N ≥ n, sensing devices (they may be N single
antenna devices or multiple devices embedded with multiple
antennas whose sum equals N ); we shall refer to the N sensors
collectively as the receiver. This scenario is depicted in Figure
1. To ensure that every sensor in the secondary network,
e.g., in a femtocell, roughly captures the same amount of
energy from a given transmitter, we need to assume that
the respective transmitter-sensor distances are alike. This is a
realistic assumption for a in-house femtocell network. Denote
Hk ∈ CN×nk the multiple antenna channel matrix between
transmitter k and the receiver. We assume that the entries
of
√
NHk are independent and identically distributed with

zero mean, unit variance and finite fourth order moment. At
time instant m, transmitter k emits the multi-antenna signal
x
(m)
k ∈ Cnk , with entries assumed to be independent and
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identically distributed of zero mean, unit variance and finite
fourth order moment. Assume further that at time instant m the
receive signal is impaired by additive white noise with entries
of zero mean, variance σ2 and finite fourth order moment on
every sensor; we denote σw(m) ∈ CN the receive noise vector
where the entries of w(m)

k have unit variance. At time m, the
receiver therefore senses the signal y(m) ∈ CN defined as

y(m) =

K∑
k=1

√
PkHkx

(m)
k + σw(m). (1)

Assuming the channel fading coefficients are constant over at
least M consecutive sampling periods, by concatenating M
successive signal realizations into Y = [y(1), . . . ,y(M)] ∈
CN×M , we have

Y =

K∑
k=1

√
PkHkXk + σW (2)

where Xk = [x
(1)
k , . . . ,x

(M)
k ] ∈ Cnk×M , for every k, and

W = [w(1), . . . ,w(M)] ∈ CN×M . This can be further
rewritten as

Y = HP
1
2X + σW (3)

where P ∈ Rn×n is diagonal with first n1 entries P1,
subsequent n2 entries P2, . . . , last nK entries PK , H =
[H1, . . . ,HK ] ∈ CN×n and X = [XT

1 , . . . ,X
T
K ]T ∈ Cn×M .

By convention, we shall assume P1 ≤ . . . ≤ PK .
Remark 1: The statement that

√
NH, X and W have

independent entries of finite fourth order moment is meant
to provide as loose assumptions as possible on the channel,
signal and noise properties. In the simulations of Section V, the
entries of H, W are taken Gaussian. Nonetheless, according
to our assumptions, the entries of X need not be identically
distributed, but may originate from a maximum of K dis-
tinct distributions. This translates the realistic assumption that
different data sources may use different symbol constellations
(e.g., M -QAM, M -PSK); the finite fourth moment assumption
is obviously verified for finite constellations.

Our objective is to infer the values of the powers
P1, . . . , PK from the realization of the random matrix Y. This
is the subject of Section IV. In the sequel, we introduce tools
from large dimensional random matrix theory and we provide
a thorough analysis of the eigenvalue distribution of 1

MYYH

as N , n and M grow large at the same rate.

III. SPECTRAL ANALYSIS

We start by analyzing the eigenvalue distribution of 1
MYYH

when n, N and M grow large at a similar rate. This is a
fundamental prior step to the proper estimation of P1, . . . , PK .

A. Limiting spectrum of 1
MYYH

We first define the Stieltjes transform of a (cumulative)
distribution function.

Definition 1: Let F be a distribution function. For z ∈ C \
R+, the Stieltjes transform m(z) of F is defined as

m(z) =

∫
1

t− z
dF (t). (4)

For x ∈ R a continuity point of F , we have the inverse
Stieltjes transform formula

F (x) =
1

π
lim
y→0+

∫ x

−∞
=[m(t+ iy)]dt. (5)

In this section, we prove the following result
Theorem 1: Let BN = 1

MYYH, with Y defined as in
(3). Then, for M , N , n growing large with limit ratios
M/N → c, N/nk → ck, 0 < c, c1, . . . , cK < ∞, the
eigenvalue distribution function FBN of BN , referred to as
the empirical spectral distribution (e.s.d.) of BN , converges
almost surely to the deterministic distribution function F ,
referred to as the limit spectral distribution (l.s.d.) of BN ,
whose Stieltjes transform mF (z) satisfies, for z ∈ C+,

mF (z) = cmF (z) + (c− 1)
1

z
(6)

where mF (z) is the unique solution with positive imaginary
part of the implicit equation in mF

1

mF
= −σ2 +

1

f
−

K∑
k=1

1

ck

Pk
1 + Pkf

(7)

in which we denoted f the value

f = (1− c)mF − czmF
2. (8)

The rest of this section is dedicated to the proof of Theorem
1. First remark that (3) can be further simplified into

Y =
(
HP

1
2 σIN

)(X
W

)
. (9)

Appending Y ∈ CN×M into the larger matrix Y ∈
C(N+n)×M

Y =

(
HP

1
2 σIN

0 0

)(
X
W

)
, (10)

we recognize that 1
MYYH is a sample covariance matrix, for

which the population covariance matrix
(

HPHH+σ2IN 0
0 0

)
is

non-deterministic and the random matrix ( X
W ) has indepen-

dent (non-necessarily identically distributed) entries with zero
mean and variance 1.

At this point, we need the following result,
Proposition 1: Let Zn ∈ CN×n have complex independent

entries of zero mean, unit variance and finite 2 + ε order
moment, for some ε > 0, and Tn ∈ Rn×n be Hermitian
with e.s.d. converging almost surely to T , as N → ∞. Let
An = 1

NZnTnZ
H
n . Then, as n,N → ∞, N/n → c > 0, the

eigenvalue distribution of An converges weakly and almost
surely to the distribution function A with Stieltjes transform
mA(z), z ∈ C+, being the unique solution with positive
imaginary part of the equation in mA

z = − 1

mA
+

1

c

∫
t

1 + tmA
dT (t). (11)

Proof: The proof originates from Theorem 4.1 of [16]
that states that, under the hypotheses of Proposition 1, the
eigenvalue distribution of An converges weakly to some
distribution function A whose Stieltjes transform mA(z) is a
function of the Stieltjes transform of mT (z) and c only; mA(z)
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is explicitly given by (4.4.4) of [16]. Now, in the special case
where Zn has independent and identically distributed (i.i.d.)
entries of zero mean, unit variance and finite 2 + ε moment,
[10] and Theorem 4.3 of [16] show that mA(z) satisfies (11).
But then, since mA(z) is only a function of c and T regardless
of the distribution of the independent entries of Zn, mA(z)
that solves (11) is the Stieltjes transform of A for the more
general case.

Note that Proposition 1 can be equally stated when z ∈ C−.
In that case, mA(z) is the unique solution of (11) with negative
imaginary part.

From Proposition 1, since H has independent entries with
finite fourth order moment, we have that the e.s.d. of HPHH

converges weakly and almost surely to a limit distribution G
as N,n1, . . . , nK → ∞ with, N/nk → ck > 0. For z ∈ C+,
the Stieltjes transform mG(z) of G is the unique solution with
positive imaginary part of the equation in mG,

z = − 1

mG
+

K∑
k=1

1

ck

Pk
1 + PkmG

. (12)

The almost sure convergence of the e.s.d. of HPHH en-
sures the almost sure convergence of the e.s.d. of the matrix(

HPHH+σ2IN 0
0 0

)
. Since mG(z) evaluated at z ∈ C+ is the

Stieltjes transform of the l.s.d. of HPHH + σ2IN evaluated
at z+ σ2, adding n zero eigenvalues, we finally have that the
e.s.d. of

(
HPHH+σ2IN 0

0 0

)
tends almost surely to a distribution

H whose Stieltjes transform mH(z) satisfies

mH(z) =
c0

1 + c0
mG(z − σ2)− 1

1 + c0

1

z
, (13)

for z ∈ C+, where we denoted c0 the limit of the ratio N/n,
i.e., c0 = (c−11 + . . .+ c−1K )−1.

As a consequence, the sample covariance matrix 1
MYYH

has a population covariance matrix which is not deterministic
but whose e.s.d. has an almost sure limit for increasing
dimensions. Since X and W have entries with finite fourth
order moment, we can again apply Proposition 1, and we have
that the e.s.d. of BN , 1

MYHY converges almost surely to
the limit F whose Stieltjes transform mF (z) is the unique
solution in C+ of the equation in mF

z = − 1

mF
+

1

c

(
1 +

1

c0

)∫
t

1 + tmF
dH(t) (14)

= − 1

mF
+

1 + 1
c0

cmF

[
1− 1

mF
mH

(
− 1

mF

)]
(15)

for all z ∈ C+.
For z ∈ C+, mF (z) ∈ C+. Therefore −1/mF (z) ∈ C+

and one can evaluate (13) at −1/mF (z). Combining (13) and
(15), we then have

z = −1

c

1

mF (z)2
mG

(
− 1

mF (z)
− σ2

)
+

(
1

c
− 1

)
1

mF (z)
,

(16)
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Fig. 2. Empirical and asymptotic eigenvalue distribution of 1
M

YYH when
P has three distinct entries P1 = 1, P2 = 3, P3 = 10, n1 = n2 = n3,
c0 = 10, c = 10, σ2 = 0.1. Empirical test: n = 60.

where, according to (12), mG(−1/mF (z)− σ2) satisfies

1

mF (z)
=− σ2 +

1

mG(− 1
mF (z) − σ2)

−
K∑
k=1

1

ck

Pk

1 + PkmG(− 1
mF (z) − σ2)

. (17)

Together with (16), this is exactly (7), with f(z) =
mG(− 1

mF (z) − σ
2) = (1− c)mF (z)− czmF (z)2.

Since the eigenvalues of the matrices BN and BN only
differ by M−N zeros, we also have that the Stieltjes transform
mF (z) of the l.s.d. of BN satisfies

mF (z) = cmF (z) + (c− 1)
1

z
. (18)

This completes the proof of Theorem 1. For further usage,
notice here that (18) provides a simplified expression for
mG(−1/mF (z)− σ2). Indeed we have,

mG(−1/mF (z)− σ2) = −zmF (z)mF (z). (19)

Therefore, the support of the (almost sure) l.s.d. F of BN

can be evaluated as follows: for any z ∈ C+, mF (z) is given
by (6), in which mF (z) is solution of (7); the inverse Stieltjes
transform formula (5) allows then to evaluate F from mF (z),
for values of z spanning over the set {z = x + iy, x > 0}
and y small. This is depicted in Figure 2, when P has three
distinct values P1 = 1, P2 = 3, P3 = 10 and n1 = n2 = n3,
N/n = 10, M/N = 10, σ2 = 0.1, as well as in Figure 3 for
the same setup but with P3 = 5.

Two remarks on Figures 2 and 3 are of fundamental im-
portance to the following. First, it appears that the asymptotic
l.s.d. F of BN is compactly supported and divided into up
to K + 1 disjoint compact intervals, which we further refer
to as clusters. Each cluster can be mapped onto one or many
values in the set {σ2, P1, . . . , PK}. For instance, in Figure 3,
the first cluster is mapped to σ2, the second cluster to P1 and
the third cluster to the set {P2, P3}. Depending on the ratios c
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Fig. 3. Empirical and asymptotic eigenvalue distribution of 1
M

YYH when
P has three distinct entries P1 = 1, P2 = 3, P3 = 5, n1 = n2 = n3,
c0 = 10, c = 10, σ2 = 0.1. Empirical test: n = 60.

and c0 and on the particular values taken by P1, . . . , PK and
σ2, these clusters are either thin disjoint compact intervals, as
in Figure 2, or they may overlap to generate larger compact
intervals, as in Figure 3. We shall see, as is in fact required
by the law of large numbers, that for increasing c and c0,
the asymptotic spectrum tends to be divided into thinner and
thinner clusters. The inference technique proposed hereafter
relies on the separability of the clusters associated to each Pi
and to σ2. Precisely, to be able to derive a consistent estimate
of the transmitted power Pk, the cluster associated to Pk in F ,
number it cluster kF , must be distinct from the neighboring
clusters (k− 1)F and (k+ 1)F , associated to Pk−1 and Pk+1

respectively (when they exist), and also distinct from cluster
1 in F associated to σ2. As such, in the scenario of Figure
3, our method will be able to provide a consistent estimate
for P1, but (so far) will not succeed in providing a consistent
estimate for either P2 or P3, since 2F = 3F . We shall see that
a consistent estimate for (P2 + P3)/2 is accessible though.
Secondly, notice that the empirical eigenvalues of BN are
all inside the asymptotic clusters and, most importantly, in
the case where cluster kF is distinct from 1, (k − 1)F and
(k+1)F , observe that the number of eigenvalues in cluster kF
is exactly nk. This fact is referred to as exact separation. The
exact separation for the current model originates from a direct
application of the exact separation for the sample covariance
matrix proven in [17] and is provided here in Theorem 3. This
is further discussed in the subsequent sections.

B. Condition for separability

In the following, we are interested in estimating consistently
the power Pk for a given fixed k ∈ {1, . . . ,K}. We recall
that consistency means here that, as all system dimensions
grow large with finite asymptotic ratios, the difference P̂k−Pk
between the estimate P̂k of Pk and Pk itself converges to
zero with probability one. As previously mentioned, we show
by construction in Section IV that such an estimate is only

achievable if the cluster mapped to Pk in F is disjoint from
all other clusters. The purpose of the present section is to
provide sufficient conditions for cluster separability.

To ensure that cluster kF (associated to Pk in F ) is distinct
from cluster 1 (associated to σ2) and clusters iF , i 6= k,
(associated to all other Pi), we assume now and for the rest
of this article that the following conditions are fulfilled: (i) k
satisfies Assumption 1, given as follows

Assumption 1:

K∑
r=1

1

cr

(PrmG,k)
2

(1 + PrmG,k)
2 < 1 (20)

K∑
r=1

1

cr

(PrmG,k+1)
2

(1 + PrmG,k+1)
2 < 1 (21)

with mG,1, . . . ,mG,K the K real solutions to the equation in
mG,

K∑
r=1

1

cr

(PrmG)
3

(1 + PrmG)
3 = 1 (22)

with the convention mG,K+1 = 0,
and (ii) k satisfies Assumption 2 as follows,

Assumption 2: Denoting, for j ∈ {1, . . . ,K},

jG , # {i ≤ j | i satisfies Assumption 1} , (23)

1− c0
c0

(σ2mF,kG)2

(1 + σ2mF,kG)2

+

kG−1∑
r=1

1

cr

(x+G,r + σ2)2m2
F,kG

(1 + (x+G,r + σ2)mF,kG)2

+

KG∑
r=kG

1

cr

(x−G,r + σ2)2m2
F,kG

(1 + (x−G,r + σ2)mF,kG)2
< c (24)

1− c0
c0

(σ2mF,kG+1)2

(1 + σ2mF,kG+1)2

+

kG∑
r=1

1

cr

(x+G,r + σ2)2m2
F,kG+1

(1 + (x+G,r + σ2)mF,kG+1)2

+

KG∑
r=kG+1

1

cr

(x−G,r + σ2)2m2
F,kG+1

(1 + (x−G,r + σ2)mF,kG+1)2
< c (25)

where x−G,i, x
+
G,i, i ∈ {1, . . . ,KG}, are defined by

x−G,i = − 1

m−G,i
+

K∑
r=1

1

cr

Pr

1 + Prm
−
G,i

(26)

x+G,i = − 1

m+
G,i

+

K∑
r=1

1

cr

Pr

1 + Prm
+
G,i

(27)

with m−G,1,m
+
G,1, . . . ,m

−
G,KG

,m+
G,KG

the 2KG real roots of
(20), and mF,j , j ∈ {1, . . . ,KG + 1}, the j-th real root (in
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6

increasing order) of the equation in mF

1− c0
c0

(σ2mF )3

(1 + σ2mF )3
+

j−1∑
r=1

1

cr

(x+G,r + σ2)3mF
3

(1 + (x+G,r + σ2)mF )3

+

KG∑
r=j

1

cr

(x−G,r + σ2)3mF
3

(1 + (x−G,r + σ2)mF )3
= c.

(28)

Although difficult to fathom at this point of the article, the
above assumptions will be clarified in the subsequent sections.
We give hereafter a short intuitive explanation of the role of
every condition.

Assumption 1 is a necessary and sufficient condition for
cluster kG, that we define as the cluster associated to Pk in G
(the l.s.d. of HPHH), to be distinct from the clusters (k−1)G
and (k+1)G, associated to Pk−1 and Pk+1 in G, respectively.
Note that we implicitly assume a unique mapping between the
Pi and clusters in G; this statement will be made more rigorous
in subsequent sections. Assumption 1 only deals with the inner
HPHH covariance matrix properties and ensures specifically
that the powers to be estimated differ sufficiently from one
another for our method to be able to resolve them. Note that,
if P1, . . . , PK are scaled by a common constant, then the
solutions of (22) are scaled by the inverse of this constant; the
separability condition is then a function of P2/P1, . . . , PK/P1

and of the ratios c1, . . . , cK only. In Figure 4, we depict the
critical ratio c0 above which Assumption 1 is satisfied for all
k, when K = 2 and c1 = c2, as a function of P1/P2, i.e., the
critical ratio c0 above which the two clusters associated to P1

and P2 in G are disjoint. Observe that, as P1 gets close to P2,
c0 increases fast; therefore, to be able to separate power values
with ratio close to one, an extremely large number of sensors
is required. In Figure 5, the case K = 3 is considered with
c1 = c2 = c3, c0 = 10, and we let P2/P1 and P3/P1 vary; this
situation corresponds to the scenarios previously depicted in
Figures 2 and 3. Note that the triplet (P1, P2, P3) = (1, 3, 5)
is slightly outside the region that satisfies Assumption 1, and
then, for this c0, not all the clusters of G (and therefore
of F ) are disjoint, as confirmed by Figure 3. As for the
triplet (1, 3, 10), it clearly lies inside the region that satisfies
Assumption 1, which is sufficient to ensure the separability
of the clusters in G, but not enough though to ensure the
separability of the clusters in F .

Assumption 2 deals with the complete BN matrix model.
It is however a non-necessary but sufficient condition so that
cluster kF , associated to Pk in F , be distinct from clusters
(k−1)F , (k+1)F and 1 (cluster 1 being associated to σ2). The
exact necessary and sufficient condition will be stated further
in the next sections; however, the latter is not exploitable as
is, and Assumption 2 will be shown to be an appropriate
substitute. Assumption 2 is concerned with the value of c
necessary to avoid (i) cluster kG (associated to Pk in G) to
further spread on the clusters kG − 1 and kG + 1 associated
to Pk−1 and Pk+1 and, more importantly, to avoid (ii) cluster
1 associated to σ2 in F to merge with cluster kF . As shall
become evident in the next sections, when σ2 is large, the
tendency is for the cluster associated to σ2 to become large

0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

cluster separability region

P1/P2

c 0

Fig. 4. Limiting ratio c0 to ensure separability of (P1, P2), P1 ≤ P2,
K = 2, c1 = c2.

and spread over the clusters associated to P1, then P2 etc.
To counter this effect, one must increase c, i.e., take more
signal samples. Figure 6 depicts the critical ratio c that satisfies
Assumption 2 as a function of σ2, in the case K = 3,
(P1, P2, P3) = (1, 3, 10), c0 = 10, c1 = c2 = c3. Notice that,
in the case c = 10, below σ2 ' 1, it is possible to separate all
clusters, which is compliant with Figure 2 where σ2 = 0.1.

As a consequence, under the assumption (proved later)
that our proposed method cannot perform consistent power
estimation when the cluster separability conditions are not met,
we have two first conclusions:

• if one desires to increase the sensitivity of the estimator,
i.e., to be able to separate two sources of close transmit
powers, one needs to increase the number of sensors (by
increasing c0),

• if one desires to detect and reliably estimate power
sources in a noisy environment, one needs to increase
the number of sensed samples (by increasing c).

In the subsequent section, we study the properties of the
asymptotic spectrum of HPHH and BN in more details.
These properties will lead to an explanation for Assumptions
1 and 2. Under those assumptions, we shall then derive our
novel power estimator.

IV. MULTI-SOURCE POWER INFERENCE

In this section, we prove our main result,
Theorem 2: Let BN ∈ CN×N be defined as in Theorem 1,

and λ = (λ1, . . . , λN ), λ1 ≤ . . . ≤ λN , be the vector of the
ordered eigenvalues of BN . Further assume that the limiting
ratios c0, c1, . . . , cK , c and P are such that Assumptions 1
and 2 are fulfilled for some k ∈ {1, . . . ,K}. Then, as N , n,
M grow large, we have

P̂k − Pk
a.s.−→ 0 (29)

where the estimate P̂k is given by
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Fig. 5. Subset of (P1, P2, P3) that fulfills Assumption 1 K = 3, c1 =
c2 = c3, for c0 = 10, in crosshatched pattern.
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cluster separability region
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SNR, 1
σ2 [dB]
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P3 separability limit
P2 separability limit
P1 separability limit

Fig. 6. Limiting ratio c as a function of σ2 to ensure consistent estimation
of P1 = 1, P2 = 3 and P3 = 10, c0 = 10, c1 = c2 = c3.

• if M 6= N ,

P̂k =
NM

nk(M −N)

∑
i∈Nk

(ηi − µi), (30)

• if M = N ,

P̂k =
N

nk(N − n)

∑
i∈Nk

 N∑
j=1

ηi
(λj − ηi)2

−1 , (31)

in which Nk = {
∑k−1
i=1 ni+1, . . . ,

∑k
i=1 ni}, (η1, . . . , ηN ) are

the ordered eigenvalues of the matrix diag(λ) − 1
N

√
λ
√
λ
T

and (µ1, . . . , µN ) are the ordered eigenvalues of the matrix
diag(λ)− 1

M

√
λ
√
λ
T

.
Remark 2: We immediately notice that, if N < n, the

powers P1, . . . , Pl, with l the largest integer such that N −∑K
i=l ni < 0, cannot be estimated.

−1 − 1
3

− 1
10
0

1

3

10

m
−
G,1

m
+
G,1

mG,1

mG

x
G
(m

G
)

xG(mG)

Support of G

Fig. 7. xG(mG) for mG real, P diagonal composed of three evenly
weighted masses in 1, 3 and 10. Local extrema are marked in circles, inflexion
points are marked in squares.

The approach pursued to prove Theorem 2 relies strongly on
the original idea of [15]. From Cauchy’s integration formula
[18],

Pk =
1

2πi

∮
Ck

ω

Pk − ω
dω

= ck
1

2πi

∮
Ck

K∑
r=1

1

cr

ω

Pr − ω
dω (32)

for any negatively oriented contour Ck ⊂ C, such that Pk
is contained in the surface described by the contour, while
for every i 6= k, Pi is outside this surface. The strategy is
then the following: we first propose a convenient integration
contour Ck which is parametrized by a function of the Stieltjes
transform mF (z) of the l.s.d. of BN . We proceed to a variable
change in (32) to express Pk as a function of mF (z). We
then evaluate the complex integral resulting from replacing the
limiting mF (z) in (32) by its empirical counterpart m̂F (z) =
1
N tr(BN −zIN )−1. This new integral, whose value we name
P̂k, is shown to be almost surely equal to Pk in the large N
limit. It then suffices to evaluate P̂k, which is just a matter of
residue calculus [18].

We start by determining the integration contour Ck. For
this, we first need to study the distributions G and F in more
details.

A. Properties of G and F

Let us introduce the following result on the l.s.d. of sample
covariance matrices, borrowed from [19]

Proposition 2: Let An be defined as in Proposition 1. Then
the almost sure limiting Stieltjes transform mA(z) of the e.s.d.
of An, z ∈ C+ admits a limit m◦A(x) when z → x ∈ R∗. If
x is inside the support of A, then m◦A(x) is the only solution
with positive imaginary part of the equation xA(m) = x in
the variable m, with xA(m) defined, for −1/m outside the
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xG(mG)

Support of G

Fig. 8. xG(mG) for mG real, P diagonal composed of three evenly
weighted masses in 1, 3 and 5. Local extrema are marked in circles, inflexion
points are marked in squares.
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− 1
10
0
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mF

x
H
(m

F
)

xH(mF )

Support of F

Support of −1/H

Fig. 9. xF (mF ) for mF real, σ2 = 0.1, c = c0 = 10, P diagonal
composed of three evenly weighted masses in 1, 3 and 10. The support of F
is read on the vertical axis.

support of T , as

xA(m) = − 1

m
+

1

c

∫
t

1 + tm
dT (t), (33)

while, if x is outside the support of A, m◦A(x) is the only
solution m of xA(m) = x such that x′A(m) > 0. Moreover,
if for some m ∈ R such that −1/m is outside the support of
T , x′A(m) > 0, then xA(m) is outside the support of A.

The immediate corollary of Proposition 2 is that the com-
plementary of the support Supp(A) of A is the set {xA(m)}
for −1/m outside the support of T such that x′A(m) > 0,

Supp(A) = R \ {x | ∃m ∈ R, x = xA(m), x′A(m) > 0} .
(34)

1) Support of G: First consider the matrix HPHH, and
let the function xG(mG) be defined, for scalars mG ∈ R∗ \

{−1/P1, . . . ,−1/PK}, by

xG(mG) = − 1

mG
+

K∑
r=1

1

cr

Pr
1 + PrmG

. (35)

The function xG(mG) is depicted in Figures 7 and 8, for
the cases where c0 = 10, c1 = c2 = c3 and (P1, P2, P3) equal
respectively (1, 3, 10) and (1, 3, 5). As expected by Proposition
2, xG(mG) is increasing for mG such that xG(mG) is outside
the support of G. Note now that the function xG presents
asymptotes in the positions −1/P1, . . . ,−1/PK ,

lim
mG↓(−1/Pi)

xG(mG) =∞ (36)

lim
mG↑(−1/Pi)

xG(mG) = −∞, (37)

and that xG(mG) → 0+ as mG → −∞. Note also that, on
its restriction to the set where it is non-decreasing, xG is
increasing.2 To prove this, let mG and m?

G be two distinct
points such that xG(mG) > 0 and xG(m?

G) > 0, and
m?
G < mG < 0, we indeed have,3

xG(mG)− xG(m?
G) =

mG −m?
G

mGm?
G

×

[
1−

K∑
r=1

1

cr

P 2
r

(Pr + 1
mG

)(Pr + 1
m?

G
)

]
.

(38)

Noticing that, for Pi > 0,

0 <

(
Pi

Pi + 1
mG

− Pi

Pi + 1
m?

G

)2

(39)

=
P 2
i

(Pi + 1
mG

)2
+

P 2
i

(Pi + 1
m?

G
)2
− 2

P 2
i

(Pi + 1
mG

)(Pi + 1
m?

G
)
,

(40)

we have(
1−

K∑
r=1

1

cr

P 2
r

(Pr + 1
mG

)2

)
+

(
1−

K∑
r=1

1

cr

P 2
r

(Pr + 1
m?

G
)2

)

< 2− 2

K∑
r=1

1

cr

P 2
r

(Pr + 1
mG

)(Pr + 1
m?

G
)
. (41)

Since we also have

x′G(mG) =
1

m2
G

[
1−

K∑
r=1

1

cr

P 2
r

(Pr + 1
mG

)2

]
≥ 0 (42)

x′G(m?
G) =

1

(m?
G)2

[
1−

K∑
r=1

1

cr

P 2
r

(Pr + 1
m?

G
)2

]
≥ 0, (43)

we conclude that the term in brackets in (38) is positive and
then that xG(mG)−xG(m?

G) > 0. Hence xG is increasing on
its restriction to the set where it is non-decreasing.

Notice also that xG, both in Figures 7 and 8, has exactly
one inflexion point on each open set (−1/Pi−1,−1/Pi), for

2we say here that a function f(x) is increasing if x < x? ⇒ f(x) −
f(x?) > 0; if x < x? ⇒ f(x) − f(x?) ≥ 0, we say that f(x) is non-
decreasing.

3this proof is borrowed from the proof of [15], with different notations.
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i ∈ {1, . . . ,K}, with convention P0 = 0+. This is proven by
noticing that x′′G(mG) = 0 is equivalent to

K∑
r=1

1

cr

P 3
rm

3
G

(1 + PrmG)3
− 1 = 0. (44)

Now, the left-hand side of (44) has derivative along mG,

3

K∑
r=1

1

cr

P 3
rm

2
G

(1 + PrmG)4
, (45)

which is always positive. Notice that the left-hand side of (44)
has asymptotes for mG = −1/Pi for all i ∈ {1, . . . ,K}, and
has limits 0 as mG → 0 and 1/c0 − 1 as mG → −∞. If
c0 > 1, Equation (44) (and then x′′G(mG) = 0) therefore has a
unique solution in (−1/Pi−1,−1/Pi) for all i ∈ {1, . . . ,K}.
When xG is increasing somewhere on (−1/Pi−1,−1/Pi),
the inflexion point, i.e., the solution to x′′G(mG) = 0, in
(−1/Pi−1,−1/Pi) is necessarily found in the region where
xG increases. If c0 ≤ 1, the leftmost inflexion point may not
exist.

From the discussion above and Proposition 2, it is clear that
the support of G is divided into KG ≤ K compact subsets
[x−G,i, x

+
G,i], i ∈ {1, . . . ,KG}. Also, if c0 > 1, G has an addi-

tional mass in 0 of probability G(0)−G(0−) = (c0 − 1)/c0;
this mass will not be counted as a cluster in G. Observe that
every Pi can be uniquely mapped to a corresponding subset
[x−G,j , x

+
G,j ] in the following fashion. The power P1 is mapped

onto the first cluster in G; we then have 1G = 1. Then the
power P2 is either mapped onto the second cluster in G if xG
increases in the subset (−1/P1,−1/P2), which is equivalent
to saying that x′G(mG,2) > 0 for mG,2 the only solution
to x′′G(mG) = 0 in (−1/P1,−1/P2); in this case, we have
2G = 2 and the clusters associated to P1 and P2 in G are
distinct. Otherwise, if x′G(mG,2) ≤ 0, P2 is mapped onto the
first cluster in F ; in this case, 2G = 1. The latter scenario
visually corresponds to the case when P1 and P2 engender
“overlapping clusters”. More generally, Pj , j ∈ {1, . . . ,K},
is uniquely mapped onto the cluster jG such that

jG = # {i ≤ j | min[x′G(mG,i), x
′
G(mG,i+1)] > 0} , (46)

with convention mG,K+1 = 0, which is exactly

jG = # {i ≤ j | i satisfies Assumption 1} , (47)

when c0 > 1. If c0 ≤ 1, mG,1, the zero of x′′G in (−∞,−1/P1)
may not exist. If c0 < 1, we claim that P1 cannot be evaluated
(as was already observed in Remark 2). The special case when
c0 = 1 would require a restatement of Assumption 1 to handle
the special case of P1; this will however not be done, as it
will turn out that Assumption 2 is violated for P1 if σ2 > 0,
which we assume.

In the particular case of the power Pk of interest in Theorem
2, because of Assumption 1, x′G(mG,k) > 0. Therefore the
index kG of the cluster associated to Pk in G satisfies kG =
(k−1)G+1 (with convention 0G = 0). Also, from Assumption
1, x′G(mG,k+1) > 0. Therefore (k + 1)G = kG + 1. In that
case, we have that Pk is the only power mapped to cluster
kG in G, and then we have the required cluster separability
condition.

2) Support of F : We now proceed to the study of F , the
almost sure limit spectrum distribution of BN . In the same
way as in the previous section, we have that the support of F
is fully determined by the function xF (mF ), defined for mF

real, such that −1/mF lies outside the support of H , by

xF (mF ) = − 1

mF
+

1 + c0
cc0

∫
t

1 + tmF
dH(t). (48)

Figure 9 depicts the function xF in the case of Figure 2,
i.e., K = 3, P1 = 1, P2 = 3, P3 = 10, c1 = c2 = c3, c0 = 10,
c = 10, σ2 = 0.1. Figure 9 has the peculiar behaviour that it
does not have asymptotes as in Figure 7 where the population
eigenvalue distribution was discrete. As a consequence, our
previous derivations cannot be straightforwardly adapted to
derive the spectrum separability condition. If c0 > 1, note also,
although it is not appearing in the abscissa range of Figure
9, that there exist asymptotes in the position mF = −1/σ2.
This is due to the fact that G(0)−G(0−) > 0, and therefore
H(σ2)−H(σ2−) > 0. We assume c0 > 1 until further notice.

From Proposition 2, the support of F is complementary to
the set of real nonnegative x such that x = xF (mF ) and
x′F (mF ) > 0 for a certain real mF , with x′F (mF ) given by

x′F (mF ) =
1

mF
2
− 1 + c0

cc0

∫
t2

(1 + tmF )2
dH(t). (49)

Reminding that H(t) = c0
c0+1G(t−σ2)+ 1

1+c0
δ(t), this can

be rewritten

x′F (mF ) =
1

mF
2
− 1

c

∫
t2

(1 + tmF )2
dG(t− σ2). (50)

It is still true that xF (mF ), restricted to the set of mF where
x′F (mF ) ≥ 0, is increasing. As a consequence, it is still true
also that each cluster of H can be mapped to a unique cluster
in F . It is then possible to iteratively map the power Pk onto
cluster kG in G, as previously described, and to further map
cluster kG in G (which is also cluster kG in H) onto a unique
cluster kF in F (or equivalently in F ).

Therefore, a necessary and sufficient condition for the
separability of the cluster associated to Pk in F reads

Assumption 3: There exist two distinct real values
m

(l)
F,kG

< m
(r)
F,kG

such that

1) x′F (m
(l)
F,kG

) > 0, x′F (m
(r)
F,kG

) > 0

2) there exist m(l)
G,k,m

(r)
G,k ∈ R such that xG(m

(l)
G,k) =

−1/m
(l)
F,kG

−σ2 and xG(m
(r)
G,k) = −1/m

(r)
F,kG

−σ2 that
satisfy

a) x′G(m
(l)
G,k) > 0, x′G(m

(r)
G,k) > 0,

b) and

Pk−1 < −
1

m
(l)
G,k

< Pk < −
1

m
(r)
G,k

< Pk+1 (51)

with the convention P0 = 0+, PK+1 =∞.
Assumption 3 states (i) that cluster kG in G is distinct from

clusters (k− 1)G and (k+ 1)G (Item 2b); this is another way
of stating Assumption 1, and (ii) that the points m(l)

F,kG
,

−1/(xG(m
(l)
G,kG

) +σ2) and m(r)
F,kG

, −1/(xG(m
(r)
G,kG

) +σ2)
(which lie on either side of cluster kG in H) have respective
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images x(l)kF , xF (m
(l)
F,kG

) and x
(r)
kF

, xF (m
(r)
F,kG

) by xF ,

such that x′F (m
(l)
F,kG

) > 0 and x′F (m
(r)
F,kG

) > 0, i.e., x(l)kF and

x
(r)
kF

lie outside the support of F , on either side of cluster kF .
However, Assumption 3, be it a necessary and sufficient

condition for the separability of cluster kF , is difficult to
exploit in practice. Indeed, it is not satisfactory to require
the verification of the existence of such m

(l)
F,kG

and m
(r)
F,kG

.
More importantly, the computation of xF requires to know
H , which is only fully accessible through the non-convenient
inverse Stieltjes transform formula

H(x) =
1

π
lim
y→0

∫ x

−∞
mH(t+ iy)dt. (52)

Instead of Assumption 3, we derive here a sufficient condi-
tion for cluster separability in F . Notice from the clustering
of G into KG clusters plus a mass at zero that (50) becomes

x′F (mF ) =
1

mF
2
− 1

c

KG∑
r=1

∫ x+
G,r

x−G,r

t2

(1 + tmF )2
dG(t− σ2)

− c0 − 1

cc0

σ4

(1 + σ2mF )2
, (53)

where we remind that [x−G,i, x
+
G,i] is the support of cluster i in

G, i.e., x−G,1, x
+
G,1, . . . , x

−
G,KG

, x+G,KG
are the images by xG

of the 2KG real solutions to x′G(mG) = 0.
Observe now that the function −t2/(1 + tmF )2, found in

the integrals of (53), has derivative along t(
− t2

(1 + tmF )2

)′
= − 2t

(1 + tmF )4
(1 + tmF ) (54)

and is therefore strictly increasing when mF < −1/t and
strictly decreasing when mF > −1/t. For mF ∈ (−1/(x+G,i+

σ2),−1/x−G,i+1 + σ2), we then have the inequality

x′F (mF ) ≥ 1

mF
2
− 1

c

(
i∑

r=1

(x+G,r + σ2)2

(1 + (x+G,r + σ2)mF )2

+

KG∑
r=i+1

(x−G,r + σ2)2

(1 + (x−G,r + σ2)mF )2
+
c0 − 1

c0

σ4

(1 + σ2mF )2

)
.

(55)

Denote fi(mF ) the right-hand side of (55). Through the
inequality (55), we then fall back on a finite sum expression
as in the previous study of the support of G. In that case,
we can exhibit a sufficient condition to ensure the separability
of cluster kF from the neighboring clusters. Specifically, we
only need to verify that fkG−1(mF,kG) > 0, with mF,kG the
single solution to f ′kG−1(mF ) = 0 in the set (−1/(x+G,kG−1 +

σ2),−1/(x−G,kG + σ2)), and fkG(mF,kG+1) > 0, with
mF,kG+1 the unique solution to f ′kG(mF ) = 0 in the set
(−1/(x+G,kG +σ2),−1/(x−G,kG+1 +σ2)). This is exactly what
Assumption 2 states.

Remember now that we assumed in this section c0 > 1.
If c0 ≤ 1, then 0 is in the support of H and therefore the
leftmost cluster in F , i.e., that attached to σ2, is necessarily
merged with that of P1. This already discards the possibility
of spectrum separation for P1 and therefore P1 cannot be

estimated. It is therefore not necessary to update Assumption
1 for the particular case of P1, when c0 = 1.

Therefore, Assumptions 1 and 2 ensure that (k − 1)F <
kF < (k + 1)F , kF 6= 1, and there exists a constructive way
to derive the mapping k 7→ kF . We are now in position to
determine the contour Ck.

B. Determination of Ck

From Assumption 2 and Proposition 2, there exist x(l)kF and
x
(r)
kF

outside the support of F , on either side of cluster kF ,
such that mF (z) has limits m(l)

F,kG
, mF

◦(x(l)kF ) and m(r)
F,kG

,
mF
◦(x(r)kF ), as z → x

(l)
kF

and z → x
(r)
kF

, respectively, with mF
◦

the analytic extension of mF in the points x(l)kF ∈ R and x(r)kF ∈
R. These limits m(l)

F,kG
and m(r)

F,kG
are on either side of cluster

kG in the support of −1/H , and therefore −1/m
(l)
F,kG

− σ2

and −1/m
(l)
F,kG

− σ2 are on either side of cluster kG in the
support of G.

Consider any continuously differentiable complex path ΓF,k
with endpoints x(l)kF and x

(r)
kF

, and interior points of positive
imaginary part. We define the contour CF,k as the union of
ΓF,k oriented from x

(l)
kF

to x
(r)
kF

and its complex conjugate
Γ∗F,k oriented backwards from x

(r)
kF

to x(l)kF . The contour CF,k is
clearly continuous and piecewise continuously differentiable.
Also, the support of cluster kF in F is completely inside
CF,k, while the supports of the neighboring clusters are away
from CF,k. The support of cluster kG in H is then inside
−1/mF (CF,k),4 and therefore the support of cluster kG in G is
inside CG,k , −1/mF (CF,k)−σ2. Since mF is continuously
differentiable on C \ R (it is in fact holomorphic there [19])
and has limits in x

(l)
kF

and x
(r)
kF

, CG,k is also continuous and
piecewise continuously differentiable. Going one last step in
this process, we finally have that Pk is inside the contour
Ck , −1/mG(CG,k), while Pi, for all i 6= k, is outside
Ck. Since mG is also holomorphic on C \ R and has limits
in −1/mF

◦(x(l)kF ) − σ2 and −1/mF
◦(x(r)kF ) − σ2, Ck is a

continuous and piecewise continuously differentiable complex
path, which is sufficient to perform complex integration [18].

The contours C1,C2,C3 originating from circular integration
contours CF,k of diameter [x

(l)
kF
, x

(r)
kF

], k ∈ {1, 2, 3}, for the
case of Figure 2, are depicted in Figure 10. The points x(l)kF
and x(r)kF for kF ∈ {1, 2, 3} are taken to be x(l)kF = xF (mF,kG),
x
(r)
kF

= xF (mF,kG+1), with mF,i the real root of f ′i(mF ) = 0

in (−1/(x+G,i−1 + σ2),−1/(x−G,i + σ2)) when i ∈ {1, 2, 3},
and we take the convention mG,4 = −1/(15 + σ2).

Recall now that Pk was defined as

Pk = ck
1

2πi

∮
Ck

K∑
r=1

1

cr

ω

Pr − ω
dω. (56)

4we slightly abuse notations here and should instead say that the support
of cluster kG in H is inside the contour described by the image by −1/mF

of the restriction to C+ and C− of CF,k , continuously extended to R in the
points −1/m(l)

F,kG
and −1/m(r)

F,kG
.
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Fig. 10. Integration contours CF,1, CF,2 and CF,3, for c = 10, c0 = 10,
P1 = 1, P2 = 3, P3 = 10.

With the variable change ω = −1/mG(t), this becomes

Pk =
ck
2πi

∮
CG,k

(
mG(t)

[
− 1

mG(t)
+

K∑
r=1

1

cr

Pr
1 + PrmG(t)

]

+
c0 − 1

c0

)
m′G(t)

mG(t)2
dt. (57)

From Equation (12), this simplifies into

Pk =
ck
c0

1

2πi

∮
CG,k

(c0tmG(t) + (c0 − 1))
m′G(t)

mG(t)2
dt. (58)

Using (16) and proceeding to the further change of variable
t = −1/mF (z)− σ2, (58) becomes

Pk =
ck
2πi

∮
CF,k

[(
1

mF (z)
+ σ2

)
zmF (z)mF (z) +

c0 − 1

c0

]
×
−mF (z)mF (z)− zmF

′(z)mF (z)− zmF (z)m′F (z)

z2mF (z)2mF (z)2
dz

(59)

=
ck
2πi

∮
CF,k

[(
1 + σ2mF (z)

)
+
c0 − 1

c0

1

zmF (z)

]
×
[
− 1

zmF (z)
−
mF
′(z)

mF (z)2
− m′F (z)

mF (z)mF (z)

]
dz. (60)

This whole process of variable changes allowed us to
describe Pk as a function of mF (z), the Stieltjes transform
of the almost sure limiting spectral distribution of BN , as
N →∞. It then remains to exhibit a relation between Pk and
the empirical spectral distribution of BN for finite N . This is
to what the subsequent section is dedicated to.

C. Evaluation of P̂k
Let us now define m̂F (z) and m̂F (z) as the Stieltjes

transforms of the empirical eigenvalue distributions of BN

and BN , respectively, i.e.,

m̂F (z) =
1

N

N∑
i=1

1

λi − z
(61)

and

m̂F (z) =
N

M
m̂F (z)− M −N

M

1

z
. (62)

Instead of going further with (59), define P̂k, the “empirical
counterpart” of Pk, as

P̂k =
n

nk

1

2πi

∮
CF,k

[
N

n

(
1 + σ2m̂F (z)

)
+
N − n
n

1

zm̂F (z)

]
×

[
− 1

zm̂F (z)
−

m̂′F (z)

m̂F (z)2
− m̂′F (z)

m̂F (z)m̂F (z)

]
dz.

(63)

The integrand can then be expanded into nine terms, for
which residue calculus [18] can easily be performed. De-
note first η1, . . . , ηN the N real roots of m̂F (z) = 0 and
µ1, . . . , µN the N real roots of m̂F (z) = 0. We identify three
sets of possible poles for the nine aforementioned terms: (i)
the set {λ1, . . . , λN}∩ [x

(l)
kF
, x

(r)
kF

], (ii) the set {η1, . . . , ηN}∩
[x

(l)
kF
, x

(r)
kF

] and (iii) the set {µ1, . . . , µN} ∩ [x
(l)
kF
, x

(r)
kF

]. For
M 6= N , the full calculus leads to

P̂k =
NM

nk(M −N)

 ∑
1≤i≤N

x
(l)
kF
≤ηi≤x(r)

kF

ηi −
∑

1≤i≤N
x
(l)
kF
≤µi≤x(r)

kF

µi



+
N

nk

 ∑
1≤i≤N

x
(l)
kF
≤ηi≤x(r)

kF

σ2 −
∑

1≤i≤N
x
(l)
kF
≤λi≤x(r)

kF

σ2



+
N

nk

 ∑
1≤i≤N

x
(l)
kF
≤µi≤x(r)

kF

σ2 −
∑

1≤i≤N
x
(l)
kF
≤λi≤x(r)

kF

σ2

 . (64)

Details are given in Appendix A. Now, we know from
Theorem 1 that m̂F (z)

a.s.−→ mF (z) and m̂F (z)
a.s.−→ mF (z)

as N →∞. Observing that the integrand in (63) is uniformly
bounded on the compact CF,k, the dominated convergence
theorem [20] ensures P̂k

a.s.−→ Pk.
To go further, we now need to determine which of

λ1, . . . , λN , η1, . . . , ηN and µ1, . . . , µN lie inside CF,k. This
requires a result of eigenvalue exact separation that extends
the earlier results of [21], [17], as follows

Theorem 3: Let Bn = (1/n)T
1
2
nXnX

H
nT

1
2
n ∈ Cp×p, where

we assume the following conditions

1) Xn ∈ Cp×n has entries xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n, ex-
tracted from a doubly infinite array {xij} of independent
variables, with zero mean and unit variance.

2) There exist K and a random variable X with finite fourth
order moment such that, for any x > 0,

1

n1n2

∑
i≤n1,j≤n2

P (|xij | > x) ≤ KP (|X| > x) (65)

for any n1, n2.
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3) There is a positive function ψ(x) ↑ ∞ as x → ∞, and
M > 0, such that

max
ij

E|x2ij |ψ(|xij |) ≤M. (66)

4) p = p(n) with cn = p/n→ c > 0 as n→∞.
5) For each n, Tn ∈ Cp×p is Hermitian nonnegative defi-

nite, independent of {xij}, satisfying Hn , FTn ⇒ H ,
H a nonrandom probability distribution function, almost
surely. T

1
2
n is any Hermitian square root of Tn.

6) The spectral norm ‖Tn‖ of Tn is uniformly bounded
in n almost surely.

7) Let a, b > 0, nonrandom, be such that, with probability
one, [a, b] lies in an open interval outside the support
of F cn,Hn for all large n, with F y,G defined to be the
almost sure l.s.d. of (1/n)XH

nTnXn when H = G and
c = y.

Denote λY1 ≥ . . . ≥ λYp the ordered eigenvalues of the
Hermitian matrix Y ∈ Cp×p. Then, we have that

1) P (no eigenvalue of Bn lies in [a, b] for all large n) =
1.

2) If c(1 −H(0)) > 1, then x0, the smallest value in the
support of F c,H , is positive, and with probability one,
λBn
n → x0 as n→∞.

3) If c(1 − H(0)) ≤ 1, or c(1 − H(0)) > 1 but [a, b] is
not contained in [0, x0], then mF c,H (a) < mF c,H (b) <
0. With probability one, there exists, for all n large,
an index in ≥ 0 such that λTn

in
> −1/mF c,H (b) and

λTn
in+1 > −1/mF c,H (a) and we have

P (λBn
in

> b and λBn
in+1 < a for all large n) = 1. (67)

Theorem 3 is proven in Appendix B.
To apply Theorem 3 to BN in our scenario, we need to

ensure all assumptions are met. Only Items 2-6 need particular
attention. In our scenario, the matrix Xn of Theorem 3 is
( X
W ), while Tn is T ,

(
HPHH+σ2IN 0

0 0

)
. The latter has

been proven to have almost sure l.s.d. H , so that Item 5 is
verified. Also, from the result of [21] upon which Theorem 3 is
based, there exists a subset of probability one in the probability
space that engenders the T over which, for n large enough,
T has no eigenvalues in any closed set strictly outside the
support of H; this ensures Item 6. Now, from construction, X
and W have independent entries of zero mean, unit variance,
fourth order moment and are composed of at most K + 1
distinct distributions, irrespectively of M . Denote X1, . . . , Xd,
d ≤ K + 1, d random variables distributed as those distinct
distributions. Letting X = |X1|+ . . .+ |Xd|, we have that

1

n1n2

∑
i≤n1,j≤n2

P (|zij | > x) ≤ P

(
d∑
i=1

|Xi| > x

)
(68)

= P (|X| > x), (69)

where zij is the (i, j)th entry of ( X
W ). Since all Xi have finite

order four moments, so does X and Item 2 is verified. From
the same argument, Item 3 follows with φ(x) = x2. Theorem
3 can then be applied to BN .

The corollary of Theorem 3 applied to BN is that, with
probability one, for N sufficiently large, there will be no

eigenvalue of BN (or BN ) outside the support of F , and
the number of eigenvalues inside cluster kF is exactly nk.
Since CF,k encloses cluster kF and is away from the other
clusters, {λ1, . . . , λN} ∩ [x

(l)
kF
, x

(r)
kF

] = {λi, i ∈ Nk} almost
surely, for all large N . Also, for any i ∈ {1, . . . , N}, it is
easy to see from (61) that m̂F (z) → ∞ when z ↑ λi and
m̂F (z)→ −∞ when z ↓ λi. Therefore m̂F (z) = 0 has at least
one solution in each interval (λi−1, λi), with λ0 = 0, hence
µ1 < λ1 < µ2 < . . . < µN < λN . This implies that, if k0 is
the index such that CF,k contains exactly λk0 , . . . , λk0+(nk−1),
then CF,k also contains {µk0+1, . . . , µk0+(nk−1)}. The same
result holds for ηk0+1, . . . , ηk0+(nk−1). When the indexes
exist, due to cluster separability, ηk0−1 and µk0−1 belong, for
N large, to cluster kF − 1. We are then left with determining
whether µk0 and ηk0 are asymptotically found inside CF,k.

For this, we use the same approach as in [15], by noticing
that, since 0 is not included in Ck, one has

1

2πi

∮
Ck

1

ω
dω = 0. (70)

Performing the same changes of variables as above, we have
that∮

CF,k

−mF (z)mF (z)− zmF
′(z)mF (z)− zmF (z)m′F (z)

z2mF (z)2mF (z)2
dz

= 0. (71)

For N large, the dominated convergence theorem ensures
again that the left-hand side of the (71) is close to∮
CF,k

−m̂F (z)m̂F (z)− zm̂′F (z)m̂F (z)− zm̂F (z)m̂′F (z)

z2m̂F (z)2m̂F (z)2
dz.

(72)
Residue calculus of (72) then leads to ∑

1≤i≤N
λi∈[x(l)

kF
,x

(r)
kF

]

2−
∑

1≤i≤N
ηi∈[x(l)

kF
,x

(r)
kF

]

1−
∑

1≤i≤N
µi∈[x(l)

kF
,x

(r)
kF

]

1

 a.s.−→ 0.

(73)
Since the cardinalities of {i, ηi ∈ [x

(l)
kF
, x

(r)
kF

]} and {i, µi ∈
[x

(l)
kF
, x

(r)
kF

]} are at most nk, (73) is satisfied only if both
cardinalities equal nk in the limit. As a consequence, µk0 ∈
[x

(l)
kF
, x

(r)
kF

] and ηk0 ∈ [x
(l)
kF
, x

(r)
kF

]. For N large, N 6= M , this
allows us to simplify (64) into

P̂k =
NM

nk(M −N)

∑
1≤i≤N
λi∈Nk

(ηi − µi) (74)

with probability one. The same reasoning holds for M = N .
This is our final relation.

It now remains to show that the ηi and the µi are the
eigenvalues of diag(λ)− 1

N

√
λ
√
λ
T

and diag(λ)− 1
M

√
λ
√
λ
T

respectively. For this, we need the following lemma,
Lemma 1: Let A ∈ RN×N be diagonal with entries

λ1, . . . , λN , and let y ∈ RN . Then the eigenvalues of A−yyH

are the N real solutions of the following equation in x,
N∑
i=1

y2i
λi − x

= 1. (75)
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Proof: Let λ be an eigenvalue of A−yyH. For a certain
non-zero vector x ∈ CN , we then have the equivalent relations

(A− yyH)x = λx, (76)

(A− λIN )x = yHxy, (77)

x = yHx(A− λIN )−1y, (78)

yHx = yHxyH(A− λIN )−1y, (79)

1 = yH(A− λIN )−1y. (80)

Since A is diagonal, denoting ei ∈ CN the vector such that
ei,j = δji , we finally have

N∑
i=1

(yHei)
2

λi − λ
= 1. (81)

Applying Lemma 1 to A = diagλ and y =
√

1
Nλ, we find

that the eigenvalues of diag(λ)− 1
N

√
λ
√
λ
T

are the solutions
of

N∑
i=1

1
N λi

λi − x
= 1, (82)

which is equivalent to

1

N

N∑
i=1

1

λi − x
= 0, (83)

whose solutions are by definition η1, . . . , ηN . The same argu-
ment applies similarly to µ1, . . . , µN . Incidentally, this remark
was already noticed in [22].

We end this section by a short discussion on the conse-
quences of Theorem 2.

D. Discussion

Theorem 2 states that, under spectrum separability condition
for all Pk, k ∈ {1, . . . ,K}, when n1, . . . , nK are known a pri-
ori to the receiver, then P̂1, . . . , P̂K are consistent estimators
for P1, . . . , PK . Now, in practice, it is rare that n1, . . . , nK
and even K are a priori known to the receiver. However, if
separability is assumed, then one can estimate simultaneously
K,n1, . . . , nK and P1, . . . , PK . This is performed by (i)
determining the clusters of the empirical eigenvalues of BN ,
which determines K, (ii) counting the number of eigenvalues
in each cluster to determine the multiplicities n1, . . . , nK and
(iii) evaluating P̂1, . . . , P̂K from Theorem 2.

However, step (i) may not be obvious. In particular, when
the total number n of transmit antennas is small, when the
typical cluster size is large or when the inter-cluster spacing
is small, it is non-trivial to determine what eigenvalues form a
cluster. To solve this critical issue, studies are being currently
carried out that aim to determine second order statistics of
FBN . Thanks to second order statistics on FBN , it will be
possible to design estimators of P1, . . . , PK that take into
account the probability of BN being an appropriate model
for the estimated P̂1, . . . , P̂K̂ for every hypothesis K̂ for the
number of transmit source and every hypothesis (n̂1, . . . , n̂K̂)
for the number of antennas for each of these sources. We
hereafter provide an alternative ad-hoc technique to partially

solve the problem of determining K and n1, . . . , nK based on
Theorems 1 and 2.

In the following, we assume for readability that we know
the number K of transmit sources (taken large enough to cover
all possible hypotheses), some having possibly 0 transmit
antennas. The approach consists in the following steps:

1) we first identify a set of plausible hypotheses for
n1, . . . , nK . This can be performed by inferring clusters
based on the spacing between consecutive eigenvalues:
if the distance between neighboring eigenvalues is more
than a threshold, then we add an entry for a possible
cluster separation in the list of all possible positions of
cluster separation. From this list, we create all possible
K-dimensional vectors of eigenvalue clusters. Obvi-
ously, the choice of the threshold is critical to reduce
the number of hypotheses to be tested;

2) for each K-dimensional vector with number of antennas
n̂1, . . . , n̂K , we use Theorem 2 in order to obtain
estimates of the P̂1, . . . , P̂K (some being possibly null);

3) based on these estimates, we compare the e.s.d. FBN of
BN to the distribution function F̂ defined as the l.s.d. of
the matrix model Ŷ = HP̂X+W with P̂ the diagonal
matrix composed of n̂1 entries equal to P̂1, n̂2 entries
equal to P̂2 etc. up to n̂K entries equal to P̂K . The
comparison can be performed based on different metrics.
In the simulations carried hereafter, we consider as a
metric the mean absolute difference between the Stieltjes
transform of FBN and of F̂ on the segment [−1,−0.1].

Note that the above process can bring an interesting feature
linked to the cluster separability problem discussed along
this article. Indeed, if two subsequent powers Pi and Pi+1

are close to one another, then the separability condition of
Assumptions 1 and 2 is not verified. If one knows ni and
ni+1 and blindly uses the estimator of Theorem 2, the result
can be catastrophic as the estimator is unreliable. On the
contrary, if ni and ni+1 are unknown and one uses the above
process, it is very likely that the distinct sources with close
power will be assumed to be a single source with power
equal to the estimate of (Pi + Pi+1)/2 and embedded with
ni + ni+1 antennas. For practical blind detection purposes
in cognitive radios, this leads the secondary network to infer
a number of transmit entities that is less than the effective
number of transmitters. In general, this would not have serious
consequences on the decisions made by the secondary network
but this might at least reduce the capabilities of the secondary
network to optimally overlay the licensed spectrum. Further
work is also being carried out to go past the cluster separability
assumption; specifically, methods for estimating the number of
Pi associated to any cluster jF are under study.

V. SIMULATIONS

In this section, we provide simulation results to assess
the performance of Theorem 2 when K, and n1, . . . , nK
are known, to compare this performance against alternative
estimation methods and finally to evaluate the performance
of the ad-hoc approach discussed in Section IV-D. In order
to underline some precise features of the advantages of our
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novel method, we will use two simulation models. The first
model, already presented in Figure 2, involves a scenario with
clear separation between clusters, while the second model will
consider the case of co-located clusters.

The estimator of Theorem 2 will be compared against two
methods, which we describe below.

A. Alternative methods

1) Strongly consistent estimator for M � N and N � n:
The first method is the classical estimator that assumes that the
sample dimension M is much larger than the sensor dimension
N , while N is much larger than the source dimension n. In this
case, it is easy to see that the e.s.d. of BN tends to a mass in
σ2. However, the first n eigenvalues of BN are asymptotically
greater than σ2 and it is also clear that the e.s.d. of the
projection of BN on the eigenspace associated to its largest n
eigenvalues tends to K masses in P1 +σ2, . . . , PK +σ2. This
leads to the strongly consistent estimator P̂∞k of Pk given by

P̂∞k =
1

nk

∑
i∈Nk

(λi − σ̂2), (84)

with

σ̂2 =
1

N − n

N−n∑
i=1

λi

and we recall that λ1 ≤ . . . ≤ λN are the eigenvalues of BN .
The strong consistence is with respect to the rates n → ∞,
N/n → ∞ and M/N → ∞. Note that we take an estimator
for σ2 instead of σ2 itself in order to be coherent with Theorem
2 which does not require any a priori information on σ2. We
will refer to this estimator as the classical method.

2) Estimator based on strongly consistent moment esti-
mates: The second method is a technique issued from free
probability theory, which is based on moments of the l.s.d.
of BN . As such, we will refer to this method as the moment
method. It consists in computing the first moments of the e.s.d.
of BN , i.e., 1

N tr
(

1
MYYH

)k
, for k = 1, . . . ,K, from which

the deconvolved moments 1
n (n1P

k
1 + . . .+nKP

k
K) of FP can

be evaluated, see e.g., [23]. These estimated moments can be
expressed as polynomials of the moments of FBN , which is
convenient from a practical point of view although it leads to
serious shortcomings in terms of estimator accuracy. Indeed,
small deviations in the low order moments of FBN around
the corresponding moments of F lead to large deviations in
the estimation of the high order moments of FP.

One can then retrieve the vector (P̂
(mom)
1 , . . . , P̂

(mom)
K )

whose distribution function has for first K moments the first K
estimated moments of FP. This is performed using Newton-
Girard polynomial formulas [24], which boils down to finding
the roots of a polynomial of order K. The value P̂ (mom)

k is
the estimate of Pk. Computing P̂ (mom)

k requires in particular
that K,n1, . . . , nK and σ2 are known. The main shortcoming
of the Newton-Girard inversion is that the polynomial to be
solved may have purely imaginary roots. This issue, added to
the deviations in the estimated moments, contribute to rather
poor estimation accuracies unless the system dimensions are
very large. However, as opposed to the classical method and

the novel Stieltjes transform approach, the moment method
does not require any assumption of cluster separability to be
valid.

B. Results

1) Cluster separability limit: We start with a demonstration
of the performance of the novel estimator with respect to the
satisfaction of the cluster separability assumption. We consider
the model presented in Figure 2, i.e., K = 3, P1 = 1, P2 = 3,
P3 = 10, n1/n = n2/n = n3/n = 1/3 and n/N = N/M =
1/10. The SNR, defined as SNR = 1/σ2, ranges from −15 dB
to 20 dB. The entries of X are QPSK-modulated and those of
H and W are Gaussian distributed. In Figure 11, we present
simulation results in terms of normalized mean square error
(NMSE) in the estimates of the individual Pk, both for n = 60
and n = 6. For future need, we define this system model with
n = 6 as Scenario (a). The NMSE for power Pk is given by

NMSE = E

[
(Pk − P̂k)2

P 2
k

]
, (85)

where the expectation is taken over the random realizations of
the matrices H, X and W.

Note how steep the mean square error curves increase below
a given SNR value. This intuitively corresponds to the tipping
point where the cluster separability assumptions are no longer
verified. Especially here, this corresponds to the point where
Assumption 2 no longer holds. Now, remembering the results
of Figure 6, observe that the horizontal line c = 10 crosses
the respective curves of validity of Assumption 2 around the
SNR values where Figure 11 shows steep curve increase.
This indicates that our novel estimator is indeed inappropriate
when Assumption 3 is not satisfied. This also validates the
accuracy of Assumption 2, which we recall is only a sufficient
condition for cluster separability. Note also that, as long as
cluster separation is achieved, the performance of the Stieltjes
transform algorithm goes quickly down to a constant level
(with respect to the SNR) which is a function of the amplitude
of the values of n, N and M .

2) Performance comparison: We first compare the classical
method against the novel Stieltjes transform approach for
Scenario (a). Under the hypotheses of this scenario, the ratios
c and c0 equal 10, leading therefore the classical detector to
be almost asymptotically unbiased. We therefore suspect that
the NMSE performance for both detectors is alike. This is
described in Figure 12, which suggests as predicted that in
the high SNR regime (when cluster separability is reached) the
classical estimator performs similar to the Stieltjes transform
method. However, it appears that a 3 dB gain is achieved by the
Stieltjes transform method around the position where cluster
separability is no longer satisfied. This translates the fact that,
when subsequent clusters tend to merge as σ2 increases, the
Stieltjes transform method manages to track the position of the
powers Pk while the classical method keeps assuming each
Pk is located at the center of cluster kF . This observation is
very similar to that made in [25], where an improved MUSIC
estimator is introduced that pushes further the SNR position
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Fig. 11. Normalized mean square error of individual powers P̂1, P̂2, P̂3,
P1 = 1, P2 = 3, P3 = 10, n1/n = n2/n = n3/n = 1/3 ,n/N =
N/M = 1/10, for 10, 000 simulation runs.
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Fig. 12. Normalized mean square error of individual powers P̂1, P̂2, P̂3,
P1 = 1, P2 = 3, P3 = 10, n1/n = n2/n = n3/n = 1/3 ,n/N =
N/M = 1/10, n = 6. Comparison between classical and Stieltjes transform
approach.

where the performance of the classical MUSIC estimator
decays significantly.

We now consider another model, for which the classical
estimator is largely biased. We now take K = 3, P1 = 1/16,
P2 = 1/4, P3 = 1, n1/n = n2/n = n3/n = 1/3 and
n = 12, N = 24 and M = 128. The entries of X are
still QPSK-modulated while the entries of H and W are still
independent standard Gaussian. This model is further referred
to as Scenario (b). We first compare the performance of the
classical, Stieltjes transform and moment estimators for an
SNR of 20 dB. Figure 13 depicts the distribution function of
the estimated powers in logarithmic scale. The Stieltjes trans-
form method appears here to be very precise and seemingly
unbiased. On the opposite, the classical method, with a slightly
smaller variance shows a large bias as was anticipated. As for
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Perfect estimate

Fig. 13. Distribution function of the estimators P̂∞k , P̂k , P̂ ′k and P̂ (mom)
k

for k ∈ {1, 2, 3}, P1 = 1/16, P2 = 1/4, P3 = 1, n1 = n2 = n3 = 4
antennas per user, N = 24 sensors, M = 128 samples and SNR = 20 dB.
Optimum estimator shown in dashed lines.

the moment method, it shows rather accurate performance for
the stronger estimated power, but proves very inaccurate for
smaller powers. This entails from the inherent shortcomings
of the moment method. The performance of the estimator P̂ ′k
will be commented in Section V-B3.

We then focus on the estimate for the larger power P3 and
take now the SNR to range from −15 to 30 dB under the
same conditions as previously and for the same estimators.
The NMSE for the estimators of P3 is depicted in Figure 14.
The curve marked with squares will be commented in Section
V-B3. As already observed in Figure 13, in the high SNR
regime, the Stieltjes transform estimator outperforms both
alternative methods. We also notice the SNR gain achieved by
the Stieltjes transform approach with respect to the classical
method in the low SNR regime, as already observed in Figure
12. However, it now turns out that in this low SNR regime,
the moment method is gaining ground and outperforms both
cluster-based methods. This is due to the cluster separability
condition which is not a requirement for the moment approach.
This indicates that much can be gained by the Stieltjes
transform method in the low SNR regime if a more precise
treatment of overlapping clusters is taken into account.

3) Joint estimation of K, nk, Pk: So far, we have assumed
that the number of users K and the number of antennas
per user nk were perfectly known. As discussed in Section
IV-D, this may not be a strong assumption if it is known by
advance how many antennas are systematically used by every
source or if another mechanism, such as in [9], can provide
this information. Nonetheless, these are in general strong
assumptions to take. Based on the ad-hoc method described
in Section IV-D, we therefore provide the performance of our
novel Stieltjes transform method in the high SNR regime when
only n is known; this assumption is less stringent as in the
medium to high SNR regime, one can easily decide which
eigenvalues of BN belong to the cluster associated to σ2
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Fig. 14. Normalized mean square error of largest estimated power P3,
P1 = 1/16, P2 = 1/4, P3 = 1, n1 = n2 = n3 = 4 ,N = 24, M = 128.
Comparison between classical, moment and Stieltjes transform approaches.

and which eigenvalues do not. We denote P̂ ′k the estimator
of Pk when K and n1, . . . , nK are unknown. We assume
for this estimator that all possible combinations of 1 to 3
clusters can be generated from the n = 6 observed eigenvalues
in Scenario (a) and that all possible combinations of 1 to
3 clusters with even cluster size can be generated from the
n = 12 eigenvalues of BN in Scenario (b). For Scenario
(a), the NMSE performance of the estimators P̂k and P̂ ′k is
proposed in Figure 15 for the SNR ranging from 5 dB to 30
dB. For Scenario (b), the distribution function of the inferred
P̂ ′k is depicted in Figure 13, while the NMSE performance for
the inference of P3 is proposed in Figure 14; these are both
compared against the classical, moment and Stieltjes transform
estimator. We also indicate in Table V-B3 the percentage of
correct estimation of the triplet (n1, n2, n3) for both Scenario
(a) and (b). In Scenario (a), this amounts to 12 such triplets
that satisfy nk ≥ 0, n1 + n2 + n3 = 6, while in Scenario
(b), this corresponds to 16 triplets that satisfy nk ∈ 2N,
n1 + n2 + n3 = 12. Observe that the noise variance, assumed
to be known a priori in this case, plays an important role
with respect to the statistical inference of the nk. In Scenario
(a), for an SNR greater than 15 dB, the correct hypothesis
for the nk is almost always taken and the performance of
the estimator is similar to that of the optimal estimator. In
Scenario (b), the detection of the exact cluster separation is
less accurate and the performance for the inference of P3

saturates at high SNR to −16 dB of NMSE, against −19
dB when the exact cluster separation is known. It therefore
seems that in the high SNR regime the performance of the
Stieltjes transform detector is loosely affected by the absence
of knowledge about the cluster separation. This statement is
also confirmed by the distribution function of P̂ ′k in Figure 13,
which still outperforms the classical and moment methods. We
underline again here that this is merely the result of an ad-hoc
approach; this performance could be greatly improved if e.g.,
more is known about the second order statistics of FBN .

SNR RCI (a) RCI (b)
5 dB 0.8473 0.1339
10 dB 0.9026 0.4798
15 dB 0.9872 0.4819
20 dB 0.9910 0.5122
25 dB 0.9892 0.5455
30 dB 0.9923 0.5490

TABLE I
RATE OF CORRECT INFERENCE (RCI) OF THE TRIPLET (n1, n2, n3) FOR

SCENARIOS (A) AND (B).
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Fig. 15. Normalized mean square error of individual powers P̂1, P̂2, P̂3

and P̂ ′1, P̂ ′2, P̂ ′3, P1 = 1, P2 = 3, P3 = 10, n1/n = n2/n = n3/n = 1/3
,n/N = N/M = 1/10, n = 6, 10, 000 simulation runs.

VI. CONCLUSION

In this paper, a blind multi-source power estimator was
derived. Under the assumptions that the ratio between the
number of sensors and the number of signals sources is not too
small and the source transmit powers are sufficiently distinct
from one another, we derived a method to infer the individual
source powers if the number of sources is known, which
was shown to outperform alternative estimation techniques in
the medium to high SNR regime. We then briefly discussed
the joint estimation of the number of transmit sources, the
number of antennas of each source and the transmit powers,
which appeared in simulation to perform well in the high
SNR regime. The novel method is moreover computationally
efficient and is particularly robust to small system dimensions.
As such, it is particularly suited to the blind detection of
primary mobile user in future cognitive radio networks.
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APPENDIX A
RESIDUE CALCULUS

The integrand of P̂k in (63) can be expanded as

− N

n

1

zm̂F (z)
− N

n

m̂′F (z)

m̂F (z)2
− N

n

m̂′F (z)

m̂F (z)m̂F (z)

− N − n
n

1

z2m̂F (z)m̂F (z)
− N − n

n

m̂′F (z)

zm̂F (z)2m̂F (z)

− N − n
n

m̂′F (z)

zm̂F (z)2m̂F (z)
− Nσ2

n

1

z
− Nσ2

n

m̂′F (z)

m̂F (z)

− Nσ2

n

m̂′F (z)

m̂F (z)
(86)

First assume the case M 6= N . Numbering the nine terms in
order, we have that (1) has poles in z ∈ {η1, . . . , ηN}, where
m̂F (z) = 0. Applying l’Hospital rule, all poles have order 1
and the corresponding residues are

lim
z→ηi

−N
n

z − ηi
zm̂F (z)

= −N
n

1

ηim̂′F (ηi)
(87)

As for (2), it is the derivative of −1/m̂F (z), which is well-
behaved inside CF,k, so it does not have poles. The term (3)
has poles of order 1 in z ∈ {η1, . . . , ηN} as well and we have
the residue

lim
z→ηi

−N
n

(z − ηi)m̂′F (z)

m̂F (z)m̂F (z)
= −N

n

N

M −N
m̂′F (ηk)

m̂′F (ηk)
ηk (88)

the last equality being obtained from the fact that

m̂F (z) =
M

N
m̂F (z) +

M −N
N

1

z
(89)

and m̂F (ηi) = 0. It also has poles in z ∈ {µ1, . . . , µN}, where
m̂F (z) = 0. These are order 1 poles and we have

lim
z→µi

−N
n

(z − µi)m̂′F (z)

m̂F (z)m̂F (z)
=
N

n

M

M −N
µk (90)

Term (4) is shown in a similar way to have residues
−N−nn

N
M−N

1
ηi
m̂′F (ηi) and N−n

n
M

M−N
1
µi
m̂′F (µi) , i ∈

{1, . . . , N}. Term (5) has residues N−n
n

NM
(M−N)2 ηi and

−N−nn
M2

(M−N)2
µim̂

′
F (µi)

m̂′F (µk)
, i ∈ {1, . . . , N}. Term (6) has

residues −N−nn
N2

(M−N)2
ηim̂

′
F (ηi)

m̂′F (ηi)
and N−n

n
MN

(M−N)2µi, i ∈
{1, . . . , N}. Term (7) has a pole in z = 0 but we already
know that 0 is not inside CF,k, so this is already discarded.
Term (8) has poles in z ∈ {λ1, . . . , λN} of residue Nσ2

n and
poles in z ∈ {η1, . . . , ηN} of residue −Nσ

2

n . Similarly term
(9) has poles in z ∈ {λ1, . . . , λN} of residue Nσ2

n and poles
in z ∈ {µ1, . . . , µN} of residue −Nσ

2

n .
Summing together the 9 terms and remarking that

N

M −N
m̂′F (z) =

M

M −N
m̂′F (z)− 1

z2
(91)

we obtain exactly (64).
Assume now M = N , in which case m̂F (z) = m̂F (z).

It can be readily seen that the terms (4) to (6) are the
derivative of −N−nn

1
z2m̂F (z) , so that they have residue 0.

The only remaining term here is (1), whose residues are the
−Nn

1
ηim̂′F (ηi)

.

APPENDIX B
PROOF OF EXACT SEPARATION

Theorem 3 is a generalization from the assumption of iden-
tical distribution of the xij’s, the proof of which is contained in
the two papers [21] and [17], which, with some modifications,
appear as Chapter 6 in [16]. The proof uses previous articles
that need to be updated as well. We shall therefore go through
the necessary steps that need to be modified, taking reference
to all papers successively.

We shall assume for simplicity in the following that the
matrices Tn are deterministic, converges in distribution to
H and that ‖Tn‖ is uniformly bounded. The generalization
to random Tn follows from Tonelli’s theorem [20]. Indeed,
let X be the probability space that engenders the Xn and
T the probability space that engenders the Tn. Let A be
any of the events in Conclusion 1), 2), or 3), claimed to
occur with probability one. Assume that Theorem 3 holds for
deterministic Tn satisfying Assumptions 5), 6), and 7). Let
t ∈ T be an element of the intersection of these events. Then
IA(t, x) = 1 for all x contained in a subset of X having
probability one. Therefore, by Tonelli’s theorem, denoting
T × X the product space of T and X, we have that∫

T×X
IA(t, x)dPT×X(t, x)

=

∫
T

[∫
X

IA(t, x)dPX(x)

]
dPT(t) = 1, (92)

and Theorem 3 therefore holds true if it holds true for Tn

deterministic.

A. Extension of [26]

The first step is to extend the work in [26] on the largest
eigenvalue of Sn = 1

nXnX
H
n , where Xn = (xij) is p × n,

p = p(n), and p/n → y > 0 as n → ∞. Checking the
assumptions in [26], we change the six conditions of Page
518 to

(1) xij , i = 1, 2, . . . , p; j = 1, 2, . . . , n are independent for
each n,

(2) |xij | < ηn
√
n, where ηn ↓ 0,

(3) Exij = 0,
(4) E|x2ij | ≤ 1,
(5) E|xij |l < (ηn

√
n)l−1, for l ≥ 2,

(6) E|xlij | ≤ c(ηn
√
n)l−3, for l ≥ 3.

By the same argument given there (no difference for com-
plex random variables), the inequality

E tr(Sn)k ≤ ηk (93)

holds for any η > b ≡ (1 +
√
y)2 provided k is chosen such

that
(a) k/ log n→∞,
(b) η

1
6
n k/ log n→ 0.

This implies that P(λmax(Sn) > b + ε) = o(n−t) for any
given ε > 0 and t > 0.

Remark 3: Notice that if Condition (4) is replaced by
E|x2ij | ≤ ι, where ι is a fixed positive constant, then we have

P(λmax(Sn) > ι(b+ ε)) = o(n−t). (94)
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We only need to consider the matrix ι−1Sn and replace xij
by ι−1/2xij to verify the six conditions.

B. First step truncation and renormalization

We consider SnTn, where the assumptions of Theorem 3
are met, except the Tn are assumed nonrandom. Here, to be
consistent with Chapter 6 of [16], we replace cn with yn and
c with y.

Notice, from the identity

EY 4 =

∫ ∞
0

P (Y > x1/4)dx, (95)

valid for any nonnegative random variable Y , that (ii) implies
the fourth moments of the xij exist.

We will need the following identity later on. For nonnegative
Y having finite fourth moment, since EY 4I(Y > y) ≥
y4P (Y > y), we have y4P (Y > y) → 0 as y → ∞. Thus,
using integration by parts, we have for any a > 0

EY 4I(Y > a)

= a4P (Y > a) + lim
y→∞

(−y4P (Y > y) +

∫ y

a

4x3P (Y > x)dx)

(96)

= a4P (Y > a) +

∫ ∞
a

4x3P (Y > x)dx. (97)

We choose ηn ↓ 0 such that ηn
√
n ↑ ∞, lim infn η

2
n

√
n >

0, and
∞∑
k=1

22kP (|X| > η̃k2k/2) <∞, (98)

where η̃k = η2k .
1. Truncation. Define yij = xijI(|xij | ≤ η

√
n), Yn =

(yij)p×n and Ŝn = 1
nYnY

H
n . We have

P (Xn 6= Yn, i.o.)

≤ lim
m→∞

∞∑
k=m

P

 2k+1⋃
n=2k+1

⋃
i≤p,j≤n

{|xij | > ηn
√
n}

 (99)

≤ lim
m→∞

∞∑
k=m

P

 2k+1⋃
n=2k+1

⋃
i≤2yn,j≤n

{|xij | > η̃k2k/2}


(100)

= lim
m→∞

∞∑
k=m

P

 ⋃
i≤y2k+2,j≤2k+1

{|xij | > η̃k2k/2}

 (101)

= 8yK lim
m→∞

∞∑
k=m

22kP
(
|X| > η̃k2k/2

)
= 0. (102)

2. Centralization. Define zij = yij − Eyij and Zn =

(zij)p×n and S̃n = 1
nZnZ

H
n . Then by Theorem A. 46 of [16]

and the above identity, we have

max
k≤p
|λ

1
2

k (ŜnTn)− λ
1
2

k (S̃nTn)|

≤ ‖T
1
2
n‖‖n−

1
2 E(Yn)‖ (103)

≤

 1

n

∑
ij

|Eyij |2
 1

2

(104)

=

 1

n

∑
ij

|ExijI(|xij | > ηn
√
n)|2

 1
2

(105)

≤

 1

η4nn
3

∑
ij

E|x2ij |E|x4ij |I(|xij | > ηn
√
n)

 1
2

(106)

≤
(
Knp

η4nn
3

E|X4|I(|X| > ηn
√
n)

) 1
2

→ 0. (107)

3. Rescaling. Define wij = zij/σij , Wn = (wij)p×n and
S̆n = 1

nWWH
n . Then, by Theorem A. 46 of [16],

max
k≤p
|λ

1
2

k (S̆nTn)− λ
1
2

k (S̃nTn)|

≤ ‖T
1
2
n‖‖n−

1
2 (Zn −Wn)‖ (108)

≤
∥∥∥∥ 1√

n

[
zij(1− λ−1ij )

]∥∥∥∥→ 0, a.s. (109)

because of (94) and the fact that

max
i,j
|1− λ2ij | (110)

≤ max
ij

[E|x2ij |I(|xij | > η
√
n) + (E|xij |I(|xij | > η

√
n))2]

(111)

≤ 2ψ−1(η
√
n) max

ij
E|x2ij |ψ(|xij |)→ 0 (112)

which implies that

max
ij

E|wij − zij |2 = max
ij

(1− λ2ij)2

(1 + λij)2
→ 0. (113)

C. Second truncation and normalization

We may assume now that the xij satisfy the six conditions
of Section B-A with Condition (4) strengthened to E|x2ij | = 1
for all i, j.

Define yij = xijI(|xij | ≤ C)−ExijI(|xij | ≤ C) for some
large constant C and define Yn = (yij)p×n, Ŝn = 1

nYnY
H
n .

Then by Theorem A. 46 of [16], we have

max
k≤p
|λ

1
2

k (ŜnTn)− λ
1
2

k (S̃nTn)|

≤ ‖T
1
2
n‖
∥∥∥n−1/2(Xn −Yn)

∥∥∥ (114)

≤
∥∥∥n−1/2(Xn −Yn)

∥∥∥ . (115)

Since E|xij − yij |2 ≤ E|x2ij |I(|xij | > C) ≤M/ψ(C), this
can be made arbitrarily small by making C sufficiently large.
We can then apply (94).
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The rescaling is the same as given in last Section. Now we
have

max
ij
|1− σ2

ij | ≤ 2ψ−1(C) max
ij

E|x2ij |ψ(xij), (116)

which can be made arbitrarily small by making C sufficiently
large.

D. Extension of [27] and Chapter 6 of [16]

The result in [27] on the smallest eigenvalue, λmin(Sn),
of Sn can be extended with only Assumptions 1), 2), 3) of
Theorem 3. Indeed, using the two step truncations, we may
assume the xij are bounded, with mean 0 and variance 1.
Following the same steps as in [27], one may prove that when
y < 1

λmin(Sn)→ (1−√y)2, (117)

almost surely.
We proceed now to the necessary changes in Chapter 6 in

[16]. We may now assume the same conditions as in Section
6.2.1 of [16] on the xij (except they need not be identically
distributed), and the bounds appearing there. The changes are
needed wherever identical distribution was exploited.

We begin with Page 139, below (6.2.34). We change the
definition of bn to

bn =
1

1 + n−1E tr(TnD−1)
, (118)

and introduce the quantities

bnj =
1

1 + n−1E tr(TnD
−1
j )

. (119)

The argument below (6.2.35) is specific for j = 1, but easily
extends for any j. Following the argument below (6.2.36), we
can no longer assume Eβ1 = −zEsn, nor is bounded, but we
have

sup
u∈[a,b]

∣∣∣∣∣ 1n∑
k

Eβk

∣∣∣∣∣ ≤ K. (120)

We further have

bnk = βk + βkbnkγk. (121)

Then, using (6.2.36)

1

n

∣∣∣∣∣∑
k

(bnk − Eβk)

∣∣∣∣∣ ≤ Kn−1∑
k

v−2n (E|γk|2)
1
2 (122)

≤ v−3n n−
1
2 . (123)

Since bnj − bn = bnbnjE( 1
n trT(D−1 −D−1j )), we have,

using Lemma 6.9 of [16]∣∣∣∣∣bn − 1

n

∑
k

bnk

∣∣∣∣∣ =
1

n

∣∣∣∣∣∑
k

(bn − bnk)

∣∣∣∣∣ ≤ |z|2 1

nv3
, (124)

and
|bnk − bn| ≤ K

1

nv3
. (125)

Thus we have

max
j

sup
u∈[a,b]

|bnj | ≤ K. (126)

For the rest of Section 6.2.3, bn is mentioned twice. We need
to replace it with bnj and the arguments go through without
any further changes.

For Section 6.2.4, (6.2.42) needs to be replaced by

yn

∫
dHn(t)

1 + tEsn
+ zynE(sn(z)) (127)

=
1

n

n∑
k=1

Eβk
[
rHkD

−1
k (EsnTn + I)−1rk

− 1

n
E tr(EsnTn + I)−1TnD

−1
]
. (128)

For the rest of the section, replace subscript 1 with subscript
k, subscript 2 with subscript j, replace b1n with

bkj =
1

1 + n−1E tr(TnDkj)−1
, k 6= j, (129)

and all appearances of subscripts kj assume k 6= j. Fnkj has
the obvious definition. Replace the summations for j ranging
from 2 to n with j 6= k. All the bounds derived for k = 1
are true for all k. So we conclude the left side of (6.2.42) is
bounded by kn−1.

The rest of Chapter 6 follows without any changes.
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