
Dependency Graph for Requirements
Structuring based on Guidance Ontology

N. Darragi and S. Collart-Dutilleul and E.M. El-Koursi and P. Bon

Abstract

The modeling process aims to define and analyse requirements for testing phys-
ical scale systems such as robotic surgery machines, railway signalling and control
systems, nuclear reactor control systems, etc... These safety-critical systems whose
failure may result in severe human or physical damage, are designed to be testable
and verifiable before their implementation. To understand the system specifications
and its functionalities, different types of models are used and each one reflects a
viewpoint of a particular scope. Furthermore, its aim is to risk analysis and perfor-
mance testing.

Our approach is based on goal-oriented requirements elicitation, structuring and
analysis. To automate the latter requirements engineering processes it is crucial that
we involve expert knowledge. This process needs to be split into several steps. This
work is limited to present techniques to obtain specifications dependency graphs
from a set of requirements to determine the global goal model.

This paper presents a domain independent framework for operational require-
ments modeling beside of specifications structuring technique based on Guidance
Ontology. The present work focuses on improving the performance of structuring
techniques through a pattern recognition based on a guidance ontology. This ap-
proach is shown to enable the structuring process automation by making use of
domain ontologies as an expert knowledge base and capitalization.

N. Darragi and S. Collart-Dutilleul and E.M. El-Koursi and P. Bon
IFSTTAR-ESTAS, 20 RUE ELISEE RECLUS, BP 70317, F-59666 VILLENEUVE
D’ASQ, FRANCE, e-mail: (nesrine.darragi,simon.collart-dutilleul,el-miloudi.el-koursi,
philippe.bon)@ifsttar.fr

1

ha
l-0

10
05

00
3,

 v
er

si
on

 1
 - 

11
 J

un
 2

01
4

Author manuscript, published in "4th International academic-industrial conference on Complex Systems Design & Management
(CSD&M), France (2013)"

http://hal.archives-ouvertes.fr/hal-01005003
http://hal.archives-ouvertes.fr


2 N. Darragi and S. Collart-Dutilleul and E.M. El-Koursi and P. Bon

1 Introduction

The requirements are a non-formal description of user needs or system require-
ment specifications noted SRS. ”It is a statement that identifies a product or process
operational, functional, or design characteristics or constraints, which are unam-
biguous, testable or measurable, and necessary for product or process acceptability
(by consumers or internal quality guidelines).” (see [IEEE (1998)]). The interpre-
tation of the requirement specifications may lead to a misunderstanding between
development engineers, system analysts and domain experts. In fact, between the
real needs of the user, and what the expert expressed and all transformations by
modeling techniques and what these techniques offer as an abstraction in a specific
viewpoint, there is a risk of having different understandings of the requirements.
The ambiguity and the incompleteness of requirements, which lead to the inaccu-
racy or incorrectness of the system, are mainly due to the difference between the
viewpoints. Therefore it is important to share domain knowledge between different
stakeholders during the development process. In requirement engineering, the use
of ontology’s aim is the knowledges standardization [Kaiya et al.(2005)].

Ontologies are used primarily in the context of the Semantic Web [Dieng et al.(2001)]
and [Sowa(1999)]. Recently, they have been used in the field of software engineer-
ing [Happel et al.(2006)] thanks to their adaptability to semantics and reasoning.
Furthermore, they have been used in software maintenance [Dameron(2005)]and
requirement engineering.

In contrast to existing works, which use ontologies to generate system specific
models, this paper introduces a methodology where, based on specifications in text
and diagram forms, where an assisted generator produces a system specific model.

The paper is organized into five sections. After a short introduction, the section
2 describes a domain independent framework architecture for requirements struc-
turing and we briefly introduce our guidance ontology regarding requirements engi-
neering.. The section 3 and the section 4 are devoted to present requirements struc-
turing approach to produce template specifications and control dependency graphs.
In the section 5, we discuss an algorithm of dependency graph construction from a
flowchart.

2 Domain Independent Framework

There is a need of system specific glossary suited to stakeholders, subsystems and
functions collected from the system requirement specifications. We also require do-
main ontology specific to the system domain in order to instantiate glossary entries
over a range of high level concepts and relationships. The figure 1 shows the re-
lationship between system specific knowledge (SRS and glossary), the system do-
main knowledge (Domain Ontology) and the systems of specification elicitation and
structuring.

ha
l-0

10
05

00
3,

 v
er

si
on

 1
 - 

11
 J

un
 2

01
4



Dependency Graph for Requirements Structuring based on Guidance Ontology 3

Fig. 1 Domain Independant Framework Architecture

As the input of our framework, the customer provides a system requirement spec-
ifications and an SRS glossary which is a type of book glossary. This helps the sys-
tem to capture customer’s keywords in specifications. Another important and neces-
sary input is the domain ontologies. Since the framework is an independent domain
engine, the system needs specific domain knowledge for each input specification if
it is in new domain which the system did not handle before. All input knowledge
such as a domain ontology. For example, if we are handling specifications of a rail-
way control system, the framework needs a railway domain ontology. In our case,
we propose a guidance ontology of the railway domain to structure railway control
system specifications.

2.1 Keywords Base

Our Keywords Base (KeywordsBase),is a table that contains words which deter-
mine different parts of the sentence such as {shall, while, every, if,...}. These indi-
cators are identified by hand analysing and determining frequently used words and
structures. We may identify many groups for these indicators based on its semantics.
We propose to extend the classification provided by [?] to cover the maximum of
requirement structures. The following list indicates possible categories of keywords.

• Imperatives: shall, must, must not, is required to, are applicable, is responsible
for, will, should,...

• Continuances: below, as follows, following, listed, in particular, support,...
• Directives: figure, table, for example, note, reference, see section, refer to, fol-

lowing {ref}, e.g,...

ha
l-0

10
05

00
3,

 v
er

si
on

 1
 - 

11
 J

un
 2

01
4



4 N. Darragi and S. Collart-Dutilleul and E.M. El-Koursi and P. Bon

• Options: can, may, optionally,...
• Transfer: go to, leads to,...
• Conditionals: if, then, otherwise, once, in preparation, when, with, ...
• Timed: immediately, later, at least, every, after, between, globally, not less than,

exactly...
• Weak Phrases: adequate, as a minimum, if practical, as applicable, easy, as ap-

propriate, be able to, be capable, but not limited to, capability of, effective, if
practical, normal, provide for, timely, obvisouly, clearly, certainly, some, sev-
eral, many, etc., and so on, such as, tubed,...

• Other Keywords: although, how, via, but, since, composed of not less than,
from, of,...

2.2 The guidance Ontology

To automatically handle the semantics of our system, we need a description of the
ontology presented by UML class diagrams. UML Profile is used to extend and
customize UML models for a particular purpose of a particular domain.

According to Ontology Definition Metamodel (ODM) [OMG(2009)], a Profile
UML is proposed in this part to describe our ontology which is an Ontology UML
Profile (OUP). Many works use UML and other software engineering techniques
not only to develop ontologies in order to use existing advanced tools and standards
but also to make ontologies understanding easier.

Fig. 2 Concepts and properties of the domain ontology

In figure 2 we present a part of domain ontology. The first diagram defines the
concepts and the second shows the relationships between different concepts called
properties. We use UML class diagrams for the sake of simplicity, but also because
we believe that it is sufficient to present our ontology,i.e. the concepts and relation-
ships between them. We will include specific relations in UML as our list of prop-
erties (Generalize, Aggregate, Associate, Compose). This list is needed to show the

ha
l-0

10
05

00
3,

 v
er

si
on

 1
 - 

11
 J

un
 2

01
4



Dependency Graph for Requirements Structuring based on Guidance Ontology 5

dependencies between the different concepts represented as classes. In this work we
will not show the specifications hierarchy but this relationships list will be useful in
the next step of our methodology. This ontology is specific to a domain so it must be
generic so as to enable the hierarchical analysis. The list of properties is enhanced
by a standard predefined UML dependency (Derive, Realize, Permit, Refine, Trace,
Use, Substitute, Send).

We introduce a new property, called Respect. This is a property necessary in
this context to show strong dependencies between requirements. It is used in cases
where a requirement must follow a concept, definition, rule, standard or other re-
quirement. The ontology concepts in the field of requirements engineering, includ-
ing safety requirements are defined in a general context. This allows us to represent
the requirement specifications . Properties will be used not only to define the rela-
tionships between different concepts in the same requirement, but also to define the
links between the requirements and traceability. The meta-model of (Fig. 3)

Fig. 3 Part of Guidance ontology Meta-model

3 From requirements to templated specifications

In the first step of algorithm 1, we extract sentences from SubRS. Each sentence
is split into different parts. If a list of sentence elements are not empty and the
sentence parts are unitary, we may resume processing. This is what we referred to
in the algorithm as ”understand”. If it is not possible to ”understand” the sentence,
we ask the assistance of a SubRS expert. The detectKeywords function uses
a table of ”keywords” KeywordsBase. When keywords are detected, we try to
determine the appropriate pattern by detectPattern. We use patterns to identify
the structure of requirements. We proposed various patterns to handle SubRS by
detecting keywords.

We analyse in the next phase of the same step the structure of sentence based
on keywords and we classify it as a statement, a conditional sentence (in case of

ha
l-0

10
05

00
3,

 v
er

si
on

 1
 - 

11
 J

un
 2

01
4



6 N. Darragi and S. Collart-Dutilleul and E.M. El-Koursi and P. Bon

if-then-else, when-then,...) or a transfer sentence (go to, leads to). Finally, we apply
a pattern from PatternBase or we create it if we are dealing with a new sentence
structure. Example 1 shows a possible structure of a statement. Example 2 shows
the structure of a transfer sentence. A conditional sentence is handled by pattern like
the one shown in example 3.

This sentence categorization is not the unique or the best classification but we
need to know information about dependencies between specifications and about the
conditions of transitions between subsystem states.

The detection pattern callable unit shown by algorithm 3, returns a pattern of each
statement after detecting instances of every statement element. detectInstance
uses SubRS glossary and places them on InstStack. All detected patterns are also
placed in the StructSpec table.

Example 1. Subsystem shall function object every performance units

Example 2. Some Transfer patterns:
Subsystem leads to [Requirement Ref]
Subsystem go to [Requirement Ref]

Example 3. If subsystem property is state , / then [Declarative pattern Or
transfer pattern]

If no pattern is detected, we create a new one based on its meta-model. The
function is shown by algorithm 2.
In this step, we are unable to identify real attributes such as the real subsystem
or in the instance of state related to the property of the subsystem in example 3.
We need a type of knowledge base to help us to determine possible attributes of
existing concepts. Patterns contain high level concepts that have to be instantiated
for every SubRS in a lower level of abstraction. Structuring specifications leads to
the separation of domain knowledge from operational knowledge. What we need is
a finite list of terms such as a glossary. This will be a SubRS related glossary that
heritates from a high level light ontology shown in the next section.

4 From Structured Specification to Control Dependence Graph

The second part concerns the construction of a dependency graph from structured
segments. This procedure translates the transfer statement (contains go to or leads
to .. ) into two nodes connected by directed edge from the source reference to des-
tination reference. The translation of a structured specification which does not con-
tain a transfer statement is more complicated. When specification is a conditional or
declarative statement, a semantic analysis is necessary.

ha
l-0

10
05

00
3,

 v
er

si
on

 1
 - 

11
 J

un
 2

01
4



Dependency Graph for Requirements Structuring based on Guidance Ontology 7

Algorithm 1: Spec2CDG
Input: SubRS: Subsystem Requirement Specifications
Output: CDG: Control Dependence Graph of SubRS
Data: StructSpec: list of Structured Specifications;
re f : requirement reference;
Declare:
detectKeywords(S): detects keywords from KeywordBase in sentence S
detectPattern(S): detects pattern of sentence S from PatternBase
addNode(CDG,X): creates CDG node noted as X
addEdge(CDG,N1,N2): creates edge from node N1 to node N2 of CDG
Begin
while not at end of SubRS do

read current;
if understand then

detectKeywords(current) ;
if Keywords detected then

detectPattern(current);
else

go back to the beginning of current section;

if no pattern detected then
create new pattern;

save structured specification;
else

try to understand

for element of StructSpec do
get re f from element;
if element does not contain re f then

determineDependencies(element,StructSpec);

addNode(CDG,element);
set currentNode element;
if element contains many alternatives then

for condition of alternatives do
addNode(CDG,condition);
addEdge(CDG,currentNode,lastNode);

set currentNode lastNode;

if element contains extern condition then
get extcond;
addNode(CDG,extcond);
addEdge(CDG,currentNode,lastNode);
set currentNode lastNode;

get re f ;
if re f then

addNode(CDG,re f );
addEdge(CDG,currentNode,lastNode);

else
ask help;

End

ha
l-0

10
05

00
3,

 v
er

si
on

 1
 - 

11
 J

un
 2

01
4



8 N. Darragi and S. Collart-Dutilleul and E.M. El-Koursi and P. Bon

Algorithm 2: creationPattern Procedure
Input: S: Sentence, Ont: Light Ontology
Output: P:A pattern of Sentence S
Data: currentConcept: A current anlysed concept
Concepts: Detected concepts list of S
Inst: Detected instances list of Concepts
Declare:
detectConcepts(Ont,S): Detect concepts from Ont in sentence S
detectPossiblePatterns(S): Detect possible patterns for sentence S from PatternBase based on
detected keywords
Begin
init Concepts;
init Inst;
init currentConcept;
detectPossiblePatterns(S);
set Concepts by possible concepts;
while not at the end of Concepts do

read currentConcept;
detectInstance(Ont,currentConcept);

if Inst is not empty then
match P with Possible Patterns;
if P then

return P;

return Nil;

Algorithm 3: detectPattern Procedure
Input: S: Sentence, Ont: Light Ontology
Output: P:A pattern of Sentence S
Data: currentConcept: A current anlysed concept
Concepts: Detected concepts list of S
InstStack: Detected instances list of Concepts
Declare:
detectConcepts(Ont,S): Detect concepts from Ont in sentence S
detectPossiblePatterns(S): Detect possible patterns for sentence S from PatternBase based on
detected keywords
Begin
init Concepts;
init InstStack;
init currentConcept;
detectPossiblePatterns(S);
set Concepts by possible concepts;
while not at the end of Concepts do

read currentConcept;
detectInstance(Ont,currentConcept);

if InstStack is not empty then
match P with Possible Patterns;
if P then

return P;

return Nil;

ha
l-0

10
05

00
3,

 v
er

si
on

 1
 - 

11
 J

un
 2

01
4



Dependency Graph for Requirements Structuring based on Guidance Ontology 9

When the algorithm encounters external conditions in the statement, it creates the
extcond node as well as the statement node and constructs control flow edges
between them. An external condition is a conditional statement that refers to a
< Subsystem> which is not belong to any of current subsystem stakeholders, unlike
to internal condition, which does concern subsystem stakeholders. The definition of
[Hull et al.(2004)], a stakeholder is ”an individual, group of people, organisation or
other entity that has a direct or indirect interest or stake in a system”. To identify
stakeholders of the SubRS, we need glossary entries.
If the algorithm encounters a conditional statement CS with many alternatives, it cre-
ates nodes for each one of them. We consider these alternatives as transition states
and they have to be represented on a dependency graph in order to achieve the next
state. Each state must to be satisfied.
If there is no specification reference detected,
determineDependencies is called. Based on similarity computing of differ-
ent elements of StructSpec, the function returns specification references. This
function makes use of various techniques of Natural Language Processing as syn-
tactic and semantic processing. After obtaining the pattern and data, a dependence
relationship must to be extracted from the specification. It is a complicated phase
that needs rules and knowledge to be achieved. First of all, we have to define the
term ”dependent on” and ”directly dependent on”.

Definition 1. A specification S2 is dependent on specification S1 (written S1δS2) if
and only if:

• S1 precedes S2 in execution
• Execution of S1 implies execution of S2 in the future

Definition 2. A specification S2 is directly dependent on specification S1 (written
S1δ dS2) if and only if:

• S1 precedes S2 in execution
• Execution of S1 implies execution of S2 in next step

When a specification contains ”transfer” keywords such as (go to, leads to, ...), it
is possible to identify the dependence with other statements. Specifications without
”transfer” keywords are difficult to connect with other specifications. If the latter
contains a conditional statement, this one could be an internal or external one. If it
is an external condition, it will be translated as a node on dependency graph. The
latter is directly dependent on current specification.

For all specifications which do not contain any condition, a semantic analysis is
required. These specifications may be final states, initial states or statements which
include implicit conditions. The elicitation and extraction of implicit data in general
are quite a difficult operation, because there is a need for knowledge, rules and tech-
niques.

To determine dependencies between all elements StructSpec, we propose
some rules such as proposition 1 to facilitate the detection of dependencies. We

ha
l-0

10
05

00
3,

 v
er

si
on

 1
 - 

11
 J

un
 2

01
4



10 N. Darragi and S. Collart-Dutilleul and E.M. El-Koursi and P. Bon

assume that DS represents Declarative Statements. DSτ are Declarative Statements
with ”Transfer” and DS!τ are Declarative Statements without ”Transfer” keyword.
CS are Conditional Statements. DSτ ∪DS!τ ⊆ DS. A conditional statement is di-
rectly dependent on declarative statement with a condition which is expressed in 1.

Proposition 1. If Si is a declarative statement without ”Transfer” keyword, it exists
conditional statement S j that is directly dependent on Si.
Si ∈ DS!τ ⇒∃S j ∈CS{S jδ

dSi}

Algorithm 4: determineDependencies Procedure
Input: S: Structured specification, StrcutSpec: List of structured specifications
Output: Dep:List of dependencies between S and elements of StructSpec
Data: P: A pattern
D: Data of a structured specification S
s: similarity percent
ε: a constant which means the threshold of acceptance of difference between two expressions
Declare:
similarity(e1, e2): Similarity percent between two elements e1 and e2.
Begin
P← getPattern(S);
D← getData(S);
get ob js;
while not at the end of ob js do

get currentob j;
for element of StructSpec do

if element is CS then
s← similarity(currentob j, element);
if s≥ ε then

D← element;

We consider that a specification may be expressed as specification ≡ Pattern +
Data. In intuitionistic type theory, every term is annotated by its type, only well-
typed terms are well-formed [Martin-Lf, Per: 84].

The previous example of structuring specification shows how to express by key-
words, concepts and data a sentence. The pattern provides a syntactic description
which contains predefined keywords and concepts. The list Data provides instances
of concepts hence the importance of guidance ontology to determine hierarchical re-
lationships between concepts and instances. Although or {if, when } keywords in-
troduces a part of specification PRECONDITION. The POSTCONDITION is captured
after shall or {to be, to have} keywords. The semantic of specification are captured
by the structure itself. For example, when < f unction > has as instance ”Inform”,
we expect two objects for the statement: the receiever and the message. The latter
may be a POSTCONDITION of the current specification. has or is in a condition could
introduce states. The type of the next concept of statement could be determined by

ha
l-0

10
05

00
3,

 v
er

si
on

 1
 - 

11
 J

un
 2

01
4



Dependency Graph for Requirements Structuring based on Guidance Ontology 11

a dependent function types.

The algorithm 1 for constructing the dependency graph uses text as input and
produces the control dependent Graph CDG. The complexity of algorithm 1 is O(n3)
with n being a cost of unit operation.

5 From Flowchart to Control Dependency Graph

Algorithm 5: FC2CDG
Input: FC: Flowchart for Subsytem Requirement Specifications SubRS with root S0
Output: CDG: Control dependence graph for P
Declare:
addNode(CDG,X): create CDG node X
addEdge(CDG,N1,N2): create edge from node N1 to node N2 of CDG
Begin
init FC.currentRegion;
while more FC nodes do

get FC.currentNode;
if FC.currentNode.type is S0 then

create FC.currentNode as CGD.root ;

else if FC.currentNode.type is S f or End then
create FC.currentNode as CGD.exitNode ;
exit;

else
addNode(CDG,FC.currentNode);
set CDG.currentNode ;

if adjacent(FC,FC.currentNode,FC.currentRegion) then
get edge between FC.currentRegion and FC.currentNode;
get CDG.currentRegion
if edge.label is Evenment then

addNode(CDG,FC.edge);

else if edge.label is exitDecision then
addNode(CDG,FC.currentRegion ∪FC.edge);

addEdge(CDG, CDG.currentRegion,CDG.lastNode);
addEdge(CDG, CDG.lastNode,CDG.currentNode);

set currentRegion ;
End

When a flowchart contains more unprocessed nodes, we identify the node and
apply rules according to its type. If the node is a root of the flowchart, we create a
root of the control dependency graph, or else if it is an ”End” node we create an exit
node or a simple node is created and it is connected directly to the current region
(previous processed node).

ha
l-0

10
05

00
3,

 v
er

si
on

 1
 - 

11
 J

un
 2

01
4



12 N. Darragi and S. Collart-Dutilleul and E.M. El-Koursi and P. Bon

Our algorithm 5 for constructing the Dependency Graph takes Flowchart FC and
produces the control dependent Graph CDG. For the sake of presentation, we as-
sume that Flowchart is represented with the following types of statements: state or
status, action or activity, decision or test, event or external condition.
The time and space complexities of algorithm 5 are O(n2) and O(n2) with n being a
cost of unit operation.

6 Conclusion

In this paper, we describe an approach for structuring requirements and the creation
of a lignt specific domain ontology. The methodology consists of using knowledge
from the guidance ontology to create a more specific models. We have therefore
proposed an ontology for safety requirements and we have defined the concepts and
their hierarchy as well as the relationships between concepts. Our ontology is de-
rived from our understanding of the processes of requirements engineering, as well
as its application in the context of its conceptualization. This approach is the first
step of a comprehensive methodology to design, verify and validate the model re-
quirements. It is therefore expected in the future works to define rules of inference
”Inference rules” and rules of correspondence ”Mapping rules” for the formal ver-
ification of the specification document. Metrics for the validation and evaluation
requirements will be studied and presented in future work.

References

[IEEE (1998)] IEEE-STD-1220, 1998;
[Happel et al.(2006)] Happel H. & Seedorf S. Applications of ontologies in software engineering.

In 2nd International Workshop on semantic Web Enabled Software engineering. 2006;
[Dameron(2005)] Dameron O. Keeping modular and platform independent software up-todate,

Benets from the semantic web. In 8th International Protg Conference.2005;
[Dieng et al.(2001)] Dieng K. R., Corby O., Gandon F., Giboin A. Golebiowska J., Matta N. &

Ribire M. Informatiques Srie Systmes d’information, chapitre Mthodes et Outils Pour la ges-
tion des Connaissances : Une approche pluridisciplinaire du Knowledge Management. Dunod
Edition2001;

[Sowa(1999)] Sowa J. F. Relating templates to language and logic. The 21st International Con-
ference on Software Engineering.1999;

[Kaiya et al.(2005)] Kaiya M. & Saeki H. Ontology based requirements analysis, lightweight
semantic processing approach. In Fifth International Conference of Quality Software (QSIC
2005;).

[OMG(2009)] OMG. Ontology Definition Metamodel. Version 1.0, Document Number:
formal/2009-05-01

[Hull et al.(2004)] Elizabeth Hull, Ken JAckson and Jeremy Dick. Requirements Engineering. In
Spriger pages 7, 2004;

ha
l-0

10
05

00
3,

 v
er

si
on

 1
 - 

11
 J

un
 2

01
4


