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Abstract. In this paper, a new chaotic pseudo-random number generator(PRNG)
is proposed. It combines the well-known ISAAC and XORshift generators with
chaotic iterations. This PRNG possesses important properties of topological chaos
and can successfully pass NIST and TestU01 batteries of tests. This makes our
generator suitable for information security applicationslike cryptography. As an
illustrative example, an application in the field of watermarking is presented.
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1 Introduction

The extremely fast development of the Internet brings growing attention to information
security issues. Among these issues, the conception of pseudo-random number genera-
tors (PRNGs) plays an important role. Secure PRNGs which canbe easily implemented
with simple software routines are desired. Due to the finiteness of the set of machine
numbers, the sequences generated by numerous existing PRNGs are not actually ran-
dom. For example, the use of stringent batteries of tests allows us to determine whether
these sequences are predictable. Chaos theory plays an active role in the improvement
of the quality of PRNGs [5], [14]. The advantage of using chaos in this field lies in its
disordered behavior and its unpredictability.

This paper extends the study initiated in [3] and [17]. In [3], it is proven that chaotic
iterations (CIs), a suitable tool for fast computing iterative algorithms, satisfy the topo-
logical chaotic property, as it is defined by Devaney [7]. In [17], the chaotic behav-
ior of CIs is exploited in order to obtain an unpredictable behavior for a new PRNG.
This generator is based on chaotic iterations and depends ontwo other input sequences.
These two sequences are generated by two logistic maps. Our generator has successfully
passed the NIST (National Institute of Standards and Technology of the U.S. Govern-
ment) battery of tests. However it appeared that it is a slow generator and it can’t pass
TestU01 because of the input logistic maps. Moreover this logistic map has revealed
serious security lacks, which make it use inadequate for cryptographic applications [1].
That is why, in this paper, we intend to develop a new fast PRNG. It will pass TestU01,
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widely considered as the most comprehensive and stringent battery of tests. This goal
is achieved by using the ISAAC and XORshift maps in place of the two logistic maps.
Chaotic properties, statistical tests and security analysis [19] allow us to consider that
this generator has good pseudo-random characteristics andis capable to withstand at-
tacks.

The rest of this paper is organized in the following way: in Section 2, some basic
definitions concerning chaotic iterations and PRNGs are recalled. Then, the generator
based on discrete chaotic iterations is presented in Section 3. Section 4 is devoted to its
security analysis. In Section 5, we show that the proposed PRNG passes the TestU01
statistical tests. In Section 6 an application in the field ofwatermarking is proposed.
The paper ends by a conclusion and some discussions about future work.

2 Basic recalls

This section is devoted to basic notations and terminologies in the fields of chaotic
iterations and PRNGs.

2.1 Notations

~1;N� → {1, 2, . . . ,N}
Sn → thenth term of a sequenceS = (S1,S2, . . .)
vi → the ith component of a vector

v = (v1, v2, . . . , vn)
f k → kth composition of a functionf

strategy→ a sequence which elements belong in~1;N�
S → the set of all strategies
⊕ → bitwise exclusive or
+ → the integer addition

≪ and≫→ the usual shift operators

2.2 Chaotic iterations

Definition 1. The setB denoting{0, 1}, let f : BN −→ B
N be an “iteration” function

and S ∈ S be a chaotic strategy. Then, the so-calledchaotic iterationsare defined
by [16]

x0 ∈ BN,

∀n ∈ N∗,∀i ∈ ~1;N�, xn
i =

{

xn−1
i if Sn , i

f (xn−1)Sn if Sn
= i.

(1)

In other words, at thenth iteration, only theSn−th cell is “iterated”.

2.3 Input sequences

In [17], we have designed a PRNG which has successfully passed the NIST tests suite.
Unfortunately, this PRNG is too slow to pass the TestU01 battery of tests. Our ancient
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PRNG which is called CI(Logistic, Logistic) PRNG is based onchaotic iterations and
uses logistic maps as input sequences. However, chaotic systems like logistic maps
work in the real numbers domain, and therefore a transformation from real numbers
into integers is needed. This process leads to a degradationof the chaotic behavior of
the generator and a lot of time wasted during computations. Moreover, a recent study
shows that the use of logistic map for cryptographic applications is inadequate and
must be discouraged [1]. Our purpose is then to design a new, faster, and more secure
generator, which is able to pass the TestU01 battery of tests. This is achieved by using
some faster PRNGs like ISAAC [9] and XORshift [13] as input sequences.

3 Design of CI(ISAAC,XORshift)

3.1 Chaotic iterations as PRNG

The novel generator is designed by the following process. Let N ∈ N
∗,N > 2. Some

chaotic iterations are fulfilled to generate a sequence(xn)n∈N ∈
(

B
N
)N

of boolean vec-
tors: the successive states of the iterated system. Some of these vectors are randomly
extracted and their components constitute our pseudo-random bit flow. Chaotic itera-
tions are realized as follows. Initial statex0 ∈ B

N is a boolean vector taken as a seed
and chaotic strategy(Sn)n∈N ∈ ~1,N�

N is constructed with XORshift. Lastly, iterate
function f is the vectorial boolean negation

f0 : (x1, ..., xN) ∈ BN 7−→ (x1, ..., xN) ∈ BN.

To sum up, at each iteration onlySi-th component of stateXn is updated, as follows

xn
i =























xn−1
i if i , Si ,

xn−1
i if i = Si .

(2)

Finally, letM be a finite subset ofN∗. Somexn are selected by a sequencemn as the
pseudo-random bit sequence of our generator. The sequence (mn)n∈N ∈ M

N is com-
puted with ISAAC. So, the generator returns the following values: the components of
xm0

, followed by the components ofxm0
+m1

, followed by the components ofxm0
+m1
+m2

,
etc.In other words, the generator returns the following bits:

xm0
1 xm0

2 xm0
3 . . . x

m0
N xm0+m1

1 xm0+m1
2 . . . xm0+m1

N xm0+m1+m2
1 xm0+m1+m2

2 . . .

or the following integers:

xm0 xm0+m1 xm0+m1+m2 . . .

The basic design procedure of the novel generator is summed up in Table 1. The internal
state isx, the output array isr. a andb are those computed by ISAAC and XORshift
generators. Lastly,c andN are constants andM = {c, c+1} (c > 3N is recommended).
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Input : the internal statex (an array ofN bits)
Output : an arrayr of N bits
a← IS AAC( );
m← a mod2+ c;
for i = 0, . . . ,mdo

b← XORshi f t( );
S← b modN;
xS ← xS;

end
r ← x;
returnr;

Algorithm 1 : An arbitrary round of CI(ISAAC, XORshift)

m : 4 5 4
S 2 4 2 2 5 1 1 5 5 3 2 3 3

In thisx0 x4 x9 x13

1 1
1
−→ 0

1
−→ 1 1 1

0
2
−→ 1

2
−→ 0

2
−→ 1 1 1

2
−→ 0 0

1 1 1
3
−→ 0

3
−→ 1

3
−→ 0 0

0
4
−→ 1 1 1 1

0 0
5
−→ 1

5
−→ 0

5
−→ 1 1 1

Binary Output:x0
1x0

2x0
3x0

4x0
5x4

1x4
2x4

3x4
4x4

5x9
1x9

2x9
3x9

4x9
5x13

1 x13
2 ... = 10100111101111110... Integer

Output:x0, x0, x4, x6, x8... = 20,30, 31, 19...
Table 1.Application example

3.2 Example

In this example,N = 5 andM = {4,5} are chosen for easy understanding. The initial
state of the systemx0 can be seeded by the decimal part of the current time. For example,
the current time in seconds since the Epoch is 1237632934.484084, sot = 484084.
x0
= t (mod 32) in binary digits, thenx0

= (1, 0, 1, 0, 0).mandS can now be computed
from ISAAC and XORshift:

– m = 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 4, 5, 4,...

– S = 2, 4, 2, 2, 5, 1, 1, 5, 5, 3, 2, 3, 3,...

Chaotic iterations are done with initial statex0, vectorial logical negationf0 and strategy
S. The result is presented in Table 3. Let us recall that sequencemgives the statesxn to
return:x4, x4+5, x4+5+4, . . .

So, in this example, the generated binary digits are: 10100111101111110011... Or the
integers are: 20, 30, 31, 19...
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3.3 Chaotic iterations and chaos

Generally the success of a PRNG depends, to a large extent, onthe following criteria:
uniformity, independence, storage efficiency, and reproducibility. A chaotic sequence
may have these good pseudo-random criteria and also other chaotic properties, such as:
ergodicity, entropy, and expansivity. A chaotic sequence is extremely sensitive to the
initial states. That is, even a minute difference in the initial state of the system can lead
to enormous differences in the final state even over fairly small timescales. Therefore,
chaotic sequence well fits the requirements of pseudo-random sequence. Contrary to
ISAAC or XORshift, our generator possesses these chaotic properties.

However, despite a huge number of papers published in the field of chaos-based
PRNGs, the impact of this research is rather marginal. This is due to the following rea-
sons: almost all PRNG algorithms using chaos are based on dynamical systems defined
on continuous sets (e.g., the set of real numbers). So these generators are usually slow,
require considerably more storage spaces, and lose their chaotic properties during com-
putations. These major problems restrict their use as generators [10]. Moreover, even if
the algorithm obtained by the inclusion of chaotic maps is itself chaotic, the implemen-
tation of this algorithm on a machine can cause it lose its chaotic nature. This is due to
the finite nature of the machine numbers set.
In this paper we don’t simply integrate chaotic maps hoping that the implemented algo-
rithm remains chaotic. The PRNG algorithms we conceive are constituted by discrete
chaotic iterations that we mathematically proved in [3], that produce topological chaos
as defined by Devaney. In the same paper, we raised the question of their implementa-
tion, proving in doing so that it is possible to design a chaotic algorithm and a chaotic
computer program. In conclusion, the generator proposed inthis paper does not inherit
its chaotic properties from a continuous real chaotic map, but from discrete chaotic it-
erations defined in Section 2.2. As quoted above, it has been proven in [3] that chaotic
iterations behave as chaos, as it is defined by Devaney: they are regular, transitive and
sensitive to initial conditions. This famous definition of achaotic behavior for a dy-
namical system implies unpredictability, mixture, sensitivity and uniform repartition.
This allows the conception of a new generation of chaotic PRNGs. Because only inte-
gers are manipulated in discrete chaotic iterations, the chaotic behavior of the system is
preserved during computations, and these computations arefast.

4 Security analysis

In this section a security analysis of the proposed generator is given.

4.1 Key space

The PRNG proposed in this document is based on discrete chaotic iterations. It has an
initial value x0 ∈ B

N. Considering this set of initial values alone, the key spacesize is
equal to 2N. In addition, this PRNG combines digits of two other PRNGs: ISAAC and
XORshift. Letk1 andk2 be the key spaces of ISAAC and XORshift. So the total key
space size is close to 2N · k1 · k2. Finally, the impact ofM must be taken into account.
This leads to conclude that the key space size is large enoughto withstand attacks.
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4.2 Key sensitivity

This PRNG is highly sensitive to the initial conditions. To illustrate this property proved
in [3], several initial values are put into the chaotic system. Let H be the number of
differences between the sequences obtained in this way. Supposen is the length of
these sequences. Then the variance ratioP, defined byP = H/n, is computed. The
results are shown in Figure 1a (x axis is sequence lengths,y axis is variance ratioP).
Variance ratios approach 0.50, which indicates that the system is extremely sensitive to
the initial conditions.

0 0.5 1 1.5 2

x 10
4

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

n

P

Sensitivity analysis

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

a. sensitivity b. Second order distribution

Fig. 1. Security analysis

4.3 Uniform distribution

Figure 1b gives a 3D graphic representation of the distribution of a random sequence
obtained by our generator. The point cloud presents a uniform distribution that tends to
fill the complete 3D space, as expected for a random signal. Toobtain this cloud, we
have first changed the binary sequence to aN-bit integer sequencex1, x2, x3, x4... Then
we have plot

(

x1

2N ,
x2

2N ,
x3

2N

)

,
(

x2

2N ,
x3

2N ,
x4

2N

)

...

5 TestU01 Statistical Test Results

In a previous section, we have shown that the proposed PRNG has strong chaotic prop-
erties, as Devaney’s chaos. In particular, this generator is better than the well-known
XORshift and ISAAC, in the topological point of view. In addition to being chaotic, we
will show in this section that CI(ISAAC,XORshift) is betterthan XORshift, and at least
as good as ISAAC [18] in the statistical point of view. Indeed, similarly to ISAAC and
contrary to XORshift, CI(ISAAC,XORshift) can pass the stringent Big Crush battery
of tests included in TestU01. In addition, our generator achieves to pass all the batteries
included in TestU01. To our best knowledge, this result has not been proven for ISAAC,
and only one other generator is capable of doing this [6]
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Table 2.TestU01 Statistical Test

Battery Parameters Statistics

Rabbit 32× 109 bits 40

Alphabit 32× 109 bits 17

Pseudo DieHARD Standard 126

FIPS140 2 Standard 16

Small Crush Standard 15

Crush Standard 144

Big Crush Standard 160

5.1 TestU01

Indeed, the quality of a PRNG should be based on theoretical fundamentals but should
also be tested empirically. Various statistical tests are available in the literature that
test a given sequence for some level of computational indistinguishability. Major test
suites for RNGs are TestU01 [11], the NIST suite [15], and theDieHARD suites [12].
The DieHARD suites, which implement many classical RNG tests, have some draw-
backs and limitations. The National Institute of Standardsand Technology (NIST), in
the United States, has implemented a test suite (16 tests) for RNGs. It is geared mainly
for the testing and certification of RNGs used in cryptographic applications. TestU01
is extremely diverse in implementing classical tests, cryptographic tests, new tests pro-
posed in the literature, and original tests. In fact, it encompasses most of the other test
suites. The proposed PRNG has been tested using TestU01 for its statistical pseudo
randomness.

5.2 Batteries of tests

Table 2 lists seven batteries of tests in the TestU01 package. ”Standard” parameter in
this Table refers to the built-in parameters of the battery.TestU01 suite implements 518
tests and reportsp−values. If ap−value is within [0.001, 0.999], the associated test is a
success. Ap−value lying outside this boundary means that its test has failed.

5.3 Analysis

In a sound theoretical basis, a PRNG based on discrete chaotic iterations (ICs) is a
composite generator which combines the features of two PRNGs. The first generator
constitutes the initial condition of the chaotic dynamicalsystem. The second generator
randomly chooses which outputs of the chaotic system must bereturned. The inten-
tion of this combination is to cumulate the effects of chaotic and random behaviors, to
improve the statistical and security properties relative to each generator taken alone.

This PRNG based on discrete chaotic iterations may utilize any reasonable RNG as
inputs. For demonstration purposes, XORshift and ISAAC areadopted here. The PRNG
with these inputs can pass all of the performed tests.
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6 Application example in digital watermarking

In this section, an application example is given in the field of digital watermarking: a
watermark is encrypted and embedded into a cover image usingchaotic iterations and
our PRNG. The carrier image is the famous Lena, which is a 256 grayscale image, and
the watermark is the 64× 64 pixels binary image depicted in Fig.2d. Let us encrypt the

a. Lena (scale0.5) b. Watermarked Lena

c. Differences d. Watermark e.Encrypted
watermark

Fig. 2. Original and watermarked Lena

watermark by using chaotic iterations. The initial statex0 of the system is constituted
by the watermark, considered as a boolean vector. The iteration function is the vectorial
logical negationf0. The PRNG presented previously is used to obtain a sequence of
integers lower than 4096, which will constitute the chaoticstrategy (Sk)k∈N. Thus, the
encrypted watermark is the last boolean vector generated bythe chaotic iterations. An
example of such an encryption, with 5000 iterations, is given in Fig.2e.

Let L be the 2563 booleans vector constituted by the three last bits of each pixel
of Lena. We defineUk by U0

= S0 andUn+1
= Sn+1

+ 2 × Un
+ n [mod2563]. The

watermarked LenaIw is obtained from the original LenaIo, the three last bits of which
are replaced by the result of 642 chaotic iterations with initial stateL, and strategyUk
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(see Fig.2b). Spatial domain embedding has been chosen herefor easy understanding,
but this watermarking scheme can be adapted to frequency domain (for an example of
its use in DWT domain, see [2]). The extraction of the watermark can be obtained in
the same way [2]. Remark that the mapθ 7→ 2θ of the torus, which is the well-known
dyadic transformation (an example of topological chaos [7]), has been chosen to make
(Uk)k6642 highly sensitive to the chaotic encryption strategy.

The robustness of this data hiding scheme through geometricand frequency attacks
has been studied in [2]. The chaos-security and stego-security are proven in [8]. The dif-
ference with the scheme presented in these papers is the way to generate strategies,i.e.,
the choice of the initial conditions for chaotic iterations, in the encryption and embed-
ding stages. This improvement does not alter robustness andsubspace-security. We have
shown in this study that this replacement enhances the speedof the scheme. Moreover,
it resolves a potential security lack related to the use of a logistic map [1] when gen-
erating the strategies: this lack might be exploited by an attacker in Watermark-Only-
Attack and Known-Message-Attack setups [4]. Instead of logistic map, our PRNG has
good statistical properties and can withstand such attacks. This claim will be deepened
in future work.

7 Conclusions and future work

In this paper, the PRNG proposed in [17] is improved. This is achieved by using the
famous ISAAC and XORshift generators and by combining thesecomponents with
chaotic iterations. Thus we obtain a faster generator whichsatisfies chaotic properties.
In addition to passing the NIST tests suite, this new generator successfully passes all
the stringent TestU01 battery of tests. The randomness and disorder generated by this
algorithm has been evaluated. It offers a sufficient level ofsecurity for a whole range
of applications in computer science. An application example in the field of data hiding
is finally given. In future work, the comparison of differentchaotic strategies will be
explored and other iteration functions will be studied. Finally, other applications in
computer science security field will be proposed, especially in cryptographic domains.
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