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Abstract. A popular technique in the static analysis for query lan-
guages relies on the construction of compilers that effectively translate
queries into logical formulas. These formulas are then solved for satisfia-
bility using an off-the-shelf satisfiability solver. A critical aspect in this
approach is the size of the obtained logical formula, since it constitutes
a factor that affects the combined complexity of the global approach.
We show that a whole class of logical combinators (or “macros”) can be
used as an intermediate language between the query language and the
logical language. Those logical combinators provide an exponential gain
in succinctness over the corresponding explicit logical representation,
yet preserving the typical exponential time complexity of the subsequent
logical decision procedure.
This opens the way for solving a wide range of problems such as satis-
fiability and containment for expressive query languages in exponential-
time, even though their direct formulation into the underlying logic re-
sults in an exponential blowup of the formula size, yielding an incorrectly
presumed two-exponential time complexity.
We illustrate this from a very practical point of view on a few exam-
ples such as numerical occurrence constraints and tree frontier properties
which are concrete problems found in the XML world.

1 Introduction

Modal logics have recently been increasingly used as target languages for com-
piling high level query languages such as XPath [7,10], SPARQL [2], and even
CSS selectors [5], as well as policy languages such as XACML [8]. The common
goal is to characterize these languages in terms of expressivity and complexity,
and in particular to build adapted and effective static analyzers.

Such an approach requires the construction of efficient compilers that trans-
late queries into logical formulas. Those formulas are then solved for satis-
fiability using an off-the-shelf satisfiability solver such as the ones found in
[14,12,7,13,11,4]. A critical aspect is then the size of the obtained logical for-
mula, since it is a factor that affects the combined complexity3 of the global
approach.

3 In the context of problem-solving by reduction to logical satisfiability, combined
complexity considers both the complexity of the translation of the problem into
logic (taking into account any potential blow-up in size induced by the change in
representation), and the complexity of testing satisfiability of the logical formulation.
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We show that a whole class of logical combinators (or “macros”) can be used
as an intermediate language between the query language and the logical lan-
guage. Those logical combinators provide an exponential gain in succinctness
over the corresponding explicit logical representation, yet preserving the typi-
cal exponential time complexity [14,12,7,13] of the subsequent logical decision
procedure.

This opens the way for solving a wide range of problems such as query sat-
isfiability and query containment in exponential-time, even though their direct
formulation into the underlying logic results in an exponential blowup of the
formula size, yielding an incorrectly presumed two-exponential time complexity.

Specifically, two essential steps are involved in the reduction of a problem
to logical satisfiability: (1) the translation of the initial problem into a logical
formula, and (2) the actual satisfiability check of the formula. Traditionally, the
complexity of the satisfiability test is stated in terms of the size of the for-
mula, thus every duplication of sub-formulas during the first step may affect
the combined complexity and severely impact the practical applicability of the
entire approach. Interestingly, we observe that a common form of µ-calculus
sub-formula duplication has a very limited impact on combined complexity in
existing implementations, such as [14,12,7,13]. The reason lies in the fact that
satisfiability-testing algorithms can operate directly on a Hinttika-set-like repre-
sentation of formulas composed of atomic propositions and modal sub-formulas.
In this setting, we prove that the time complexity actually depends on the num-
ber of distinct atomic propositions and modal sub-formulas. This makes explicit
a notion of truth-status sharing for identical sub-formulas not exhibited in the
analysis of the time complexity of such algorithms.

We develop this idea in the context of the µ-calculus, whose expressive power
subsumes the ones of many modal logics. More specifically we develop this idea
using the alternation-free µ-calculus with converse modalities whose models are
finite trees, following [7]. Trees are encoded in binary, without loss of general-
ity [3], through the “first-child” and “next-sibling” modalities, respectively noted
〈1〉 and 〈2〉 (see Figure 1).
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Fig. 1. N-ary to Binary Tree Encoding

In this setting, an elegant way of building a µ-calculus formula is to apply
a combinator to another formula. For instance, split(X) = 〈1〉X ∧ 〈2〉X is a
combinator that generates a formula such that the input formula must hold in
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both successors of the current node. Although X is duplicated, the increase of the
size of the lean generated from split(ϕ) when compared to the one generated
from ϕ is only a small constant, independent of ϕ.

The paper is organized as follows. We introduce the logical formulas and com-
binators in §2, state and prove our main result in §3, and give several examples
in §4.

2 Basic Logical Formulas and Combinators

We recall the syntax of the logic of [7], used to prove properties about finite
binary trees. We consider a set AP of atomic propositions, representing the tree
node names, which includes a special reserved name σ; a set Var of variables, used
in fixpoints; and a set Prog =

{
1, 2, 1, 2

}
of programs, to describe navigation

in a tree. Program 1 navigates to the first child (left successor in Figure 1),
program 2 navigates to the next sibling (right successor), program 1 to the
parent (predecessor to the right, if it exists), and program 2 to the previous
sibling (predecessor to the left, if it exists). We let a = a for any a ∈ Prog. A
logical formula is defined using the following syntax.

– >, ⊥, σ, or ¬σ for all σ ∈ AP \ {σ};
– x for all x ∈ Var;
– ϕ1 ∨ ϕ2 or ϕ1 ∧ ϕ2 where ϕ1 and ϕ2 are logical formulas;
– 〈a〉ϕ or ¬ 〈a〉> where a ∈ Prog and ϕ is a logical formula;
– µx.ϕ where x ∈ Var and ϕ is a logical formula.

We now give an intuition of the interpretation of formulas in the setting
of finite trees: the interpretation of a formula is a set of focused trees, which
are finite trees with a selected node. A formula is satisfiable if there exists a
tree such that a node of this tree is selected by the formula (i.e., the set of
focused trees is not empty). The truth formula > selects every focused tree, i.e.,
every node of every tree, whereas ⊥ selects none. The σ formula selects every
focused trees whose selected node’s name is σ, whereas ¬σ selects the nodes
with other names (the node name σ is used to represent names of nodes not
occurring in the formula). Formula conjunction and disjunction correspond to
set intersection and union, respectively. A formula 〈a〉ϕ selects a node if the node
reached following a is selected by formula ϕ. Formula ¬ 〈a〉> selects a node if
there is no node reachable through a. Finally, a fixpoint µx.ϕ is interpreted as
the smallest fixpoint (the intersection of every pre-fixpoint).

A formula is closed if every occurrence of a variable x is bound by an enclos-
ing µx. In the following, we only consider formulas that are closed and whose
recursion variables are guarded (there is at least one navigation step between a
recursion µx and every variable x). Note that since we do not have general nega-
tion in formulas (see below), there is no requirement for formulas to be positive
(i.e., disallow formulas of the form µx. . . .¬x): such formulas simply cannot be
expressed. Finally, we write ϕ ≺ ψ if ϕ is a sub-formula of ψ, and ϕ ⊀ ψ if it is
not.
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A combinator F is a formula with zero or more occurrences of a placeholder,
written X, possibly negated (¬X). We write F{ϕ/X} for the combinator F where
every instance of X has been replaced by the closed formula ϕ.4 We often write
F (X) to make clear the name of the placeholder, and F (ϕ) for F{ϕ/X}.

We consider formulas in negation normal form. The negation of a formula
or combinator, written F , is defined in Figure 2. The negation of a modality
is a disjunction: the modality is false either because there is no node in that
direction, or because the node in that direction does not satisfy the sub-formula.

Note that, in order to ensure that F = F for every formula, we have a special
case when a disjunction is actually the negation of a modality.

Following [7], the greatest and smallest fixpoint coincide (provided a simple
restriction on formulas, namely for cycle-free formulas using sets of finite trees as
models, see [7] for details). Every combinator presented here fulfill this restric-
tion. Nevertheless, this work could also be done in a setting where the smallest
and greatest fixpoints differ, and in this case one defines µx.F as νx.F and νx.F
as µx.F .

> = ⊥ σ = ¬σ

F ∧G = F ∨G ⊥ = >
¬σ = σ F ∨G = F ∧G F ∨G 6= 〈a〉F ′ ∨ ¬ 〈a〉>
X = ¬X x = x

〈a〉> = ¬〈a〉> ¬X = X

µx.F = µx.F ¬ 〈a〉> = 〈a〉>

〈a〉F ∨ ¬ 〈a〉> = 〈a〉F 〈a〉F = 〈a〉F ∨ ¬ 〈a〉> F 6= >

Fig. 2. Negation Normal Form

3 Deciding Combined Formulas

3.1 The Lean

Following [12,7,13], we define the lean of F as follows, with LΓ (F ) defined in
Figure 3 (the environment Γ is the set of already unfolded fixpoints). The main
difference with the usual approaches is that we close the lean under negation.

Lean(F ) =
{
〈a〉> | a ∈ {1, 2, 1, 2}

}
∪ {σ} ∪ L∅(F )

4 In case of a negated placeholder, we replace ¬X with ϕ, the negation normal form
of ϕ (see Figure 2).

ha
l-0

08
68

72
4,

 v
er

si
on

 3
 - 

11
 O

ct
 2

01
3



LΓ (>) = LΓ (⊥) = LΓ (x) = LΓ (X) = LΓ (¬X) = ∅
LΓ (σ) = LΓ (¬σ) = {σ}

LΓ (F ∨G) = LΓ (F ∧G) = LΓ (F ) ∪ LΓ (G)

LΓ (〈a〉F ) = {〈a〉F, 〈a〉F , 〈a〉>} ∪ LΓ (F )

LΓ (¬ 〈a〉>) = {〈a〉>}
LΓ (µx.F ) = LΓ (F ) if x ⊀ F

LΓ (µx.F ) = ∅ if µx.F ∈ Γ or µx.F ∈ Γ

LΓ (µx.F ) = LΓ∪{µx.F}(F{µx.F/x}) otherwise

Fig. 3. Negation Closed Lean

Intuitively, the lean of a formula ϕ is the set of every atomic proposition
occurring in ϕ, and every subformula that starts with a modality present in
ϕ or in the expansion of the fixpoints of ϕ. In particular, the lean does not
directly include disjunctive or conjunctive subformulas. Kozen has shown in [9]
that expanding every fixpoint once is sufficient to generate every subformula that
may need to be considered for satisfiability. This single expansion is tracked using
the Γ argument in the definition above. Moreover, Kozen has also shown the lean
is linear in the size of the formula. We next make this bound more precise.

3.2 The Factorization Power of the Lean

We can now state the main theorem of this paper: the lean size is not impacted
by the duplication of sub-formulas. We write |S| for the size of a set S.

Theorem 1 Let F be a combinator and ϕ a closed formula. We have the fol-
lowing.

|Lean(F{ϕ/X})| ≤ |Lean(F )|+ |Lean(ϕ)|

The theorem is a direct consequence of Lemma 9 which is proved below in
Section 3.4.

We now give some intuition about this result, through a simple example.
Recall the split(X) combinator defined as 〈1〉X ∧ 〈2〉X. Since the elements of
the lean are either atomic propositions (node names) and modalities, the lean of
split(ϕ) includes the lean of ϕ and four new elements: 〈1〉ϕ, 〈1〉ϕ, 〈2〉ϕ, and
〈2〉ϕ. If we now consider split(split(ϕ)), we once again add only four formulas
to the lean: 〈1〉 split(ϕ), 〈1〉 split(ϕ), 〈2〉 split(ϕ), and 〈2〉 split(ϕ). This
linear growth, even though the formula’s size increases exponentially, is due to
the fact that modalities are considered atomically and are not split up in their
components (e.g., 〈1〉 (ϕ ∧ ψ) is not split up into 〈1〉ϕ and 〈1〉ψ).
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3.3 Satisfiability-Testing Algorithms based on the Lean

A typical approach to decide the satisfiability of a formula is to first build the
lean, as described above, then to use a tableau-based algorithm implemented
with BDDs [14,12,7,13]. The time complexity of this approach is shown to be
exponential in the size of the formula. More precisely, it is exponential in the
size of the lean, which is in turn linear in the size of the formula.

The essence of this paper is to realize that the lean may grow much more
slowly than the formula when sub-formulas are duplicated. This opens the way
for solving a wide range of problems in exponential-time even though their direct
translation into the modal logic is exponential, as illustrated previously and in
Section 4.

3.4 Proof of Theorem 1

We define the number of recursive expansions of F or ϕ, written E∅(F ), in Fig-
ure 4. We use this number to define inductive properties that depend on fixpoints
being expanded.

EΓ (>) = EΓ (⊥) = EΓ (x) = EΓ (X) = EΓ (¬X) = 0

EΓ (σ) = EΓ (¬σ) = EΓ (¬ 〈a〉>) = 0

EΓ (F ∨G) = EΓ (F ∧G) = EΓ (F ) + EΓ (G)

EΓ (〈a〉F ) = EΓ (F )

EΓ (µx.F )
def
= EΓ (F ) if x ⊀ F

EΓ (µx.F )
def
= 0 if µx.F ∈ Γ or µx.F ∈ Γ

EΓ (µx.F )
def
= EΓ∪{µx.F}(F{µx.F/x}) + 1 otherwise

Fig. 4. Number of Recursive Expansion

We write (Γ )ϕX as the set of formulas G′ where either G′{ϕ/X} or G′{ϕ/X} is
in Γ . We use this set to identify the formulas that were expanded.

Definition 2 Given ϕ, and Γ , we define (Γ )ϕX as follows.

{G′ | X ≺ G′ ∧ (G′{ϕ/X} ∈ Γ ∨G′{ϕ/X} ∈ Γ )}

Lemma 3 We have F{G/x} = F{G/x}.

Proof. By induction on F , relying on the fact that x = x.

Lemma 4 We have F{G/X} = F{G/X}.

Proof. By induction on F , relying on the fact that X = ¬X.
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Lemma 5 If Γ ⊆ Γ ′, then LΓ ′(F ) ⊆ LΓ (F ).

Proof. By induction on the lexical order of EΓ (F ) and the size of F . Base cases
are immediate. For conjunction and disjunction, we may apply the induction
hypothesis because EΓ (F1) and EΓ (F2) do not increase and the formula size
decreases. This is also the case for the modality case.

For the recursion case where x ≺ F , we distinguish three cases (we do not
mention the negation µx.F in these cases):

– if µx.F ∈ Γ , then necessarily µx.F ∈ Γ ′ and we immediately conclude;
– if µx.F ∈ Γ ′, then we conclude by ∅ ⊆ S for any set S;
– otherwise, we have µx.F in neither set, and we apply the induction hypoth-

esis, as EΓ∪{µx.F}(F{µx.F/x}) is strictly smaller than EΓ (µx.F ).

Lemma 6 We have LΓ∪{µx.F}(G) = LΓ∪{µx.F}(G).

Proof. By an immediate induction on the lexical order of EΓ (G) and the size of
G.

Lemma 7 For any F , we have LΓ (F ) = LΓ (F ).

Proof. By induction on the lexical order of EΓ (F ) and the size of F .
The base cases >, ⊥, x, X, ¬X, σ, ¬σ, ¬ 〈a〉>, and µx.F there x ⊀ F are

immediate.
For F ∧G, we compute as follows.

LΓ (F ∧G) = LΓ (F ) ∪ LΓ (G)

= LΓ (F ) ∪ LΓ (G) by induction

= LΓ (F ∨G)

= LΓ (F ∧G)

The disjunction case is similar.

For the recursion case, if µx.F or µx.F is in Γ , then µx.F or µx.F = µx.F
is also in Γ and the result follows.

Finally, if neither is in Γ , we compute as follows.

LΓ (µx.F ) = LΓ∪{µx.F}(F{µx.F/x})

= LΓ∪{µx.F}(F{µx.F/x}) by induction

= LΓ∪{µx.F}(F{µx.F/x}) by Lemma 3

= LΓ∪{µx.F}(F{µx.F/x}) by Lemma 6

= LΓ (µx.F )

Lemma 8 For all Γ and F , if X ⊀ F , then L(Γ )ϕX
(F ) = L∅(F ).
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Proof. We prove the more general result: for all Γ ′, L(Γ )ϕX∪Γ ′(F ) = LΓ ′(F ) by
induction on the lexical order of EΓ ′(F ) and the size of F .

The result is immediate for the base cases, and by induction for the conjunc-
tion, disjunction, and modality cases. For the recursion case, if µx.F (or its nega-
tion) is in (Γ )ϕX ∪Γ ′, then it must be in Γ ′ as X ⊀ F and members of (Γ )ϕX con-
tain X by definition. Thus both sides are equal to ∅. If neither µx.F nor its nega-
tion are in (Γ )ϕX ∪ Γ ′, we have L(Γ )ϕX∪Γ ′(µx.F ) = L(Γ )ϕX∪Γ ′∪{µx.F}(F{µx.F/x})

We next apply the induction hypothesis with Γ ′∪{µx.F} and F{µx.F/x}, thus
we have L(Γ )ϕX∪Γ ′∪{µx.F}(F{µx.F/x}) = LΓ ′∪{µx.F}(F{µx.F/x}) = LΓ ′(µx.F ).

We conclude by taking Γ ′ = ∅.

Lemma 9 Let F be a formula mentioning X, and ϕ a closed formula. We have
L∅(F{ϕ/X}) ⊆ L∅(F ){ϕ/X} ∪ L∅(ϕ).

Proof. We prove the following more general property for any Γ by induction on
the lexical order of E(Γ )ϕX

(F ) and the size of F .

LΓ (F{ϕ/X}) ⊆ L(Γ )ϕX
(F ){ϕ/X} ∪ L∅(ϕ)

We first deal with every case where X ⊀ F . In this case, X also does not
occur in LΓ (F ).

LΓ (F{ϕ/X}) = LΓ (F )

⊆ L∅(F ) by Lemma 5

= L(Γ )ϕX
(F ) by Lemma 8

= L(Γ )ϕX
(F ){ϕ/X}

⊆ L(Γ )ϕX
(F ){ϕ/X} ∪ L∅(ϕ)

Case X. We compute as follows, using Lemma 5 for the last inclusion.

LΓ (X{ϕ/X}) = LΓ (ϕ) ⊆ L∅(ϕ)

Case ¬X. We compute as follows, using Lemma 5 for the set inclusion, and
Lemma 7 to conclude.

LΓ ((¬X){ϕ/X}) = LΓ (ϕ) ⊆ L∅(ϕ) = L∅(ϕ)

Case F ∧G. We compute as follows.

LΓ ((F ∧G){ϕ/X})
= LΓ (F{ϕ/X}) ∪ LΓ (G{ϕ/X})
⊆ L(Γ )ϕX

(F ){ϕ/X} ∪ L(Γ )ϕX
(G){ϕ/X} ∪ L∅(ϕ) by induction

= L(Γ )ϕX
(F ∧G){ϕ/X} ∪ L∅(ϕ)

Case F ∨G. Identical to the previous case.
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Case 〈a〉F . We compute as follows, using Lemma 4 and the induction hy-
pothesis.

LΓ ((〈a〉F )){ϕ/X}
= LΓ (〈a〉 (F{ϕ/X}))

= {〈a〉F{ϕ/X}; 〈a〉F{ϕ/X}; 〈a〉>} ∪ LΓ (F{ϕ/X})
= {〈a〉F ; 〈a〉F ; 〈a〉>}{ϕ/X} ∪ LΓ (F{ϕ/X})
⊆ {〈a〉F ; 〈a〉F ; 〈a〉>}{ϕ/X} ∪ L(Γ )ϕX

(F ){ϕ/X} ∪ L∅(ϕ)

= L(Γ )ϕX
(〈a〉F ){ϕ/X} ∪ L∅(ϕ)

Case µx.F with x ⊀ F . We compute as follows.

LΓ ((µx.F )){ϕ/X}
= LΓ (µx.F{ϕ/X}) ϕ closed

= LΓ (F{ϕ/X}) x ⊀ F{ϕ/X}
⊆ L(Γ )ϕX

(F ){ϕ/X} ∪ L∅(ϕ) by induction

= L(Γ )ϕX
(µx.F ){ϕ/X} ∪ L∅(ϕ) x ⊀ F

Case µx.F with x ≺ F .
If we have µx.F{ϕ/X} ∈ Γ or µx.F{ϕ/X} ∈ Γ then LΓ (µx.F{ϕ/X}) = ∅ and

the result is immediate.
Otherwise we compute as follows.

LΓ ((µx.F ){ϕ/X})
= LΓ (µx.F{ϕ/X}) ϕ closed

= LΓ∪{µx.F{ϕ/X}}(F{ϕ/X}{µx.F{ϕ/X}/x})
= LΓ∪{µx.F{ϕ/X}}(F{µx.F/x}{ϕ/X}) ϕ closed

To apply the induction hypothesis, we show that

E(Γ )ϕX
(µx.F ) = E(Γ∪{µx.F{ϕ/X}})ϕX (F{µx.F/x}) + 1.

First, we have µx.F /∈ (Γ )ϕX and µx.F /∈ (Γ )ϕX , since otherwise, we would

have µx.F{ϕ/X} ∈ Γ or µx.F{ϕ/X} = µx.F{ϕ/X} ∈ Γ , which we assumed to
be false. Thus E(Γ )ϕX

(µx.F ) = E(Γ )ϕX∪{µx.F}(F{µx.F/x}) + 1. Next, we have (Γ ∪
{µx.F{ϕ/X}})ϕX = (Γ )ϕX ∪ {µx.F} by definition. Thus we have E(Γ )ϕX

(µx.F ) =

E(Γ∪{µx.F{ϕ/X}})ϕX (F{µx.F/x}) + 1.
We may thus apply the induction hypothesis and continue to compute.

⊆ L(Γ∪{µx.F{ϕ/X}})ϕX (F{µx.F/x}){ϕ/X} ∪ L∅(ϕ)

= L(Γ )ϕX∪{µx.F}(F{µx.F/x}){ϕ/X} ∪ L∅(ϕ)
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As neither µx.F nor µx.F are in (Γ )ϕX , we have the following equality:
L(Γ )ϕX

(µx.F ) = L(Γ )ϕX∪{µx.F}(F{µx.F/x}). We may thus conclude the compu-
tation as follows.

= L(Γ )ϕX
(µx.F ){ϕ/X} ∪ L∅(ϕ)

We complete the proof by taking Γ to be ∅ and remarking that (∅)ϕX = ∅.

4 Applications

In this section, we present several instances where advanced properties on the
underlying data structure (here a tree) can be formulated using combinators,
and for which our result applies. In particular, after an introductory example,
we consider numerical constraints on the global number of occurrences, and
properties on the sequence of leaves in a tree. This means, for instance, that if
one extends a query language (such as XPath) with such kinds of features, then
our result applies: problems such as query satisfiability and query containment
would not be harder to solve in terms of computational complexity than they
already are for the language without the extensions.

Each example given in this section is provided with a boxed version that can
directly be tested with the implementation [6].

4.1 A Very Simple Example: Split

The combinator split(X) introduced in Section 3.2 may generate arbitrary large
formulas: for instance, let ϕ = a ∧ 〈1〉 b ∧ 〈2〉µy.c ∨ 〈2〉 y, the expanded formula
ψ = split(split(split(ϕ))) uses 8 occurrences of ϕ. To give this formula to
the implementation of [6], we write it as follows.

phi() = a & <1>b & <2>let $y = c | <2>$y in $y;

split(#x) = <1>#x & <2>#x;

split(split(split(phi())))

We then observe that ψ contains 24 atomic propositions, 38 modalities, 15 con-
junctions, and 8 disjunctions (including duplicates). The size of the lean is only
19 (14 modalities and 5 atomic propositions5 Each new split( ) around the
formula then only adds two elements to the lean.

The satisfiability check of the above formula is performed in 131ms (millisec-
onds) with the implementation [6], including 5ms for computing the lean and
104ms for computing the tableau. A sample satisfying tree of 33 nodes is also
constructed in 39ms.
5 The numbers we report in this paper correspond to the numbers reported by [6].

Notice that in this implementation, the lean is not closed under negation. Closing
the lean under negation adds a modal formula 〈a〉ϕ for every modal formula 〈a〉ϕ
where ϕ is not >. In this particular case, the lean would contain 10 other formulas.
Each new split( ) would then add 4 formulas to the lean.
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4.2 Document-Order Relation and Global Counting

self
ancestor

descendant

pr
ec

ed
ing

following

following-sibling

preceding-sibling

child

parent

Fig. 5. Tree Navigation

We illustrate tree navigation in Figure 5. A very simple example of a combi-
nator is the descendant relation that checks that a node satisfying some formula
X is accessible in the subtree by any sequence of forward modalities. It is encoded
as follows:

descendant(X) = 〈1〉 (µz.X ∨ 〈1〉 z ∨ 〈2〉 z)

A whole range of combinators to navigate in a tree can be defined in a similar
manner. In particular we can encode:

following(X) = ancestor or self(ψ)

where

ψ = following sibling(descendant or self(X))

These combinators, whose intuition is illustrated in Figure 5, are predefined
in [6]. They can be used as such to encode the so-called document-order relation
�. This relation corresponds to the ordering of nodes given by a depth-first tree
traversal: x� y iff node y is visited after node x in a depth-first tree traversal.
We define the combinator next(X) = descendant(X) ∨ following(X) with
which we can mimic the document-order relation (we write X ∧ next(Y ) for
x � y). Notice that this combinator duplicates formulas, since the placeholder
X appears twice in its definition.

The document-order relation can be used to express global counting proper-
ties in trees. For instance, if we want to encode the so-called concept of a nominal
– or more generally the fact that some formula ψ is satisfied by one and only
one node in the tree – we can write:
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psi() = a & <1>b & <2>let $y = c | <2>$y in $y;

next(#x) = descendant(#x) | following(#x);

previous(#x) = preceding(#x) | ancestor(#x);

nominal(#x) = #x & ~previous(#x) & ~next(#x);

nominal(psi())

If we now want to force the existence of at least 4 different tree nodes that satisfy
ψ, we can write:

psi() & next(psi() & next(psi() & next(psi())))

The full expansion of the above formula is notably large (if we count duplicates,
the formula contains 468 atomic propositions, 871 modalities, 156 conjunctions,
and 404 disjunctions). However, the size of its lean is 43 (38 modalities and 5
atomic propositions.

The satisfiability check of the latter formula above is performed in 205ms
with the implementation [6], including 15ms for computing the lean and 124ms
for computing the tableau. A sample satisfying tree is constructed in 78ms.

4.3 The Tree Frontier

<2> <2>

¬<2>

<2>

<1
>+

<1
>*

<-
1>
+

(1) (2) (3)

Fig. 6. Tree Frontier Case Analysis

We borrow from [1] another advanced example: the description of properties
on a tree frontier. A tree frontier is the set of leaves (nodes without an outgoing
“1” edge) ordered from left to right. A frontier node y is the successor of a
frontier node x iff x � y and there is no leaf node in between x and y in the
document order. A simple case analysis shows that node y is the successor of a
frontier node x in one of three cases. These are depicted in Figure 6, where the
current leaf is black, the next leaf is white, and grayed nodes are not selected.
Dotted arrows correspond to sequences of navigation.

1. Either x is a leaf with an immediate next sibling which is also a leaf (y);
2. or x is a leaf with an immediate next sibling which is not a leaf, in which

case, by navigating downward in its subtree we reach the leftmost leaf (y);
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leaf() = ~<1>T;

down_to_first_leaf(#z) = let $x = (leaf() & <0>#z) | <1>$x in $x;

up_until_rsibl(#x) = (<2>T & #x)

| let $w = <-1>((<2>T & #x) | $w) | <-2>$w in $w;

next_frontier_node(#y) = leaf()

& up_until_rsibl(<2>down_to_first_leaf(#y));

down_to_first_leaf(a & next_frontier_node(a & next_frontier_node(a)))

Fig. 7. Tree Frontier Example (including all the necessary definitions for use with [6]).

3. or x is a leaf with no next sibling, in which case, by going up to the parent
node recursively until we reach a parent node which has a next sibling, then
going to this next sibling, and then, from this node, navigating downward
in its subtree we reach the leftmost leaf (y).

This yields the following definition of a combinator that captures all the afore-
mentioned cases with the help of a few neatly chosen auxiliary predicates:

next frontier node(Y ) = leaf ∧ up until rsibl(ψ)

In this definition, the placeholder Y is to be replaced by a formula that holds at
the successor node, and:

leaf = ¬ 〈1〉>
ψ = 〈2〉 down to first leaf(Y )

up until rsibl(X) = (〈2〉> ∧X)

∨ µx.
〈
1
〉

((〈2〉> ∧X) ∨ x) ∨
〈
2
〉
x

down to first leaf(Z) = µx.(leaf ∧ Z) ∨ 〈1〉x

Using these combinators, we can now express properties on the tree frontier.
For instance, the formula shown on Figure 7 states that the leftmost leaf is
labeled “a”, and, by further navigation on the tree frontier, we encounter two
other leaves labeled “a”. If we count duplicates, the corresponding formula con-
tains 7 atomic propositions, 26 modalities, 23 variables, 10 fixpoint binders, 7
negations, 7 conjunctions, and 16 disjunctions. However, the size of the corre-
sponding lean is 22. The lean is only composed of 19 distinct modalities and
3 distinct atomic propositions. Each additional nested call to the combinator
∧ next frontier node(Y ) extends the lean by 6 modalities. However, the cor-

responding global formula goes from 26 modalities to 58 for the first addition,
then it goes to 122 for the second addition. It reaches 32762 modalities for the
10th addition, whereas the corresponding formula is solved for satisfiability in
11052ms (lean size is 82).

The satisfiability check of the formula shown in Figure 7 is performed in
136ms with the implementation [6], including 3ms for computing the lean and
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109ms for computing the tableau. A sample satisfying tree is constructed in
18ms.

5 Conclusion

We have presented the concept of logical combinators that avoid exponential
increases in combined complexity due to sub-formula duplication. Our main
result, of theoretical nature, has very practical consequences and applies for a
large class of logical solvers such as the ones found in [14,12,7,13].

We have further illustrated this result in the context of one of these satisfia-
bility solvers [7], for which we have presented an in-depth analysis. This analysis
focuses on the time complexity of lean-based algorithms to decide the satisfi-
ability of a tree logic equipped with inverse programs, nominals, and counting
introduced via combinators. The analysis highlights our result by showing that
the lean automatically factorizes duplicated sub-formulas even for such advanced
features, thus the complexity of the algorithm should not be stated in terms of
the size of the initial formula but in terms of the size of the lean. A direct con-
sequence of this observation is that the addition of nominals and a more general
form of counting to the initial tree logic has no impact on decidability nor on its
precise complexity bound. We have also reported on practical experiments using
an implementation available online.

As a direction for future work, it would be interesting to use this approach
to investigate or revisit problems which have been avoided as they were leading
to formula duplication.
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under RDFS entailment regime. In: IJCAR: Proceedings of the 6th International
Joint Conference on Automated Reasoning. pp. 134–148 (2012)

3. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
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