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Abstract. The Brumer-Stark conjecture deals with abelian extensions of number fields and
predicts that a group ring element, called the Brumer-Stickelberger element constructed from
special values of L-functions associated to the extension, annihilates the ideal class group of
the extension under consideration. Moreover it specifies that the generators obtained have
special properties. The aim of this article is to propose a generalization of this conjecture to
non-abelian Galois extensions that is, in spirit, very similar to the original conjecture.

1. Introduction

The Brumer-Stark conjecture was first stated by Tate [13] and applies to abelian extensions
of number fields. It combines a conjecture of Brumer that a certain group-ring element with
integer coefficients constructed from the special values of L-functions associated the extension,
the Brumer-Stickelberger element, annihilates the class group of the extension, with ideas coming
from conjectures of Stark that predict special properties for a generator of the principal ideals
obtained. A very nice reference for the Brumer-Stark conjecture, and Stark conjectures in
general, is the book of Tate [14]. The aim of this article is to generalize the Brumer-Stark
conjecture to Galois non-abelian extensions.

The plan of this paper is the following. In the second section, we state the Brumer-Stark
conjecture, some of its properties and say a few words about its current status. To avoid confusion
in the set of the paper, we will call this conjecture the abelian Brumer-Stark conjecture and will
call the conjecture that we propose the Galois Brumer-Stark conjecture. The third section is
devoted to the generalization of the Brumer-Stickelberger element to the Galois case. There, we
rely on an earlier work of Hayes [9] that constructs this generalization and studies its properties.
We show that it also satisfies additional properties very similar to the abelian case and, in
particular, that it is rational. We are not able however to prove a suitable denominator for
the Brumer-Stickelberger element, but we make a conjecture, called the Integrality Conjecture,
of its value and makes this conjecture part of our generalization of the abelian Brumer-Stark
conjecture. The next section introduces the notion of strong central extensions. This notion
plays a fundamental part in our generalization. The Galois Brumer-Stark conjecture is stated in
Section 5 and we study its properties in Section 6 with in view the generalization of the properties
of the abelian Brumer-Stark conjecture. The last section is devoted to the study of the conjecture
in the special case where the Galois group of the extension contains an abelian normal subgroup
of prime index. In this setting, we prove that the abelian Brumer-Stark conjecture implies the
Galois Brumer-Stark conjecture.

Note that generalizations to the non-abelian case of the Brumer-Stark conjecture, and other
Stark conjectures in general, are also proposed in [2] and [10]. However, the direction of the
generalizations, the points of view and the methods used are quite different from the ones we
use here.

Convention. We denote the action of elements of Galois groups on elements, ideals, etc., using
the exponent notation with the convention that they act on the left, that is ασγ = σ(γ(α)).
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2 GAELLE DEJOU AND XAVIER-FRANÇOIS ROBLOT

2. The abelian Brumer-Stark conjecture

In this section, we state the abelian Brumer-Stark conjecture and review some of its properties.
Let K/k be an abelian extension of number fields. Denote by G its Galois group. Fix S a finite
set of places of k containing the infinite places of k and the finite places of k that ramify in K/k.
We assume that the cardinality of S is at least two. To a character χ of G is associated the
S-truncated Hecke L-function of χ defined for Re(s) > 1 by

LK/k,S(s, χ) :=
∏
p/∈S

(1− χ(σp)N (p)−s)−1

where p runs through the prime ideals of k not in S, σp is the Frobenius automorphism of p in G,
and N (p) is the absolute norm of the ideal p. These functions admit meromorphic continuation
to C, and in fact analytic if the character χ is non-trivial. A main object of the abelian Brumer-
Stark conjecture is the Brumer-Stickelberger element which is constructed from the values at
s = 0 of Hecke L-functions. It is a relative analogue of the Stickelberger element of cyclotomic
fields and is defined by the formula

θK/k,S :=
∑
χ∈Ĝ

LK/k,S(0, χ) eχ̄ ∈ C[G]

where Ĝ denotes the group of characters of G and, for χ ∈ Ĝ, eχ is the associated idempotent.
Another characterization of this element is to say that it is the only element in C[G] such that

χ(θK/k,S) = LK/k,S(0, χ̄) (2.1)

for all character χ ∈ Ĝ. A third characterization of this element is in term of partial zeta
functions. For σ ∈ G, the partial zeta function associated to g (and the extension K/k and the
set S) is defined, for Re(s) > 1, by

ζK/k,S(s, σ) :=
∑

(a,S)=1
σa=σ

N (a)−1

where a runs through the integral ideals of k, not divisible by the prime ideals in S and whose
Artin symbol σa ∈ G is equal to σ. These functions also admit meromorphic continuation to the
complex plan and are related to Hecke L-functions by the formula

LK/k,S(s, χ) =
∑
σ∈G

ζK/k,S(s, σ)χ(σ).

From this we deduce the third characterization of the Brumer-Stickelberger element

θK/k,S =
∑
g∈G

ζK/k,S(0, σ)σ−1.

It follows from the Siegel-Klingen theorem that the values of the partial zeta functions at s = 0
are rational, thus θK/k,S ∈ Q[G]. A more precise result of Deligne et Ribet [5] (see also Barsky
[1] and Cassou-Noguès [3]) states that, for any ξ ∈ AnnZ[G](µK), the annihilator in Z[G] of the
group µK of roots of unity in K, we have ξ θK/k,S ∈ Z[G]. In particular, if we let wK denote the
cardinality of µK , we have

wKθK/k,S ∈ Z[G]. (2.2)
We need one last notation before stating the abelian Brumer-Stark conjecture. We say that a

non-zero element α in K is an anti-unit if all its conjugate have absolute value equal to 1. The
group of anti-units of K is denoted by K◦.

Conjecture 2.1 (Brumer-Stark conjecture BS(K/k, S)). For any fractional ideal A of K, the
ideal AwKθK/k,S is principal and admits a generator α ∈ K◦ such that K(α1/wK )/k is abelian.
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A BRUMER-STARK CONJECTURE FOR NON-ABELIAN GALOIS EXTENSIONS 3

Remark. The last assertion that K(α1/wK )/k is abelian does not depend on the choice of the
wK-th root of α since all these roots generate the same extension of K.

Let v be a place in S and denote by Nv :=
∑
σ∈Dv σ ∈ Z[G] the sum of all the elements in

the decomposition group Dv of v in G. Then, one can prove, see [14, Chap. IV], that

Nv θK/k,S = 0. (2.3)

In particular, if the set S contains a place that is totally split in K/k, the Brumer-Stickelberger
element is equal to 0 and the abelian Brumer-Stark conjecture is trivially true. Therefore, the
conjecture is only meaningful when k is not totally real and K totally complex.1 In [13], Tate
proves equivalent formulations of the conjecture that are very useful for its study. We will later
on generalize this result to the non-abelian Galois case.

Theorem 2.2 (Tate). Let A be a fractional ideal of K. Then the following statements are
equivalent.
(i). There exists an anti-unit α ∈ K◦ such that AwKθK/k,S = αOK and K(α1/wK )/k is abelian.
(ii). There exists an extension L/K such that L/k is abelian and an anti-unit γ ∈ L◦ such that

(AOL)θK/k,S = γOL.
(iii). For almost all prime ideals2 p of k,there exists αp ∈ K◦ such that αp ≡ 1 (mod∗ pOK)

and A(σp−N (p))θK/k,S = αpOK where σp is the Frobenius automorphism of p in G.
(iv). There exist a family (ai)i∈I of element of Z[G] generating AnnZ[G](µK) and a family

(αi)i∈I of anti-units in K such that AaiθK/k,S = αiOK for all i ∈ I, and αiaj = αj
ai for

all i, j ∈ I.

Remark. In part (ii), (AOL)θK/k,S is defined by the formula
(
(AOL)nθK/k,S

)1/n where n ≥ 1 is
any integer such that nθK/k,S ∈ Z[G].

Let A be a fractional ideal of K. We say that BS(K/k, S;A) holds if the ideal A satisfies
the equivalent condition of the theorem. The conjecture BS(K/k, S) is thus the collection of
the conjectures BS(K/k, S;A) where A ranges through the fractional ideals of K. In [13], Tate
proves that the set of fractional ideals A of K such that BS(K/k, S;A) holds is a group, stable
under the action of G, and containing the principal ideals of K. In particular, BS(K/k, S) holds
if the field K is principal. Now, let p0 be a prime ideal of k not in S, then

θK/k,S∪{p0} = (1− σp0

−1)θK/k,S . (2.4)

It follows from this formula that the validity of BS(K/k, S) implies that of BS(K/k, S ∪ {p0}).
Therefore, the conjecture is true for any admissible set of places S if it is true for the minimal
choice of S formed exactly of the infinite places of k and of the finite places that ramify of K/k.

The validity of conjecture is also preserved under change of extension as a consequence of part
(ii) of Proposition 2.2. That is, for K/K ′/k a tower of extension, the validity of BS(K/k, S)
implies that of BS(K ′/k, S). It also preserved under change of base, that is if BS(K/k, S) holds
then does also BS(K/k′, S′) where K/k′/k is a tower of extensions and S′ denotes the set of
places of k′ above the place in k, see [8]. The following cases of the conjecture are proved by
Tate (see [13] or [14]).

Theorem 2.3 (Tate). The abelian Brumer-Stark conjecture BS(K/k, S) is true in the following
cases

• The field k is the field Q of rational numbers.3

• The extension K/k is quadratic.

1Note that K◦ = {±1} if K is not totally complex.
2Here and in the rest of the paper, when we say “for almost all prime ideals”, we always implicitly exclude the

ramified primes; therefore the Frobenius automorphism is always uniquely defined.
3In this situation, it boils down to Stickelberger theorem on cyclotomic sums.
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4 GAELLE DEJOU AND XAVIER-FRANÇOIS ROBLOT

• The extension K/k is of degree 4 and contained into a non-abelian Galois extension
K/k0 of degree 8.

Sands proves the abelian Brumer-Stark conjecture in certain cases when the group G has
exponent 2. We refer the interested reader to [12] for more precise statements. In [7], a local
version of the conjecture is stated and is proved in some cases and numerically studied in some
other. The recent results of Greither and Popescu [6] implies that the local abelian Brumer-
Stark conjecture at p holds provided that S contains all the primes above p and some appropriate
Iwasawa µ-invariant vanishes.

3. The Galois Brumer-Stickelberger element

We assume from now on that the extension K/k is Galois, but not necessarily abelian. The
set S still denotes a finite set of places of k, of cardinality at least 2, containing the infinite
places of k and the finite places that ramify in K/k. The first step in our generalization of the
abelian Brumer-Stark conjecture is to generalize the construction of the Brumer-Stickelberger
element. Fortunately, such a construction is provided by the work of Hayes [9]. We now review
his construction and the first properties of the Brumer-Stickelberger element. Denote by Ĝ the
set of irreducible characters of G. For χ ∈ Ĝ, let LK/k,S(s, χ) denote the Artin L-function of χ
with Euler factors at primes in S deleted. The Brumer-Stickelberger element is defined by

θK/k,S =
∑
χ∈Ĝ

LK/k,S(0, χ) eχ̄ (3.5)

where eχ :=
χ(1)

|G|
∑
σ∈G

χ(σ)σ−1 is the central idempotent of χ.

The following results are extracted from [9].

Theorem 3.1 (Hayes). Denote by CG the set of conjugacy classes of G. The Brumer-Stickelberger
element belongs to the center Z(C[G]) of C[G] and is the only element of C[G] such that

φχ(θK/k,S) = LK/k,S(0, χ̄) (3.6)

for all χ ∈ Ĝ where φχ is the ring homomorphism from Z(C[G]) to C defined by

φχ(C) :=
χ(C)

χ(1)

for all C ∈ CG.
Let B be a normal subgroup of G. Then we have

θKB/k,S = π(θK/k,S)

where π : Gal(K/k)→ Gal(KB/k) is the canonical surjection induced by the restriction to KB.
Let H be a subgroup of G. Denote by SH the set of places of KH above the places in S. Let

INormG→H : Z(C[G]) −→ Z(C[H]) be the inhomogeneous norm defined by

INormG→H(a) :=
∑
φ∈Ĥ

( ∏
χ∈Ĝ

a(χ)〈χ,IndGH φ〉G
)
eφ

where a :=
∑
χ∈Ĝ a(χ)eχ ∈ Z(C[G]), 〈·, ·〉G is the inner product on the characters of G and eφ

is the central idempotent of C[H] associated to φ. Then we have

θK/KH ,SH = INormG→H(θK/k,S).

Remark. In the proposition, we identified the conjugacy class C ∈ CG with the element
∑
g∈C g

of the group ring C[G].

We are now interested in generalizing properties (2.3) and (2.4). We start with (2.3).
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A BRUMER-STARK CONJECTURE FOR NON-ABELIAN GALOIS EXTENSIONS 5

Proposition 3.2. For v a place of k, define

Nv :=
∑
σ∈Dw

1

|Cσ|
Cσ ∈ Q[G]

where w is a place of K above v, Dw is the decomposition group of w in K/k and Cσ ∈ CG is
the conjugacy class of σ in G. Then, for any place v in S, we have

Nv θK/k,S = 0.

Proof. Since Nv is in Z(C[G]), it is enough, with the notations of Theorem 3.1, to prove that
φχ(Nv θK/k,S) = φχ(Nv)φχ(θK/k,S) = 0 for all χ ∈ Ĝ. Let χ ∈ Ĝ be such that φχ(Nv) 6= 0. By
(3.6), we need to prove that the order r(χ̄) = r(χ) of vanishing at s = 0 of LK/k,S(s, χ) is at least
1. Let ρ : G → GL(V ) be an irreducible representation with character χ. By [14, Prop. I.3.4],
we have

r(χ) =
∑
v′∈S

dimV Dw′ − dimV G (3.7)

where w′ is a place of K above v′ and Dw′ denotes the decomposition group of w′ in G. Assume
first that χ is the trivial character. Then the above formula yields r(χ) = |S| − 1 and the
result follows from our hypothesis that S contains at least two places. Assume now that χ is
non-trivial. We compute

φχ(Nv) =
∑
σ∈Dw

1

|Cσ|
φχ(Cσ) =

1

χ(1)

∑
σ∈Dw

χ(σ) =
|Dw|
χ(1)

〈1Dw , χ|Dw〉Dw

where 1Dw is the trivial character ofDw and 〈·, ·〉Dw is the inner product of the space of characters
of Dw. By the above hypothesis, φχ(Nv) 6= 0 and thus the trivial character 1Dw appears in the
decomposition of χ|Dw . Therefore the space V Dw has dimension at least 1. On the other hand,
V G = {0} since χ is irreducible. It follows that r(χ) ≥ 1 and the result is proved. �

Assume that there exists v ∈ S that is totally split in K/k. Then Nv = 1 and the Brumer-
Stickelberger element is trivial in this case. Therefore, as in the abelian case, the Brumer-
Stickelberger element is always trivial when k is not totally real or K not totally complex. In
fact, we can say more than that. Recall that a number field E is CM if it is a totally complex
quadratic extension of a totally real field. If furthermore E is Galois over some totally real
subfield F , then Gal(E/F ) has a unique complex conjugation and we say that a character χ of
Gal(E/F ) is totally odd if all the eigenvalues of some associated representation at the complex
conjugation are equal to −1.

Proposition 3.3. Let χ ∈ Ĝ be a character such that φχ(θK/k,S) 6= 0. Then χ is the inflation
of a totally odd character of a Galois CM sub-extension F/k of K/k.

Proof. Let χ be such a character. Since S contains at least two elements, the character χ cannot
be trivial. Let ρ : G → GL(V ) be an irreducible representation of character χ. Denote by
F := KKer(ρ) the subfield of K fixed by the kernel of ρ, by G̃ the Galois group of F/k, and by
ρ̃ : G̃ → GL(V ) the faithful irreducible representation such that ρ = ρ̃ ◦ π where π : G → G̃ is
the canonical surjection induced by the restriction to F . Denote by χ̃ the character of ρ̃. By
the properties of Artin L-functions, we have r(χ̃) = r(χ) = 0. As χ̃ is irreducible, V G̃ = {0}
and thus by (3.7), we must have V Dw̃ = {0} for all the places w̃ of F above the places in S.
In particular, all the infinite places of F must be complex and, for w̃ a complex place of F , the
complex conjugation τw̃ acts as −1 on V . Since ρ is faithful, it follows that all the complex
conjugations of F are equal to, say, τ ∈ G̃. Therefore {1, τ} is a normal subgroup of G̃ and its
fixed field is totally real. This proves that F is CM, χ̃ totally odd and concludes the proof. �

Corollary 3.4. If K/k does not contain a Galois CM sub-extension then θK/k,S = 0.
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6 GAELLE DEJOU AND XAVIER-FRANÇOIS ROBLOT

Proof. Assume that θK/k,S 6= 0. Then, by Theorem 3.1 and the fact that (φχ)χ∈Ĝ is a basis of
the dual of Z(C[G]), see [9], we get that there exists an irreducible character χ of G such that
r(χ) = 0. This character comes from a Galois CM sub-extension by the proposition. �

Corollary 3.5. Let τ be a complex conjugation of G. Then (τ + 1) · θK/k,S = 0.

Proof. By the proposition, it is enough to prove that (τ + 1) · eχ = 0 for any character χ ∈ Ĝ
that is the inflation of a totally odd character χ̃ of a Galois CM sub-extension. Since χ̃ is totally
odd, we have χ(gτ) = −χ(g) for all g ∈ G. Let R be a set of representatives of G/{1, τ}. We
now compute

(τ + 1) · eχ = (τ + 1) · χ(1)

|G|
∑
ρ∈R

(
χ(ρ)ρ−1 + χ(ρτ)(ρτ)−1

)
= (τ + 1) · χ(1)

|G|
∑
ρ∈R

(
χ(ρ)ρ−1 − χ(ρ)τρ−1

)
= (τ + 1)(1− τ) · χ(1)

|G|
∑
ρ∈R

χ(ρ)ρ−1 = 0. �

The following result generalizes (2.4) to the Galois case.

Proposition 3.6. Let p0 be a prime ideal of k not in S. Then

θK/k,S∪{p0} = θK/k,S
∑
χ∈Ĝ

det(1− ρχ(σP0
))eχ̄

where P0 is a prime ideal of K above p0, σP0
is the Frobenius automorphism of P0 in G, and,

for χ ∈ Ĝ, ρχ denotes an irreducible representation of G with character χ.

Proof. With the notations of Theorem 3.1, it is enough to prove, for all ψ ∈ Ĝ, that

φψ(θK/k,S∪{p0}) = φψ(θK/k,S)φψ

(∑
χ∈Ĝ

det(1− ρχ(σP0
))eχ̄

)
= LK/k,S(0, ψ̄)

∑
χ∈Ĝ

det(1− ρχ(σP0
))φψ(eχ̄).

On the other hand, from the definition of Artin L-functions, we see that

φψ(θK/k,S∪{p0}) = LK/k,S∪{p0}(0, ψ̄) = LK/k,S(0, ψ̄) det(1− ρψ̄(σP0)).

The result follows from the fact that φψ(eχ̄) = 1 if ψ = χ̄ and zero otherwise. �

We now turn to the question of the rationality of the Brumer-Stickelberger element θK/k,S
when G is non-abelian. In fact, we will see that it is a consequence of the principal rank zero
Stark conjecture, proved by Tate [14], that θK/k,S lies in Q[G]. It is worth noting that the proof
of the principal rank zero Stark conjecture uses as a key ingredient the fact that the values at
s = 0 of partial zeta functions are rational. The principal rank zero Stark conjecture states that,
for any character χ of G, we have

LK/k,S(0, χα) = LK/k,S(0, χ)α for all α ∈ AutQ(C) (3.8)

where χα := α ◦ χ. We write

θK/k,S =
∑
χ∈Ĝ

LK/k,S(0, χ)
χ̄(1)

|G|
∑
σ∈G

χ(σ)σ =
∑
σ∈G

xσ σ
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A BRUMER-STARK CONJECTURE FOR NON-ABELIAN GALOIS EXTENSIONS 7

where

xσ :=
1

|G|
∑
χ∈Ĝ

χ̄(1)χ(σ)LK/k,S(0, χ).

Let α be an automorphism of C. We compute

α(xσ) =
1

|G|
∑
χ∈Ĝ

χ̄α(1)χα(σ)LK/k,S(0, χ)α

=
1

|G|
∑
χ∈Ĝ

χ̄α(1)χα(σ)LK/k,S(0, χα) = xσ

since the map χ 7→ χα is a bijection on the set Ĝ. It follows that xσ ∈ Q and we have proved
the following result.

Theorem 3.7. The Brumer-Stickelberger element θK/k,S lies in Q[G]. �

An interesting problem is to find a suitable denominator for the Brumer-Stickelberger element
in the non-abelian case. In the abelian case, as we noted above, wKθK/k,S is always integral.
In the Galois case, however, one can see on examples that it is not the case anymore. Let
[G,G] be the commutator subgroup of G, that is the subgroup generated by the commutators
[g1, g2] := g1g2g

−1
1 g−1

2 with g1, g2 ∈ G. Recall that CG is the set of conjugacy classes of G. We
make the following conjecture.

Conjecture 3.8 (Integrality conjecture). Define mG to be the lcm of the cardinalities of the
conjugacy classes in CG and let sG be the order of the commutator subgroup [G,G] of G. Define
dG to be the lcm of mG and sG. Then, for almost all prime ideals P of K, we have

dG(σP −N (p))θK/k,S ∈ Z[G]

where p is the prime ideal of k below P and σP is the Frobenius automorphism of P in G.

Note that we have mG = 1 if and only if sG = 1 if and only if G is abelian. Therefore the
conjecture is satisfied when the extension K/k is abelian and is equivalent in that case to the
statement before (2.2) using Lemma 3.9 below. It is also satisfied in the special case that we
study in Section 7 and in all the computations that we have performed [4].

Let Gab := G/[G,G] be the maximal abelian quotient of G and Kab = K [G,G] be the maximal
sub-extension of K/k that is abelian over k; we have Gal(Kab/k) = Gab. Denote by πab : G→
Gab the canonical surjection induced by the restriction to Kab and by νab the map from Z[Gab]
to Z[G] defined, for g̃ ∈ Gab, by

νab(g̃) :=
1

sG

∑
πab(g)=g̃

g (3.9)

where the sum is over elements g ∈ G whose image by πab is equal to g̃ and extended linearly.
The characters of degree 1 of G are exactly the ones that are inflation of characters of Gab.
Let χ be such a character and let χ̃ denote the character of Gab such that χ = χ̃ ◦ πab. One
checks readily that eχ = νab(eχ̃) where eχ̃ is the idempotent of C[Gab] associated to χ̃. By the
properties of Artin L-functions, we have∑

χ∈Ĝ
χ(1)=1

LK/k,S(0, χ)eχ̄ =
∑
χ̃∈Ĝab

LKab/k,S(0, χ̃)νab(e ¯̃χ)

= νab
( ∑
χ̃∈Ĝab

LKab/k,S(0, χ̃)e ¯̃χ

)
= νab(θKab/k,S).
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8 GAELLE DEJOU AND XAVIER-FRANÇOIS ROBLOT

We define
θ

(>1)
K/k,S :=

∑
χ∈Ĝ
χ(1)>1

LK/k,S(0, χ)eχ̄.

By the above computation, we have

θK/k,S = νab(θKab/k,S) + θ
(>1)
K/k,S . (3.10)

A direct computation shows that, for ξ ∈ C[G], we have ξνab(θKab/k,S) = νab(ξ̃θKab/k,S) where
ξ̃ := πab(ξ). Therefore, it follows from the remark before (2.2) that, for all ξ ∈ AnnZ[G](µK),
we have sG ξ νab(θKab/k,S) ∈ Z[G]. The next result is proved in [14, Lemme IV.1.1] for abelian
extensions. It is straightforward to extend the proof to Galois extensions.

Lemma 3.9. Let T be a set of prime ideals containing all the unramified prime ideals of K that
do not divide wK except, possibly, a finite number. Then the annihilator AnnZ[G](µK) of µK in
Z[G] is generated as a Z-module by the elements σP − N (p) where P runs through the prime
ideals in T , and p denotes the prime ideal of k below P. Furthermore, we have

wK = gcd
P∈T
σP=1

(1−N (p)). �

From this, we deduce equivalent formulations of the Integrality Conjecture.

Proposition 3.10. The following assertions are equivalent
(1). For almost all prime ideals P of K, dG(σP −N (p))θK/k,S ∈ Z[G];
(2). For all ξ ∈ AnnZ[G](µK), dG ξ θK/k,S ∈ Z[G];
(3). For almost all prime ideals P of K, dG(σP −N (p))θ

(>1)
K/k,S ∈ Z[G];

(4). For all ξ ∈ AnnZ[G](µK), dG ξ θ
(>1)
K/k,S ∈ Z[G].

Proof. The equivalences (1)⇔ (3) and (2)⇔ (4) are consequences of the above discussion. The
direction (2)⇒ (1) is trivial. The other direction follows from the above lemma. �

4. Strong central extensions

Before we generalize the abelian Brumer-Stark conjecture to Galois extensions, we introduce
the notion of strong central extensions that will play a primordial part. For that, we stop
assuming for a moment that G is the Galois group of the extension K/k and just consider G
as a group. Let Γ and ∆ be two other groups with ∆ a normal subgroup of Γ such that the
following sequence is exact

1 // ∆ // Γ
π // G // 1, (4.11)

that is, Γ is a group extension of G by ∆. We say that Γ is a strong central extension of G by
∆ if ∆ ∩ [Γ,Γ] = 1 where [Γ,Γ] is the commutator subgroup of Γ. The choice of terminology is
explained by the following lemma.

Lemma 4.1. Let Γ be a strong central extension of G by ∆. Then Γ is a central extension of
G by ∆.

Proof. Let γ ∈ Γ and δ ∈ ∆. We compute

π([γ, δ]) = π(γ)π(δ)π(γ)−1π(δ)−1 = π(γ)π(γ)−1 = 1.

Thus, [γ, b] ∈ ∆ ∩ [Γ,Γ] = {1} and γ and δ commute. Therefore ∆ is in the center of Γ and the
extension is central. �

The following two lemmas provide us with equivalent characterizations of strong central ex-
tensions.
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A BRUMER-STARK CONJECTURE FOR NON-ABELIAN GALOIS EXTENSIONS 9

Lemma 4.2. Consider the group extension (4.11). This extension is strong central if and only
if, for any abelian subgroup H of G, the subgroup π−1(H) of Γ is abelian.

Proof. Assume that the extension is strong central. Let H be an abelian subgroup of G. Let
γ1, γ2 ∈ π−1(H), say π(γ1) = h1, π(γ2) = h2 with h1, h2 ∈ H. We compute

π([γ1, γ2]) = [h1, h2] = 1.

By hypothesis, this implies that [γ1, γ2] = 1 and therefore π−1(H) is abelian.
Reciprocally, we assume that, for any abelian subgroup H of G, the group π−1(H) is abelian.

Let γ1, γ2 ∈ Γ be such that [γ1, γ2] ∈ ∆. Then π([γ1, γ2]) = 1 and π(γ1) and π(γ2) commute.
The subgroup of G that they generate is abelian and, by hypothesis, it follows that γ1 and γ2

commute, that is [γ1, γ2] = 1. Therefore the extension Γ of G by ∆ is strong central. �

Lemma 4.3. Consider the group extension (4.11). This extension is strong central if and only
if the map s restricts to an isomorphism between [Γ,Γ] and [G,G].

Proof. It is direct to see that π restricts to a surjective map from [Γ,Γ] to [G,G]. This map is
injective if and only if [Γ,Γ] ∩Ker(π) = 1. The result follows since Ker(π) = ∆. �

We note another property of strong central extensions that will be useful later on. For a finite
group A, recall that mA denote the lcm of the cardinalities of the conjugacy classes of A, sA is
the order of the commutator subgroup [A,A] of A and dA is the lcm of mA and sA.

Lemma 4.4. Consider the group extension (4.11). Assume that the extension is strong central
and that Γ is finite. Then we have dΓ = dG.

Proof. It is enough to show that mΓ = mG and sΓ = sG. The fact that sΓ = sG is a direct
consequence of the previous lemma. We now show that mΓ = mG. Let γ ∈ Γ. Denote by C and
Z respectively the conjugacy class of γ in Γ and the centralizer of γ in Γ. We have

|C| = (Γ : Z) = (π(Γ) : π(Z))(Ker(π) : Ker(π) ∩ Z) = (G : π(Z))(∆ : ∆ ∩ Z)

= (G : Z0)(Z0 : π(Z))(∆ : ∆ ∩ Z) = |C0|(Z0 : π(Z))(∆ : ∆ ∩ Z)

where C0 is the conjugacy class of π(γ) in G and Z0 is the centralizer of π(γ) in G. Since ∆
is in the center of Γ by Lemma 4.1, we have ∆ ⊂ Z and (∆ : ∆ ∩ Z) = 1. Now, let ρ0 ∈ Z0

and let ρ ∈ π−1(ρ0). We have π([ρ, γ]) = [ρ0, π(γ)] = 1 since ρ0 commutes with π(γ). Therefore
[ρ, γ] ∈ [Γ,Γ] ∩∆ = {1} and ρ ∈ Z. Thus, π(Z) = Z0 and we have finally |C| = |C0|. As any
conjugacy class of G is the image by π of a conjugacy class of Γ, we have mΓ = mG and the
result is proved. �

We now come back to our previous setting and assume that G is the Galois group of the
extension K/k. Let L be an extension of K. We say that L is a strong central extension of K/k
if L/k is Galois and the group extension

1 // ∆ // Γ // G // 1

is strong central where ∆ := Gal(L/K) and Γ := Gal(L/k). The following result is a direct
consequence of the definition of strong central extensions.

Lemma 4.5. Denote by Lab the maximal sub-extension of L/k that is abelian over k. Then
L is a strong central extension of K/k if and only if L = KLab. Furthermore, in that case,
restriction to Lab yields an isomorphism between Gal(L/K) and Gal(Lab/Kab) where Kab is
the maximal sub-extension of K/k that is abelian over k. �

We conclude this section with a lemma that shows central extensions behave somewhat nicely.

Lemma 4.6. Let L be a strong central extension of K/k.
(1) Let L0/K be a sub-extension of L/K. Then L0 is a strong central extension of K/k.
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10 GAELLE DEJOU AND XAVIER-FRANÇOIS ROBLOT

(2) Let M be another strong central extensions of K/k. Then LM is a strong central exten-
sion of K/k.

Proof. We prove the first assertion. The group Gal(L/L0) is a subgroup of Gal(L/K) and thus it
is normal in Gal(L/k). Therefore, L0/k is a Galois extension. Let Lab

0 = Lab∩L0 be the maximal
abelian sub-extension of L0/k. It follows from the above lemma that [Lab

0 : Kab] = [L0 : K].
Since Lab

0 ∩K = Kab, we find that

[KLab
0 : k] =

[Lab
0 : k][K : k]

[Kab : k]
= [Lab

0 : Kab][K : k] = [L0 : k],

thus KLab
0 = L0 and L0 is a strong central extension of K/k by the previous lemma.

We now prove the second assertion. The extension LM/k is Galois as the compositum of two
Galois extensions of k. Let F = L ∩M . It is an extension of K. Then, a direct computation
shows that [LM : K] = [LabMab : Kab]. We find that

[KLabMab : k] =
[LabMab : k][K : k]

[Kab : k]
= [LabMab : Kab][K : k] = [LM : k].

Thus, KLabMab = LM . Since the maximal abelian sub-extension (LM)ab of LM/k that is
abelian over k contains LabMab, it follows that K(LM)ab = LM and LM is a strong central
extension of K/k. �

5. The Galois Brumer-Stark conjecture

We now generalize the abelian Brumer-Stark conjecture to Galois extensions.

Conjecture 5.1 (BSGal(K/k, S)). The Integrality Conjecture holds and, for any fractional ideal
A of K, the ideal AdGwKθK/k,S is principal, and admits a generator α ∈ K◦ such that K(α1/wK )
is a strong central extension of K/k.

Remark. As in the abelian case, the last assertion that K(α1/wK ) is a strong central extension
of K/k does not depend on the choice of the wK-th root of α since all of these generate the same
extension of K.

Before studying the conjecture, we discuss briefly our evidence for it. The first evidence is that
the conjecture is in many ways a natural generalization of the abelian Brumer-Stark conjecture.
Indeed, it is equivalent to it in the abelian case, see below, and share many properties similar to it,
see next section. We prove also in the last section that, in one special setting, the Galois Brumer-
Stark conjecture is implied by the abelian Brumer-Stark conjecture. Finally, in a forthcoming
paper [4], we prove numerically that the conjecture holds in many examples.

Proposition 5.2. Assume that K/k is abelian. Then the Galois Brumer-Stark conjecture
BSGal(K/k, S) is equivalent to the abelian Brumer-Stark conjecture BS(K/k, S).

Proof. This is clear since dG = 1 in that case and, by Lemma 4.2, we see that K(α1/wK )/k is
abelian if and if only if K(α1/wK ) is as strong central extension of K/k. �

Assume that the Integrality Conjecture holds. For a fractional ideal A of K, we say that
BSGal(K/k, S;A) is satisfied if the ideal A verifies the properties stated in the conjecture. The
conjecture BSGal(K/k, S) is thus equivalent to the Integrality Conjecture and the collection
of the conjectures BSGal(K/k, S;A) where A ranges through the fractional ideals of K. The
following result gives equivalent formulations for BSGal(K/k, S;A) and is the generalization of
Theorem 2.2. Recall that, for a prime ideal P of K, we denote by p the prime ideal of k below
P and by σP the Frobenius automorphism of P in G.

Theorem 5.3. Assume the Integrality Conjecture holds. Let A be a fractional ideal of K. The
following assertions are equivalent.
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A BRUMER-STARK CONJECTURE FOR NON-ABELIAN GALOIS EXTENSIONS 11

(i). BSGal(K/k, S;A) is satisfied, that is there exists an anti-unit α ∈ K◦ such that AdGwKθK/k,S =
αOK and K(α1/wK ) is a strong central extension of K/k.

(ii). There exists an extension L/K that is a strong central extension of K/k and an anti-unit
γ ∈ L◦ such that (AOL)dGθK/k,S = γOL

(iii). For almost all prime ideals P of K, there exists an anti-unit αP ∈ K◦ such that AdG(σP−N (p))θK/k,S =
αPOK and αP ≡ 1 (mod∗ Q) for all prime ideals Q of K above p such that σQ = σP.

(iv). For any abelian subgroup H of G, there exists a finite family (ai)i∈I of elements of Z[H]
generating AnnZ[H](µK) as a Z-module and anti-units (αi)i∈I of K such that AdGaiθK/k,S = αiOK
and αjai = αi

aj for all i, j ∈ I.

Remark. In part (ii), (AOL)dGθK/k,S is defined by the formula
(
(AOL)ndGθK/k,S

)1/n where
n ≥ 1 is any integer such that ndGθK/k,S ∈ Z[G].

Proof. We use repeatedly the fact that θK/k,S lies in the center of C[G].

(i)⇒ (ii). Let γ := α1/wK and L := K(γ). Then, L is a strong central extension of K/k and γ
is an anti-unit in L. Furthermore, we have(

γOL
)wK

= αOL = (AOL)dGwKθK/k,S

and the result follows since the group of ideals of a number field is torsion-free.
(ii) ⇒ (iii). Denote by Γ the Galois group of L/k and by ∆ the Galois group of L/K. Let T
be the set of prime ideals of K, unramified in L/K and K/Q, relatively prime with wK and
with A and all its conjugates over k. Note that T contains all but finitely many prime ideals
of K. Let P ∈ T and let P̃ be a prime ideal of L above P. Denote by σP̃ the Frobenius
automorphism of P̃ in Γ. We set αP̃ := γσP̃−N (p). Let Q̃ be another prime ideal of L above p

such that π(σP̃) = π(σQ̃) where π : Γ→ G is the canonical surjection induced by the restriction
to K and σQ̃ is the Frobenius automorphism of Q̃ in Γ. Then, there exists ρ ∈ Γ such that
Q̃ = ρ(P̃), and we have σQ̃ = ρσP̃ρ

−1. Since π([ρ, σP̃]) = π(σQ̃)π(σP̃)−1 = 1, it lies in ∆
and is therefore trivial. Thus σQ̃ = σP̃ and αQ̃ = αP̃. In particular, αP̃ does not depend on
the choice of the prime ideal P̃ of L above P, and we can just denote it by αP. Furthermore,
αP = γσQ̃−N (p) ≡ 1 (mod∗ Q̃) for all prime ideals Q̃ of L above p such that σQ = σP where Q

is the prime ideal of K below Q̃. We now prove that αP lies in K. Let ρ ∈ Gal(L/K). We have(
αρ−1
P

)wK
=
(

(γwK )
σP̃−N (p)

)ρ−1

=
(
ασP−N (p)

)ρ−1

= 1

since α lies in K. Thus, there exists a root of unity ξ ∈ µK such that αρ−1
P = ξ. We have

αP ≡ αρP ≡ 1 (mod∗ P̃) by the above remark, hence ξ ≡ 1 (mod∗ P̃) and thus ξ = 1 by the
choice of P. Therefore, αP ∈ K as desired. Furthermore, it is clear from its construction that it
is an anti-unit and we have αP ≡ 1 (mod∗ Q) for all prime ideals Q above p such that σQ = σP
by the above. We have

αPOL = (γOL)
σP̃−N (p)

=
(
(AOL)dGθK/k,S

)σP̃−N (p)
= (AOL)dG(σP̃−N (p))θK/k,S ,

and, since A is an ideal of K and dG(σP − N (p))θK/k,S ∈ Z[G] by the Integrality Conjecture,
we get

αPOK = AdG(σP−N (p))θK/k,S .

The implication is proved.
(iii)⇒ (iv). Let H be an abelian subgroup of G. Denote by TH the subset of prime ideals of K
for which (iii) applies, that are unramified in L/K and K/k, relatively prime with wK and with
A and all its conjugates over k, and whose Frobenius automorphism in G actually lies in H. Let
I be a set indexing TH , so that TH = {Pi : i ∈ I}. For i ∈ I, we set ai := σPi −N (pi) ∈ Z[H]
and αi := αPi ∈ K◦. It follows from Lemma 3.9 that the family (ai)i∈I generates AnnZ[H](µK).
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12 GAELLE DEJOU AND XAVIER-FRANÇOIS ROBLOT

By construction, we have also AdGaiθK/k,S = αiOK . It remains to prove that, for i, j ∈ I, we
have αaij = α

aj
i , that is, for two prime ideas P and Q in TH , the two elements ασQ−N (q)

P and

α
σP−N (p)
Q are equal. We have

(αPOK)σQ−N (p) =
(
AdG(σP−N (p))θK/k,S

)σQ−N (p)

=
(
AdG(σQ−N (p))θK/k,S

)σP−N (p)
= (αQOK)σP−N (p)

where we used the fact that σP and σQ commute since they both belong to H. Since αP and
αQ are both anti-units, there exists a root of unity ξ ∈ µK such that ασQ−N (q)

P = ξα
σP−N (p)
Q .

Reasoning as above, we see that ξ ≡ 1 (mod∗ P), thus ξ = 1 and the equality is proved.

(iv) ⇒ (i). Let H be an abelian subgroup of G. Let (ai)i∈I and (αi)i∈I be the corresponding
families. There exists a family (λi)i∈I of integers, with only finitely many non-zero terms, such
that

wK =
∑
i∈I

λiai.

In the same way, for any h ∈ H, there exists an integer nh ∈ N such that h−nh annihilates µK .
Therefore, there exists a family (λh,i)i∈I of integers, with only finitely many non-zero terms,
such that

h− nh =
∑
i∈I

λh,iai.

We set αH :=
∏
i∈I α

λi
i . It is clear that αH is an anti-unit of K and we have

αHOK = AdG(
∑
i λiai)θ = AdGwKθK/k,S .

In particular, up to a root of unity in K, αH does not depend on the choices made, and we will
therefore denote it simply by α. Furthermore, for h ∈ H, we have

αh−nh =
∏
i∈I

(∏
j∈I

α
ajλh,j
i

)λi
=
∏
i∈I

(∏
j∈I

α
λh,j
j

)λiai
= α

∑
i∈I λiai

h = αwKh

where αh :=
∏
i∈I α

λh,i
i . For g, another element of H, one can prove in the same way that

α
g−ng
h = αh−nhg . Let γ := α1/wK and L := K(γ). We now prove that L/KH is an abelian

extension. First, we prove that L/KH is a Galois extension. For h ∈ H, let h̃ be any lift of h to
L. We compute

(γh̃−nh)wK = (γwK )h̃−nh = αh−nh = αwKh .

Thus, there exists ξh ∈ µK such that γh̃−nh = ξhαh. Therefore, we have

γh̃ = ξhαhγ
nh ∈ L

and L/KH is a Galois extension. We now prove that Gal(L/KH) is abelian. Let h̃, g̃ be two
elements of Gal(L/KH); denote by h and g their restriction to K. We have

γ(g̃−ng)(h̃−nh) = (ξhαh)g−ng = α
g−ng
h = αh−nhg = (ξgαg)

h−nh = γ(h̃−nh)(g̃−ng)

and therefore γg̃h̃ = γh̃g̃. Thus Gal(L/KH) is abelian as desired. Since this is true for any
abelian subgroup H of G, we get by Lemma 4.2 that L is a strong central extension of K/k.
This concludes the proof. �
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A BRUMER-STARK CONJECTURE FOR NON-ABELIAN GALOIS EXTENSIONS 13

6. Some properties of the Galois Brumer-Stark conjecture

In this section, we look at the properties satisfied by the Galois Brumer-Stark conjecture
with in view the generalization of the properties of the abelian Brumer-Stark conjecture listed in
Section 2. We start by proving that the set of fractional ideals that satisfy the Galois Brumer-
Stark conjecture have properties similar to the abelian case.

Proposition 6.1. The set of fractional ideals A of K that satisfy BSGal(K/k, S;A) is a group,
stable under the action of G and that contains the principal ideals of K.

Proof. We first prove that this set is a group. Let A and B be two fractional ideals of K such
that BSGal(K/k, S;A) and BSGal(K/k, S;B) hold. Let α and β the anti-units satisfying part
(i) of Theorem 5.3 for the ideals A and B respectively. Then αβ is an anti-unit such that
αβOK = (AB)dGwKθK/k,S . Furthermore, since K((αβ)1/wK ) ⊂ K(α1/wK , β1/wK ), it is a strong
central extension of K/k by Lemma 4.6 and therefore BSGal(K/k, S;AB) is satisfied. Thus the
set of ideals A such that BSGal(K/k, S;A) is satisfied is a subgroup of the group of fractional
ideals of K.

Let σ be an element ofG. We now prove thatBSGal(K/k, S;Aσ) is satisfied ifBSGal(K/k, S;A)
holds. Since θK/k,S is in the center of C[G], ασ is a generator of(

AdGwKθK/k,S
)σ

=
(
Aσ
)dGwKθK/k,S .

Furthermore, ασ is clearly an anti-unit. Let γ := α1/wK and δ := (ασ)1/wK . Denote by σ̃ a lift
of σ to L := K(γ). Then there exists ξ ∈ µK such that δ = ξγσ̃. Since L/k is Galois, we get
that L′ := K(δ) ⊂ L. This proves that L′ is a strong central extension of K/k by Lemma 4.6
and thus concludes the proof that BSGal(K/k, S;Aσ) is satisfied.

Finally, we prove that BSGal(K/k, S;A) is satisfied if A is a principal ideal, say A = ηOK .
For that, we use the equivalent formulation (iv) of Theorem 5.3. Let H be an abelian subgroup
of G. For h ∈ H, let nh ∈ N be such that ξh = ξnh for all ξ ∈ µK with the convention that
n1 = wK + 1. Then the family ah := h − nh, for h ∈ H, generates AnnZ[H](µK). For h ∈ H,
we define αh := ηdGahθK/k,S . Note that dGahθK/k,S ∈ Z[G] by the Integrality Conjecutre. For
all h ∈ H, we have (ηOK)dGahθK/k,S = ahOK by construction. Furthermore, let w be an infinite
(complex) place of K. Denote by τw ∈ G the complex conjugation at w. By Corollary 3.5, we
have that (1 + τw)θK/k,S = 0 and thus α1+τw

h = 1 for all complex places w of K. Therefore αh
is an anti-unit for all h ∈ H. It remains to prove that α agh = α ahg for all g, h ∈ H. But this is a
direct consequence of the fact that (h− nh)(g− ng) = (g− ng)(h− nh) since H is abelian. This
concludes the proof. �

Corollary 6.2. Assume that K is principal. Then BSGal(K/k, S) is satisfied. �

Using the decomposition of the Brumer-Stickelberger element given by (3.10), we can prove
the following result that relates BS(Kab/k, S) and BSGal(K/k, S).

Proposition 6.3. Assume that BS(Kab/k, S) holds. Then BSGal(K/k, S) is satisfied if, for

any fractional ideal A of K, the ideal AdGwKθ
(>1)

K/k,S is principal, and admits a generator β ∈ K◦
such that K(β1/wK ) is a strong central extension of K/k.

Proof. Let A be a fractional ideal of K. Set a := NK/Kab(A). An direct computation shows that

AdGwKν
ab(θ

Kab/k,S
) = a(dG/sG)wKθKab/k,SOK .

By hypothesis, there exists α0, an anti-unit in Kab, such that a(dG/sG)wKθKab/k,S = α0OKab and
Kab(α

1/wK
0 )/k is abelian. Let α := α0β. Then α is an anti-unit of K and by (3.10), we have

αOK = AdGwKθK/k,S .
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14 GAELLE DEJOU AND XAVIER-FRANÇOIS ROBLOT

It remains to prove that K(α1/wK ) is a strong central extension of K/k. It is a sub-extension
of K(α

1/wK
0 , β1/wK )/K. But K(β1/wK ) is a strong central extension of K/k by hypothesis and

K(α
1/wK
0 ) is a strong central extension of K/k by Lemma 4.5. Thus, K(α1/wK ) is a strong

central extension of K/k by Lemma 4.6 and the result is proved. �

For χ ∈ Ĝ, recall that Kχ denote the subfield of K fixed by the kernel of χ.

Corollary 6.4. Assume that BS(Kab/k, S) is satisfied and that, for all χ ∈ Ĝ such that χ(1) >
1, Kχ is not a CM extension. Then BSGal(K/k, S) holds.

Proof. Indeed, in that case, θ(>1)
K/k,S = 0 by Proposition 3.3. �

We now turn to the question of the change of extension for the Galois Brumer-Stark conjecture.
We will prove that it is satisfied in many cases up to a factor.

Proposition 6.5. Let K ′/k be a Galois sub-extension of K/k with G′ := Gal(K ′/k). Denote
by B̃SGal(K

′/k, S) the Galois Brumer-Stark conjecture for the extension K ′/k and the set of
places S with the factor dG′ replaced4 by dG. Assume that wK is relatively prime with the degree
of the extension K/K ′Kab. Then BSGal(K/k, S) implies B̃SGal(K

′/k, S).

Remark. If G is abelian then Kab = K, thus K = K ′Kab and the condition of the proposition
is always satisfied. Furthermore, we have dG = dG′ = 1 and we recover the fact that BS(K/k, S)
implies BS(K ′/k, S).

Remark. We prove actually a slighter stronger statement: if BSGal(K/k, S) holds then, for all
fractional ideal A′ of K ′, there exists an anti-unit α ∈ K ′ such that

A′ dGwK′θK′/k,S = (α).

The extra hypothesis that wK is relatively prime with the degree of K/K ′Kab is only used to
prove that K ′(α1/wK′ ) is a strong central extension of K ′/k.

In order to see that the statement of the proposition makes sense, we have the following
lemma.

Lemma 6.6. Let A be a finite group and let B be a quotient group of A. Then dB divides dA.

Proof. It is enough to prove that sB divides sA and mB divides mA. Let π : A → B be the
canonical surjection and denote by D its kernel. It is clear that sB divides sA since π([A,A]) =
[B,B]. We now prove that mB divides mA. Let b ∈ B and let a ∈ A be such that π(a) = b.
Denote by Z the centralizer of a and by Z0 the centralizer of b. Note that Z := π−1(Z0) is a
subgroup of A containing Z and that

|Z0| =
|Z|
|D|

=
(Z : Z) |Z|
|D|

.

On the other hand, if we denote by C and C0 the conjugacy classes of a and b in A and B
respectively. We have

|C| = |A|
|Z|

=
|A|(Z : Z)

|D| |Z0|
= (Z : Z)

|B|
|Z0|

= (Z : Z) |C0|.

Thus |C0| divides |C| and therefore mB divides mA. �

Proof. Observe to start that, thanks to Theorem 3.1, the Integrality Conjecture for the extension
K/k and the set of places S implies the Integrality Conjecture for the extension K ′/k and the
set of places S with dG′ replaced by dG. We first prove the result when K = K ′Kab. In this
situation, we shall actually prove that BSGal(K/k, S) implies BSGal(K

′/k, S). Indeed, we have

4included in the statement of the Integrality Conjecture.
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A BRUMER-STARK CONJECTURE FOR NON-ABELIAN GALOIS EXTENSIONS 15

dG = dG′ by Lemma 4.4 since one can see, thanks to Lemma 4.5, that K is a strong central
extension of K ′/k. Let A′ be a fractional ideal of K ′. We assume that BSGal(K/k, S) holds,
thus taking A := A′OK , we see that there exists an anti-unit α in K such that

αOK = (AOK)dGwKθK/k,S = A′ dGwKθK/k,SOK = A′ dGwKθK′/k,SOK (6.12)

where the last equality comes from Theorem 3.1, and such that L := K(γ) is a strong central
extension of K/k where γ := α1/wK . Clearly, we have

γOL = (A′OL) dGθK′/k,S .

We now use Theorem 5.3(ii) with the extension L/K ′ and the element γ. The only assertion that
needs to be checked is the fact that L is a strong central extension of K ′/k. By Lemma 4.5, this
is equivalent to the fact that L = K ′Lab where Lab is the maximal sub-extension of L/k that is
abelian over k. Clearly,Kab ⊂ Lab thusK ′Kab = K ⊂ K ′Lab and thereforeK ′Lab = KLab = L,
and L is a strong central extension of K ′/k. Therefore BSGal(K

′/k, S;A′) holds for all fractional
ideals A′ of K ′ and thus BSGal(K

′/k, S) is satisfied.
We now prove the general case. By the first part, we can assume that K ′ contains Kab and

therefore, by hypothesis, wK is relatively prime with the degree of K/K ′. Let A′ be a fractional
ideal of K ′. Reasoning as above, we see that there exists α ∈ K◦ such that

αOK = A′ dGwKθK′/k,SOK

and the extension L/K is a strong extension of K/k where L := K(γ) and γ := α1/wK . Denote
by Γ the Galois group of L/k. For σ ∈ Γ, Lσ = L is a Kummer extension of Kσ = K generated
by γσ. Thus there exist an integer nσ relatively prime to wK with 1 ≤ nσ ≤ d := [L : K] and an
element κσ ∈ K× such that γσ = κσγ

nσ . Observe that, for δ an element of ∆ := Gal(L/K), we
have nδ = 1 and κδ is a root of unity in K. Furthermore, using the fact that σ and δ commute,
we get

γδσ = (κσγ
nσ )δ = κσκ

nσ
δ γnσ = γσδ = (κδγ)σ = κσδ κσγ

nσ

and thus κσδ = κnσδ . As δ runs through the elements of ∆, κδ runs through the roots of unity
of order d, thus σ − nσ annihilates the group µd of d-th roots of unity. Assume now that σ lies
in A := Gal(L/K ′). Therefore, σ fixes the group of roots of unity µK′ = µK and thus nσ = 1.
Using the fact that θK′/k,S is in the center of C[G], we get

ασOK = (A′σ) dGwKθK′/k,SOK = A′ dGwKθK′/k,SOK = αOK .

Since α is an anti-unit, there exists a root of unity ξσ in K× such that ασ = ξσα. Combining
with the above expression for γσ, we find that κwKσ = ξσ. Thus κσ is a root of unity in K and
ξσ = 1. It follows that α ∈ K ′. Again we use Theorem 5.3(ii) to prove that B̃SGal(K/k, S) holds
for A′. It remains to prove that there is a strong central extension of K ′/k containing γ. Let
L′ := LabK ′ where Lab is the maximal sub-extension of L/k that is abelian over k. The Galois
group of the extension L/L′ is [Γ,Γ]∩A. Hence, by Lemma 4.5, it is the maximal sub-extension
of L/k that is strong central for K ′/k. We now prove that γ ∈ L′. Denote by π : Γ → G
the canonical surjection induced by the restriction to K. Its kernel is ∆, thus it restricts to an
isomorphism between [Γ,Γ] and [G,G] (see also Lemma 4.3). Therefore γ ∈ L′ if and only if
π(Gal(L/L′)) ⊂ π(Gal(L/K ′(γ))), that is π([Γ,Γ]∩A) ⊂ Gal(K/N) where N = K ∩K ′(γ). But
N/K ′ is a sub-extension of K/K ′ of degree dividing wK and therefore N = K ′ and the above
condition is always satisfied. Hence B̃SGal(K

′/k, S) holds and this concludes the proof. �

We conclude this section with a proof of when the validity of the conjecture is preserved when
one enlarges the set S. Recall that, for χ ∈ Ĝ, we denote by ρχ an irreducible representation of
G with character χ.
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16 GAELLE DEJOU AND XAVIER-FRANÇOIS ROBLOT

Lemma 6.7. Let P1, . . . ,Pt be prime ideals of K. We have
t∏
i=1

∑
χ∈Ĝ

det(1− ρχ(σPi))eχ̄ ∈
1

|G|
Z[G].

Proof. Let α ∈ Gal(Q̄/Q). It is easy to see that the above expression is invariant under the
action of α using the fact that the map χ 7→ χα is a bijection on Ĝ. Therefore, it lies in Q[G].
Now, by the orthogonality of characters, we have

t∏
i=1

∑
χ∈Ĝ

det(1− ρχ(σPi))eχ̄ =
∑
χ∈Ĝ

t∏
i=1

det(1− ρχ(σPi))eχ̄.

For all χ ∈ Ĝ, |G| eχ and det(1 − ρχ(σPi)), for i = 1, . . . , t, are algebraic integers and thus the
result follows. �

Proposition 6.8. Let p1, . . . , pt be distinct prime ideals of k not belonging to S. Define

ω :=

t∏
i=1

∑
χ∈Ĝ

det(1− ρχ(σPi))eχ̄ ∈
1

|G|
Z[G]

where Pi is a prime ideal of K above pi, for i = 1, . . . , t. Let d ≥ 1 be the smallest integer
such that dω ∈ Z[G]. Assume that BSGal(K/k, S) holds and let S′ := S ∪ {p1, . . . , pt}. Then
BSGal(K/k, S

′;A) is satisfied for any fractional ideal A of K whose class in ClK has order
relatively prime to d.

Proof. Assume that BSGal(K/k, S) holds. Let A be an ideal of K whose class in ClK has order
relatively prime to d. Thus there exists an ideal A0 of K and η ∈ K× such that A = ηAd0. Let
α0 be an anti-unit of K such that

α0OK = A
dGwKθK/k,S
0

and the extension K(α
1/wK
0 ) is a strong central extension of K/k. Define

α := αdω0 ηdGwKθK/k,S′ .

One checks directly that
αOK = AdGwKθK/k,S′

From the proof of Propostion 6.1, we see that δ := ηdGwKθK/k,S′ is an anti-unit and that the
extension K(δ1/wK ) is a strong central extension of K/k. Therefore, α is an anti-unit and the
extension K(α1/wK ) ⊂ K(α

1/wK
0 , δ1/wK ) is a strong central extension of K/k by Lemma 4.6.

Thus BSGal(K/k, S
′) holds. �

7. Groups with a normal abelian subgroup of prime index

In this final section, we study the conjecture in the case where the Galois group G contains
an abelian normal subgroup H such that the index (G : H) is equal to a prime number `. We
assume furthermore that G is not abelian. We prove in this setting that the Galois Brumer-
Stark conjecture is satisfied provided the abelian Brumer-Stark conjecture holds for the abelian
extensions Kab/k and K/KH .

Let m denote the order of H, thus |G| = m`. We have [G,G] ⊂ H since G/H is cyclic of order
` and therefore KH is a subfield of Kab. Let SH denote the set of places in KH that are above
the places in S. The set SH contains the infinite places of KH and the finite places that ramify
in K/KH . The first result of this section gives a decomposition of the Brumer-Stickelberger
element in this situation.
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A BRUMER-STARK CONJECTURE FOR NON-ABELIAN GALOIS EXTENSIONS 17

Theorem 7.1. Let N[G,G] :=
∑

c∈[G,G]

c ∈ Z[G]. We have

θK/k,S = νab(θKab/k,S) +
(

1− 1

sG
N[G,G]

)
θK/KH ,SH .

Proof. By (3.10), it remains to prove that θ(>1)
K/k,s is equal to

(
1− 1

sG
N[G,G]

)
θK/KH ,SH . The group

G contains an abelian normal subgroup of index `, thus the degrees of the irreducible characters
of G divide `. Hence any character in Ĝ such that χ(1) > 1 is of degree `. Denote by Ĝ` the set
of irreducible characters of G of degree `.

Lemma 7.2. Let Ĥ` be the set of irreducible characters of H whose kernel does not contain
[G,G]. For χ ∈ Ĝ`, define Ĥ`(χ) to be the subset of those characters in Ĥ` whose induction to
G is χ. Then, for all χ ∈ Ĝ` and g ∈ G, we have

χ(g) =

0 if g 6∈ H,∑
ϕ∈Ĥ`(χ)

ϕ(g) if g ∈ H,

and

Ĥ` =
⋃
χ∈Ĝ`

Ĥ`(χ) (disjoint union).

Furthermore, each Ĥ`(χ) has ` elements.

Proof of the lemma. Let ϕ be a character in Ĥ` and let χ := IndGH(ϕ). Then χ is of degree `.
Assume χ is not irreducible. Then it is a sum of ` degree-1 characters and all these characters
are trivial on [G,G]. By Frobenius reciprocity law, the restriction of any of these characters to
H is equal to ϕ. Thus ϕ is trivial on [G,G], a contradiction. Therefore χ is irreducible and lies in
Ĝ`. The restriction of χ to H is the sum of ` characters of H, and using, once again, Frobenius
reciprocity law, we see that these characters are exactly the characters of H whose induction to
G is χ and that there are all distinct. Therefore, we have proved that, if χ ∈ Ĝ` is the induction
of some character in Ĥ`, then the set Ĥ`(χ) contains ` distinct characters, say ϕ1, . . . , ϕ`, such
that χ|H = ϕ1 + · · ·+ϕ`. Furthermore, if χ′ is another character of Ĝ` induced from a character
in Ĥ`, the sets Ĥ`(χ) and Ĥ`(χ

′) are clearly disjoint. This implies that Ĥ` is the disjoint union
of the Ĥ`(χ)’s for χ ∈ Ĝ`. We now prove that Ĥ`(χ) is non-empty for all χ ∈ Ĝ`. This amounts
to prove that any character in Ĝ` is the induction of some character in Ĥ`. Characters of H
whose kernel contains [G,G] are in bijection with characters of H/[G,G]. Denote by t the index
of [G,G] in H. The number of characters in Ĥ` is therefore m − t and therefore, by the above
discussion, the inductions of characters in Ĥ` yield (m − t)/` characters in Ĝ`. On the other
hand, we have the formula m` = t` + a`2, where a is the number of characters in Ĝ`, which
is obtained by looking at the degree of the irreducible characters of G and using the fact that
(G : [G,G]) = t`. Therefore, we have a = (m− t)/` and all the characters of Ĝ` are inductions
of characters in Ĥ`. To conclude, it remains to prove the expression for χ ∈ Ĝ`. Let ϕ ∈ Ĥ`(χ).
Recall the expression of χ in terms of ϕ; for all g ∈ G, we have

χ(g) =
1

m

∑
r∈G

rgr−1∈H

ϕ(rgr−1).

Since the group H is normal in G, rgr−1 ∈ H if and only g ∈ H. Thus χ(g) = 0 if g 6∈ H. If
g ∈ H, the expression follows from the fact that χ|H =

∑
ϕ∈Ĥ`(χ) ϕ. �
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18 GAELLE DEJOU AND XAVIER-FRANÇOIS ROBLOT

As a consequence of the above lemma, we have, for χ ∈ Ĝ`,

eχ =
∑

ϕ∈Ĥ`(χ)

eϕ

where eϕ is the idempotent of C[H] associated to the character ϕ. We now compute

θ
(>1)
K/k,s =

∑
χ∈Ĝ`

LK/k,S(0, χ) eχ̄ =
∑
χ∈Ĝ`

LK/k,S(0, χ)
∑

ϕ∈Ĥ`(χ)

eϕ̄

=
∑
χ∈Ĝ`

∑
ϕ∈Ĥ`(χ)

LK/k,S(0, IndGH ϕ) eϕ̄ =
∑
χ∈Ĝ`

∑
ϕ∈Ĥ`(χ)

LK/KH ,SH (0, ϕ) eϕ̄

=
∑
ϕ∈Ĥ`

LK/KH ,SH (0, ϕ) eϕ̄ =
∑
ϕ∈Ĥ

LK/KH ,SH (0, ϕ) eϕ̄ −
∑

ϕ∈Ĥ\Ĥ`

LK/KH ,SH (0, ϕ) eϕ̄

= θK/KH ,SH −
∑
ϕ∈Ĥ

[G,G]⊂Kerϕ

LK/KH ,SH (0, ϕ) eϕ̄.

Let ϕ be a character of H whose kernel contains [G,G]. Let ϕ̃ be the only character of J :=
H/[G,G] such that the inflation of ϕ̃ to H is equal to ϕ. From the properties of Artin L-function,
we have LK/KH ,SH (0, ϕ) = LKab/KH ,SH (0, ϕ̃) and a direct calculation shows that eϕ = νab

H (eϕ̃)

where eϕ̃ is the idempotent of C[Gab] associated to ϕ̃, νab
H : C[J ]→ C[H] is the map defined for

g̃ ∈ J by

νab
H (g̃) :=

1

sG

∑
πab
H (g)=g̃

g,

and extended linearly to C[J ], and πab
H : H → J is the canonical surjection. Therefore,∑

ϕ∈Ĥ
[G,G]⊂Kerϕ

LK/KH ,SH (0, ϕ) eϕ̄ =
∑
ϕ̃∈Ĵ

LKab/KH ,SH (0, ϕ̃)νab
H (e ¯̃ϕ)

= νab
H

(∑
ϕ̃∈Ĵ

LKab/KH ,SH (0, ϕ̃) e ¯̃ϕ

)
= νab

H (θKab/KH ,SH ).

Now, for α ∈ C[H] and β ∈ C[J ], one checks readily that ανab
H (β) = νab

H (α̃β) where α̃ := πab
H (α).

Therefore, we have

νab
H (θKab/KH ,SH ) = θK/KH ,SH ν

ab
H (1) =

1

sG
N[G,G] θK/KH ,SH .

The result then follows by substituting in the above expression. �

The main advantage of the decomposition given by the theorem is the fact that the extensions
involved are abelian. Therefore, in our study of BSGal(K/k, S) in that setting, we can reduce
to the abelian case. As a first consequence, we prove that the Integrality Conjecture is satisfied
in this situation.

Proposition 7.3. We have

(sG −N[G,G])θK/KH ,SH ∈ Z[G].

In particular, for almost all prime ideals P of K, dG(σP −N (p)) θK/k,S ∈ Z[G] where p is the
prime ideal of k below P.
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A BRUMER-STARK CONJECTURE FOR NON-ABELIAN GALOIS EXTENSIONS 19

Proof. First note that, by Theorem 7.1 and the discussion after (3.10), the first assertion implies
the second assertion. Now, we have

(sG −N[G,G])θK/KH ,SH =
∑

c∈[G,G]

(1− c)θK/KH ,SH .

But 1 − c ∈ AnnZ[H](µK) for all c ∈ [G,G] and thus, by the properties of the abelian Brumer-
Stickelberger element, all the terms in that last sum are in Z[H]. The first assertion and the
proof of the proposition follow. �

We now prove that the Galois Brumer-Stark conjecture in that setting is a consequence of
the abelian Brumer-Stark conjecture.

Theorem 7.4. Assume that BS(Kab/k, S) and BS(K/KH , SH) hold. Then BSGal(K/k, S) is
satisfied.

Proof. We will prove the theorem using Proposition 6.3. First note that, by Theorem 7.1, we
have

θ
(>1)
K/k,S =

1

sG
(sG −N[G,G]) θK/KH ,SH .

Let A be a fractional ideal of K. By our hypothesis, there exist α0 ∈ K◦ such that

A
wKθK/KH,SH = α0OK

and the extension K(γ0)/KH is abelian where γ0 := α
1/wK
0 . Define

β := α
(dG/sG)(sG−N[G,G])
0 =

( ∏
c∈[G,G]

α1−c
0

)dG/sG
.

By construction, β is an anti-unit of K and satisfies

βOK = A
dGwKθ

(>1)

K/k,S .

It remains to prove that K(β1/wK ) is a strong central extension of K/k. We will actually prove
that K(β1/wK ) = K. Let L0 be the Galois closure of K(γ0)/k. Denote by Γ0 the Galois group
Gal(L0/k). Let c0 ∈ [Γ0,Γ0]. Note that c0 ∈ Gal(L0/K

H) since KH/k is abelian. Thus,
by Theorem 2.2, there exists a prime ideal P0 of L0, relatively prime to the order of µL0

,
whose Frobenius automorphism in Γ0 is equal to c0, and an anti-unit α0,pH ∈ K◦ such that
α0,pH ≡ 1 (mod∗ pHOK) and

α0,pHOK = A
(σpH

−N (pH))θK/KH,SH

where pH is the prime ideal of KH below P0 and σpH is the Frobenius automorphism of pH in
H. We have

γc0−1
0 OL0

= A
(c0−1)θK/KH,SHOL0

= A
(σpH

−N (pH))θK/KH,SHA
(N (pH)−1)θK/KH,SHOL0

= α0,pHα
(N (pH)−1)/wK
0 OL0

.

Observe that γ0, α0,pH and α0 are anti-units, thus there exists a root of unity ξ ∈ µL0 such
that ξγc0−1

0 = α0,pHα
(N (pH)−1)/wK
0 and the latter belongs to K◦ since wK divides N (pH) − 1.

Raising to the power wK , we get

ξwKα
σpH
−1

0 = αwK0,pH
α
N (pH)−1
0

and therefore
ξwK ≡ αN (pH)−σpH

0 ≡ 1 (mod∗ pHOK).

Therefore we find that ξwK = 1, hence ξ ∈ µK and γc0−1
0 ∈ K.
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20 GAELLE DEJOU AND XAVIER-FRANÇOIS ROBLOT

Now, for all c ∈ [G,G], fix an element c0 in [Γ0,Γ0] whose restriction to K is equal to c, and
define

δ :=
( ∏
c∈[G,G]

γ1−c0
0

)dG/sG
.

By the above computation, we see that δ ∈ K and, by construction, we get that δwK = β.
Therefore K(β1/wK ) = K and the result follows. �
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