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Abstract. The anisotropy of gap parameter in cuprate superconductors is explained in the

frame work of BCS theory using two-dimensional itinerant model of conduction electrons. The

BCS gap equation at T
=

0 is solved in the first iteration approximation. The two-dimensional

electron energy bands and electron-phonon interaction in tight-binding approximation are used.

The explicit expression for the gap parameter 1h°(k) is evaluated for the Einstein model of the

solid. It is found that /h°(k) consists of a constant part and an oscillatory part which varies

as
sin~ k~a. The magnitude of oscillatory part is found to depend upon the cutoff energy fiuJc,

width of the singularity in the density of states near Fermi surface and overlap integral.

1. Introduction

In the BCS ground state the two electrons of opposite spin and opposite momentum are coupled
through the phonon mediated attractive electron-electron interaction [lj. This interaction

produces a finite energy gap /h(k) at the Fermi surface and the same is given by the integral
equation [lj

£h(k)
=

~j
Vk>,k [/h(k')/2Ek,] tanh(Ek>/2kBT) (1)

~,

where ~k,,k is the electron-phonon-electron interaction, k'
=

k+ q, q is the phonon wave vector

and T is the temperature. Ek is the quasiparticle energy in the superconducting state and is

given as Ek
"

(El + /h~(k))~/~ where ek is the Bloch energy in the normal state relative to

Fermi energy. It was pointed out by Cooper [2j that the form of the integral equation (I) is

such that if there is an energy gap over a part of the Fermi surface, there will be one everywhere

except perhaps at the isolated points or lines. Thus the nodes were least expected in /h(k).
BCS e,>aluated isotropic gap parameter £h(k)

=
/h for ~k,,k

"
-V and found that

£h
=

2hwc exp(-I/n(ef)V) (2)

where hwc is the cutoff phonon energy and n(ef) is the electron density of states at the Fermi

energy.. These authors consistently pointed out that /h(k) is anisotropic and many of the

transport properties in the superconducting phase may be related to the anisotropic character
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of /h(k). However a systematic investigation of anisotropy of /h(k) is lacking as most of the

later investigations were based on the Eliashberg strong coupling theory [3j.
With the invention of high transition temperature Tc in cuprate superconductors [4], the

interest in the anisotropy of /h(k) is revived to explain high Tc and to understand the nature

of BCS ground state [5]. Shen et al. [5] attempted to fit their experimental data for /h(k)
assuming that the BCS ground state has d~2-y2 symmetry. Mahan [6j fitted the same results

assuming the s-symmetry of the BCS ground state. Recently Levi [7j has reviewed the present

state of art about the nature of BCS ground state in cuprates.

It was shown by Labb4 and Bok [8j and Bok et al. [9j that high Tc in cuprates is a consequence

of two-dimensional nature of itinerant electrons which are permeated in the periodic squar@
(or rectangular) lattice. Friedel et al. have shown [10j that high Tc in A-15 compounds can

be explained with the help of tight-binding electron-phonon interaction. This leads us to

investigate the anisotropy of /h(k) using tight-binding electron energy bands and electron-

phonon interaction for a two-dimensional square lattice. We find that /h(k) consists of two

parts: a constant part and an oscillatory part which varies as
sin~ k~a and has the symmetry

of a square. This explains the recent results of Shen et al. [5j.
The plan of the paper is as follows: the necessary formalism is given in Section 2, the

calculations and results are presented in Section 3 and these are discussed in Section 4.

2. Theory

It is evident from equation (I) that /h(k) will have the symmetry of the eigenvalues of the

matrix of elements ~k,,k. However, to make the calculations tractable, few approximations
have to be made as the self-consistent analytic solution of equation (I) seems improbable. The

first approximation we make is that T is nearly zero, therefore tanh(Ek/2kBT)
=

1. This

simplifies equation (1) as

~(k)
=

~jVk,,k (~(k')/(2(El, + ~lk')~)~/~)j 13)

Here all the wave vectors k'
are in the vicinity of Fermi surface (FS) in the range of cutoff

phonon energy hwc. If it,.k is constant, /h(k) becomes isotropic, therefore we keep the explicit
(k', k) dependence of Vk>,k and iterate equation (3) for /h(k). The first iteration gives

/h(k)
=

~j Vk,,k (/ho/(2(e(, + /h()~/~)j (4)

k'

where /ho is an initial nonzero gap iii which is the requirement for a finite Tc.

2.I. ELECTRON ENERGY BANDS. The strong electron-ion bonding in cuprates occurs in

the layers which contain the copper and oxygen ions. Therefore we adopt tight-binding approx-

imation for ek which consists of anisotropic band character. If only the first nearest neighbour
overlapping between d~2-y2 Cu states and p~,y oxygen states is considered, ek in the tetragonal
phase is given as

[llj

ek " Ed + (4t( loo) (2t( loo)(cos k~a + cos kya) (5)

where a is a lattice constant and (k~, kg) are the Cartesian components of k, ti is the overlap
integral between Cu d~2-~2 and oxygen p~,y states. go is the splitting between the ionic

energies Ed and ep of Cu and oxygen ions respectively. In ionic crystals ti « go, however, this

approximation may not hold very well in high Tc materials.
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In this energy band, the electron density is concentrated on the Cu sites. The electrons hop
to the adjacent Cu-sites by virtual excitation to the intermediating O-site. This leads to an

effective Cu-Cu overlap integral t
=

t(loo built up from two consecutive Cu-O-Cu overlaps
divided by the excitation energy of the oxygen site. The density of electron states n(e) for

energy dispersion given in equation (5) contains the van-Hove singularities at the band half

~v.idth [8j I-e-

n(e)
=

(N/2ir~D) In jD lej (6)

where N is the total number of electrons and D is the width of the singularity at the Fermi

energy. The singularities arise because the electron group velocity vanishes at the points
k

=
[0; +irlaj and [+irla, 0j on the square Brillouin zone

(BZ). We use equations (5, 6) for ek

and n(e) respectively in the solution of equation (4).

2.2. ELECTRON-PHONON INTERACTION. The superconductivity in cuprates arises due to

nonstoichiometry of oxygen. Therefore, both the electrons and holes may contribute in the

superconducting process. The exact nature of Vk,,k is expected to be intricate and anisotropic.
Therefore we write the model phonon induced electron-electron interaction as [lj

~k',k
"

~(i + Uk',k) (7)

where I% is a positive constant and Uk,,k explicitly depends upon k' and k. The magnitude of

~j + Uk,,k has to be always positive. If Uk,,k is negligibly small, BCS equation (2) for /ho is

retrieved. We adopt the electron-phonon interaction suggested by Fr0hlich and Mitra [12j to

evaluate the anisotropic part Uk,,k. In this formalism the electron-phonon matrix element is

given as

fiI/,
~ =

-i(qo/2a)e/,
~

[v(k') v(k)j + 2i(qola)e/,
~

v((k' k) /2). (8)

Here qo is the Slater coefficient, e( (q
=

k'-k) is the phonon polarization vector for polarization
~ and v(k) (= 0e/0k) is t,he group velocity for the state jk). The first term of equation (8)
is associated with the local variation of the band width in equation (5) and has the major

contribution to Ml,
~.

The second term of equation (8) arises from the variation of the center

of gravity of the band associated with the small variation of the short range Cu-O distances

in the second term of equation (5). However the deformation of Cu-O bonds in cuprates are

not observed experimentally [13j, therefore, the second term of equation (8) is expected to be

small. In addition there will be phonon induced variations in ep and Ed which will lead to an

additional electron-phonon interaction which is not explicitly included in equation (8). This

term may be important for ionic crystals [14j. In fact it is too difficult to account for (k', k)
dependence of all the contributions to electron-phonon interaction. Therefore we consider here

only the explicit (k', k) dependence of the first term of equation (8) and assume that all other

electron-phonon processes, not included in the first term of equation (8), are included in II in

equation (7). This simplification may not effectively alter the symmetry of the gap parameter.
The electron-phonon interaction involves the term (AM (q) )~ /[(ek -ek, )~ (AM (q) )~j. If ek "

0

is the Fermi energy, then the important contribution to /h(k) will arise from the states jk')

near the saddle points taken on the Fermi surface, I.e. ek, « AM (q). With these simplifications
Uk,,k is written as

~k',k
~

~ (lfl',k'~/ [~iA"~(~)j (~)

>

Here M, is the reduced atomic mass for the vibrational mode ~. In the multiatomic formula

unit cell of the cuprates the reduced acoustic and optical masses are different. Considering
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the phonon induced change in group velocity v(k') v(k) along the direction of phonon
propagation and using equation (8) in (9) we get

Uk,,k
=

-(ql/4a~)1lv(k') v(k)I
l~

~j le(l~/ [MAW] (q)] (10)

From equation (8) we find that as q ~ 0, JzI/,
~

~ 0. Therefore to keep Uk,,k finite, small

values of ~J,(q) must be accounted for. In other words the contribution of acoustic phonons
which modulate locally the Cu-Cu distances in the conducting plane should be included. How-

ever the compensation between M(,
~

and w,(q) for small values of q can be completed in

two ways. First the phonons with viry small values of frequencies are eliminated from super-

conductivity by the inequality hw(q) » jek, ek(. Therefore acoustic modes can be treated

more like the Einstein modes. Secondly the q in Ml,
~

is a two-dimensional vector while in

w,(q) it is three-dimensional because the material his the isotropic elastic properties. The

large components of q perpendicular to the conducting plane make w, (q) large.
The neutron and Raman scattering experiments [lsj show that the cuprates consist of large

number of optical phonons and these are about ten times more energetic than the acoustic

phonons. In view of these facts we assume all the acoustic and optical phonons as the degenerate
Einstein modes. This simplifies the last factor of equation (10) as

~j je(j~ / [M,w((q)j
=

nE/&iEw( (11)

>

where nE is the number of Einstein modes, wo is the Einstein frequency and fiiE is the reduced

Einstein mass. If there is one copper atom and two oxygen atoms in the unit cell of square
lattice JziE

"
(Mcfilx)/ [2fi?c + Jzlxj for the optical Einstein modes where Jzlc and Mx are the

copper and oxygen atomic masses respectively. The longitudinal and transverse modes are

degenerate at the zone boundary- along the [llj direction. In obtaining equation (10) the

coupling of the electrons with the phonons in the z-direction is partially included, which will

be discussed later.

2.3. EVALUATION OF EQUATION (4). Using the above simplifications in equation (4), we

get
/h(k)

=
/h1 /h2(k) (12)

where

~~ ~~~°~~~ [ ~fi
~~~~

and

~~~~~ ~~~~~°~~~~~~~~~~~~~~~ [ l~~~(~~e[, ~~~~/2)
~~~~

Considering the spin degeneracy factor and replacing the sum over k' by integration in the

two-dimensional BZ, equations (13, 14) simplify as

~ dk'
(15)~i

=
i~i~o/2)w II

fi~

and

~2 ik) iiqi ~onEi/14a~ J~iEwi)i [Al121r)~i
/ /

dk ~~~/j,itj
~

i16)
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where -4 is the area of the square lattice. The integration over
k' is to be carried out in the

vicinity of Fermi energy such that ek, < hwc as discussed by BCS [I].
To facilitate the integrations in equations (15, 16) we write

dk'
=

dk [dk(
=

(dk [ /de)dedk(
=

dedk(/jv[j (17)

where v(
=

v(k') and k( and k [ are the rectangular components of k' along the tangent and

normal to the edge of the square Fermi surface respecti,>ely. Using equation (17) in (15) and

(16) we get
~

~~ ~~~~~~~~
/ ~~ )

~~~~

o

and

~2~~~
" ~~i~°jE~/~~~~~E"i~i i~/~~~i~i

~"~ /h

~

~ (
[lV[l~ + lvlk)l~ 2V[ V(k)] l19)

~

The integral over dk( is along the edges of the Fermi square and n(e) is defined as [9j

n(e)
=

lA/(27r~)1
f )

1201

The last term of equation (19) vanishes due to symmetry. Use of equation (20) in (19) gives

~2 (k) i(~i~onE)/(4a~J/IEWI)i (A/(21r)~ ~~~ fi I
vg dki

+11/2)iv(k)i~
~"~ fit.

(21)

Using the relations

jv(j
=

2V5jtjajsink~aj

k~
=

kt/Vh

ijv( jdkt
"

32jtj (22)

equation (21) simplifies as

/~Jik)
i~i/~onE)/14a~MEWi)1ll~ll"nlhwcll~o

+ (hwcll~o)2 +
)

+ (1/2) iv(k)
i~

~"~ fij
(231

Evidently /hi depends on 16, cutoff energy hwc and the density of states n(e)
as found in BCS

theory. In addition /h2(k) also depends on the screening length qo, Einstein phonon energy

a~fiiEw( and the reduced overlap integral t. In this simplified but realistic physical model the

anisotropy of /h(k) is the same as that of /h2(k) which varies as
jv(k)j~.
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Labb4 and Bok [8, 9] calculated density of states for a rectangular lattice in the tight-binding
approximation and expressed equation (6) as

n(e)
= no + ni In jDlej; -D < e < D

= no e E [-W/2, -D] U [D, W/2] (24)

where no "
1/(4irjtj per copper atom, ni "

1/2ir~D per copper atom and W is the band width.

Since hwc < D, the first equality of equation (24) is used in the calculations of equations (18,
23). no and ni are determined by the condition nolv + 2niD

=
1 and

jv(k)
j~ =

4a~t~ (sin~ k~a + sin~ kya)

=

8a~t~ sin~ k~a (25)

because ky =
irla + k~ at the square Fermi surface. Equations (24, 25) are used in equations

(18, 23) to evaluate the gap parameter per copper atom which is written as

/h(k)
=

Cl C2 (sin k~aj~ (26)

where

Cl
"

(ii1h0/2) l~0fl + illf21 CO
)fl,

(27~l

C2
"

Co (4t~) [nofi + nif2]
,

(27b)

ii
"

In ((hwcllho) + (hwc llho)~ + lj
,

(27c)

/~"~
in (DIE(

~~ ~~~~~~

o
@@ '

and

Co
"

(qoa)~nE/(4a~&iEw(llho). (27e)

Here Ci has to be always greater than C2 so that Vk,,k, given in equation ii), is negative.
The important feature of equation (26) is that /h(k) consists of two parts: a constant part
and an oscillatory part varying as

sin~ kza, which has the four fold rotation symmetry of the

square lattice. Since the two contributions are of the opposite sign, j/h(k)j will be maximum

in the vicinity of the van-Hove points and minimum in the middle of the two van-Hove points.

This is essentially observed by Shen et al. [5j by angular photoemission experiments in the ab

plane of B12Sr2CaCu208+&. Since Ci > C2, there should always be a gap, howsoever small it

may be. In the following we present the model calculations for /h(k).

3. Calculations and Results

The observed energy gap parameter /h°(k) for a superconductor is given as

/h°(k)
=

2j/h(k)j

=
2jCi C2 sin~ k~aj. (28)

From equation (28)
~hSx

"
21Cl Ii

k~
"

o (29~)

and

/h$,
=

2jCi C2 Ii k~
=

ir/2a. (29b)
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Table I. The initial parameters and calculated results for /h° (k) for different samples. /ho is

the initial gap parameter, ~i is the constant part of electron-phonon interaction and (Ci, C2)

are the calculated parameters as
defined in the text. /h$~ and /h$;

are
the

mammum
and

minimum gaps respectively. All the quantities are m mev. In these calculations qoa =
1,

a~mow( llho
"

1, reduced overlap integral t
=

10 me V, width of singularity D
=

16t and cutoff

energy h~c
=

60 me V are used.

samples ~o ~i ci c2 ~$~ ~$; ~Sx/~S;

10 265 8.86 8.76 17.71 0.18 98.39

2, 7 11 265 11.30 8.40 22.56 5.71 3.95

3 11 260 10.69 8.40 21.37 4.58 4.67

8, 9, 11 10 280 10.50 8.80 21.00 3.47 6.05

and there are many simplifications in the theory too, the calculated results represent very well

the experimental data. The ratio /h$~llh$; varies from 4 to 100 for different samples. The

input parameters and calculated results are tabulated in Table I. It is found that by increasing
h~c, /h°(k) is enhanced, howe,>er its general behaviour remains the same.

The overlap parameter t is important in determining the itinerant character of charge carri-

ers. Here t depends upon ti and go and ti is sensitive to inverse screening length qo. Therefore

we varied t from 0.01 to 0.15 eV. It is found that by making the corresponding changes in the

values of qoa from I to 0.08 and adjusting the value of Vo such that Cl > C2, the results remain

similar to those given in Figure I. There is a closeness in the values of Cl and C2 in Table I.

This indicates that both /hi and /h2 in equation (12) arise from the electron-phonon coupling
of the same physical origin. These two contributions compensate each other, therefore, it can

argued that Ci and C2 arise due to phonon induced electron-electron attraction and electron-

hole repulsion respectively. We also calculated /h°(k)
as the function of fi which is the angle

of k with respect to k~ axis in the (k~, ky) plane. In this representation equation (28) becomes

li°(<)
=

21ci c~ sin2(m/(i + tan <))1 (30)

where tan #
=

kg /k~ and 0 < # < ir/2
on the square Fermi surface. Evidently the gap is

maximum for #
=

0 and minimum for #
=

ir/4. The results of equation (30) can also be

compared with the experimental data rewritten on the scale tan #
=

ky/k~. A schematic

representation of /h°(#) with four fold rotation symmetry of the square in the (k~, kg plane is

shown in Figure 2.

4. Discussion

Assuming that the cuprates are d-wave superconductors, Shen et al. [5j expressed the gap

parameter for a square lattice as:

/~~(k)
"

/hdo( cos k~a cos kyaj. j31)

The photoemission measurements give j/h((#)j. Therefore Shen et al. attempted to fit their

data by the straight line j/h((#)j
versus jcos k~aj. In equation (31) the gap varies from 0 to

2/hdo on the Fermi surface. However the question is: can the zero gap be measured within the

experimental accuracies. Mahan [6j has shown that the data of Shen et al. can be fitted with

the s-wave order parameter which, in the lowest order for a square lattice, is given as:

/h)(#)
=

/hn + /h4 cos(4fi) (32)
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d(fS)

a a
~

kx

B

Fig. 2. Schematic variation of A°(#) in the (k~, kg) plane along the square Fermi surface. The

gap is maximum at the van-Hove points A (#
=

0) and minimum between the van-Hove points B

(#
=

ir/4). A° Ii) has the four fold rotation symmetry of the square.

where /hn and /h4 are constants. Recently Kirtley et al. [19j reported the direct experimental
observations of spontaneous magnetization at a tricrystal point in a polycrystalline thin film

of Y-123. The tricrystal geometry produces
an odd number of negative Josephson critical

currents around a path enclosing the tricrystal point if the order parameter of Y-123 has

d-wave symmetry. However these authors have pointed out that their modeling of tricrystal
vortex could be inaccurate because the magnetic fields inside the grain boundary are modeled

assuming an infinitely thick film.

In the present model of electron-phonon interaction, we can rewrite equation (28) as

~°(k)
=

~$; + 2C2(cos k~a)~. (33)

Thus /h°(k)
versus cos k~a will be a parabola with an intercept /h$;. This is the trend of data

points for samples 1, 2, 3, 5, 7, 8, 9 and 11 where the data points are more than three. We can

also rewrite equation (33) as:

£h°(#)
=

(/h$, C2) + C2 cos(2ir/(1 + tan #) ). (34)

Thus /h°(#)
versus

cos(2ir/(1+ tan<)) will be a straight line with a finite intercept.
Thus Shen et al. [5j and Kritly et al. [19j have attempted to interpret their results assuming

that the gap parameter /h°(k) has d-wave symmetry. However it is shown in the present
calculations that the data of Shen et al. can equally be explained using anisotropic electron-

phonon interaction. There may be other ways to explain the experimental data also but at this

juncture the possibility of electron-phonon coupling being the origin of such a gap is not ruled

out. However much work is needed to understand the electron-phonon interaction in cuprates.
In the present calculations, we have used the energy band structure and the electron-phonon

interaction for the two-dimensional square lattice to explain the anisotropy of gap parameter.
In the energy bands only the first nearest neighbour interaction is considered. Addition of the

second nearest neighbour interaction may account for the deviation of FS from an exact square
and hence may further contribute to the anisotropy of gap parameter. Further the electron-

phonon interaction is calculated in the linear approximation. The non-linear terms will also

contribute towards the anisotropic character of A°(k). It is expected that these contributions

may be corrections to /h°(k) and the essential features will remain the same.
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In the present calculations, the electron-phonon coupling in the z-direction is implicitly in-

cluded. It has been shown by Fortini [20j that this coupling brings in the effect of apical oxygen

which has been found important in the explanation of higher Tc. The detailed calculations of

the second term of equation (8) give the small oscillatory contribution to /h°(k). Thus the

second term of equation (26) will be enhanced. However the general characteristics remain the

same. These calculations along with temperature dependence of /h°(k) will be reported later.

There are many questions yet to be answered. However the most important conclusion has

been that even the first order iteration of BCS integral equation for /h°(k)
near T

=
0 gives

the required symmetry of /h°(k) with the help of well established electron-phonon interaction.

This shows that the BCS prescriptions for nearly two-dimensional system may continue to

explain the high Tc in cuprates.
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