
Approximate convex hull of affine iterated function system

attractors

Anton Mishkinis1, Christian Gentil1 , Sandrine Lanquetin1 and Dmitry Sokolov2

1LE2I - Université de Bourgogne
2 LORIA - Université Nancy I

2011

Abstract

In this paper, we present an algorithm to construct an approximate convex hull of the attractors
of an affine iterated function system (IFS). We construct a sequence of convex hull approximations
for any required precision using the self-similarity property of the attractor in order to optimize
calculations. Due to the affine properties of IFS transformations, the number of points considered
in the construction is reduced. The time complexity of our algorithm is a linear function of the
number of iterations and the number of points in the output convex hull. The number of iterations
and the execution time increases logarithmically with increasing accuracy. In addition, we introduce
a method to simplify the approximation of the convex hull without loss of accuracy.

Key words: iterated function system, IFS attractor, convex hull approximation

1 Introduction

Iterated function systems (IFS) define objects
whose geometry can be very complex. This ge-
ometry is determined by a given set of trans-
formations. An attractor may be evaluated by
iterating these functions. Not only is this evalu-
ation expensive, but the analysis and characteri-
zation (location, size) of the resulting shape can
be complex. It is therefore interesting to have a
more conventional form bounding the attractor.

The problem of bounding the IFS attractor
occurs in many tasks, including numerical fractal
analysis or the localization of an attractor. To

guarantee the objects manufacturability, it is im-
portant to take into account the severe produc-
tion constraints. So we must be able to quickly
evaluate the approximation and localization of
an attractor.

The approximate convex hull may also be
used to estimate normal vectors at points of an
IFS fractal for real time realistic visualization.

One of the most challenging tasks in com-
puter games is fast and accurate collision detec-
tion. A typical game environment is modelled by
a collection of triangle meshes representing the
scene geometry. Usually complex objects with
fractal structure consist of a large number of tri-

ha
l-0

07
55

84
2,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
2

Author manuscript, published in "Chaos, Solitons and Fractals 45, 11 (2012) 1444-1451"
 DOI : 10.1016/j.chaos.2012.07.015

http://dx.doi.org/10.1016/j.chaos.2012.07.015
http://hal.inria.fr/hal-00755842
http://hal.archives-ouvertes.fr


angles. Construction of the approximate convex
hull will facilitate collision computations. In ad-
dition to accuracy, the approximate convex hull
of various parts of the IFS attractor can be con-
structed.

In this paper, we demonstrate how the prop-
erties of an IFS may be exploited to compute
convex hulls at any required accuracy. The ar-
ticle is organized in the following way: we start
by recalling the basic concepts of an IFS and no-
tations in section 3. In section 4, we examine
each step of Martyn’s approach [1] in order to
generalize it to 3D and to optimize it. We show
how to simplify the approximation of the convex
hull, i.e., to reduce the number of points without
losing accuracy. We then focus on the complex-
ity of Martyn’s approach and the complexity of
our algorithm in section 5. Finally, in section 6,
we compare results obtained with our algorithm
and with Martyn’s before concluding.

2 Related work

Methods to calculate approximations of the con-
vex hull of an IFS attractor have already been
developed.

Strichartz, Wang, Kenyon et al. [2, 3] studied
the boundaries and the convex hulls of self-affine
tiles that can be considered as the attractors of
very special affine IFS, where all the transforma-
tions have the same linear part.

Lawlor and Hart [4] presented an algorithm
to construct a tight bounding polyhedron of the
IFS attractor. An algorithm expresses the IFS-
bounding problem as a set of linear constraints
on a linear objective function, which can then be
solved via standard techniques for linear convex
optimization. This method works for a predeter-
mined number of convex hull faces and shows the
interactive rate only when this number is small.

More recently, Duda [5] and Martyn [1] have
presented methods to calculate the approximate
convex hull of the affine IFS attractor. The two
methods are similar. The former is based on the
so-called “width function” that returns the near-
est to the point bounding half-space in a given

direction. The latter is based on constructing a
sequence of balls that bound corresponding parts
of an attractor to approximate the convex hull.
The approach is presented in 2D only.

Another important problem in computing the
convex hull is to determine a bounding ball for
the attractor of an IFS.

Gentil [7] described an approach based on the
dichotomous search for the minimal radius of the
ball that bounds the attractor of an IFS. The
approach can be applied in a multi-dimensional
space and calculates the result for a given preci-
sion.

Hart and DeFanti [8] introduced a method
which starts with the unit ball centered at the
origin. The algorithm iteratively produces a se-
quence of balls converging to the limit ball that
bounds the attractor.

Rice [9] improved on Hart and DeFanti’s ap-
proach by optimizing the radius of the bounding
ball with the aid of a generic optimization pack-
age. He also showed that the center of the limit
ball can be determined analytically by solving a
system of linear equations.

Martyn [10] showed that the solution of this
system is the centroid of the attractor with par-
ticular weights. To obtain a better approxima-
tion, he presented a heuristic iterative method
called “balancing the attractor”. The algorithm
is not limited by the dimension of the space in
which the attractor lies.

More recently, Martyn [11] presented a novel
approach to approximate the smallest disc to en-
close an affine IFS attractor at any accuracy.
The method is based on a concept of spanning
points he introduced to describe the extent of an
IFS attractor.

In this article, we study an approximation
of the convex hull of a given affine IFS attrac-
tor. This approximation will be given in the
polytope form. Our model can be considered
as a generalization and an optimization of Mar-
tyn’s method. Our algorithm constructs a se-
quence of convex hull approximations using the
self-similarity property of the attractor in order
to reduce the number of necessary operations. In

ha
l-0

07
55

84
2,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
2



addition, we introduce a method to simplify the
approximation of the convex hull without losing
accuracy.

3 Background and notations

In this section we recall the major definitions and
properties of iterated function systems as well as
establish the notations used in this paper.

3.1 Iterated function system

Generally, an IFS is defined in a complete met-
ric space (X, d), where d is the associated met-
ric. The transformation T : X → X is called
contracting if and only if there exists a real s,
0 6 s < 1 such that d(T (x), T (y)) < s · d(x, y)
for all x, y ∈ X. The minimal coefficient s which
satisfies the inequality is called the contraction
coefficient of the transformation T .

We are substantially interested in attractors
that are produced by an IFS composed of affine
transformations. Each transformation can be de-
scribed as follows: Ti : x 7→ Lx + b, where L is
the linear part and b is the vector of translation.

Thus, an affine IFS (X, {Ti}N−1i=0 ) consists
of a finite set {T0, · · · , TN−1} of contracting
affine transformations in a complete metric space
(X, d). LetH(X) be the space of non-empty com-
pact subsets of X. Let dH be the Hausdorff dis-
tance induced by the metric d, i.e.:

dH(A,B) = max{d(A,B), d(B,A)},

where
d(A,B) = max

a∈A
min
b∈B

d(a, b).

Then (H(X), dH) is a complete metric space.
The Hutchinson operator T : H(X) → H(X) as-
sociated with the IFS is defined by:

T(K) =

N−1⋃
i=0

Ti(K)

If smax = max
i=0,··· ,N−1

si < 1 then T is

also contracting in the complete metric space

(H(X), dH). According to Banach fixed point
theorem [12], T has a unique fixed point A. This
fixed point is named the IFS attractor, i.e.:

A =

N−1⋃
i=0

Ti(A). (1)

The attractor of an IFS may be evaluated re-
cursively. That is, it can be approximated by a
sequence of objects {Pn}n∈N, which converges to
A. An initial element in the sequence defines by
means of a primitive P ∈ H(X). The following
elements are defined recursively:

P0 = P

Pn+1 =
N−1⋃
i=0

Ti(Pn)

Elements Pn are the images of composite func-
tions applied to P .

3.2 Approximate convex hull of an
attractor

Let us consider an affine IFS (X, {Ti}N−1i=0 ) in
the complete metric space (X, d). The algorithm
that we describe here constructs an approximat-
ing convex hull of an IFS attractor. For a given
precision ε, we construct a sequence of convex
hull approximations. The accuracy of each sub-
sequent element increases. The output convex
set will be an ε-approximation of the convex hull.

The ε-approximation C ′ of the convex hull
of a non-empty compact A ∈ X is a set which
satisfies the following condition:

dH(C,C ′) 6 ε,

where C is the exact convex hull of A.

4 Calculating the approxi-
mate convex hull

To begin, we consider the algorithm developed
by Martyn to calculate the approximate convex
hull of an attractor in 2D. We will describe the

ha
l-0

07
55

84
2,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
2



basic idea only in the following; details are avail-
able in [1]. We then explain how to compute the
convex hull more efficiently by taking advantage
of certain properties of affine transformations.

4.1 Martyn’s method

Martyn’s algorithm can be divided into four
steps. In this section we describe them in more
detail.

The first step consists in determining a
bounding ball (not necessarily a tight one) with
center c and radius r, denoted by B(c, r). Thus
each point of the attractor is situated at a dis-
tance which is less than r from the center c. By
construction, the radius r satisfies the following
inclusion:

N−1⋃
i=0

B(Ti(c), sir) ⊂ B(c, r).

According to definition (1) of the attractor

of an IFS, we have: A =
⋃N−1
i=0 Ti(A). So each

ball B(Ti(c), sir) approximates more precisely
the corresponding part Ti(A) of the attractor.
We can therefore write the following inclusions:

A ⊆
N−1⋃
i=0

B(Ti(c), sir) ⊂ B(c, r).

By applying all the transformations Tj for
j ∈ {0, · · · , N − 1} to the transformed centres
Ti(c), we obtain new balls such that:

A ⊆
⋃
i,j

B(TjTi(c), sjsir) ⊂
N−1⋃
i=0

B(Ti(c), sir).

Thus, the union of these balls approximates A
with smaller Hausdorff distance. We can iterate
this construction to achieve the desired accuracy
ε. The stopping criteria will thus be:

r ∗ sα1
∗ ... ∗ sαk

< ε, (2)

where k is the number of iterations performed
(k ∈ N) and sαi is the contraction coefficient of
the transformation Tαi .

In this way we can construct the evaluation
tree of an IFS, such that the product of contrac-
tion coefficients in each brunch is less than ε/r.
In order to optimize the calculations, Martyn in-
troduce the adaptive-cut method to determine
the particular balls in this tree.

The second step consists in determining the
lowest and the highest centres of the balls (with
respect to their y-coordinates). Using the lowest
point as initial, we then recursively determine
the next convex hull vertex using the depth-first
search that minimizes a polar angle with respect
to the previous vertex as origin.

Iterating this method we compute the con-
vex hull of the centres of all the balls obtained
at the kth iteration, i.e. we compute the ε-
approximation of the attractor convex hull.

Finally, to calculate an ε-approximation cov-
ering the attractor, we have to offset E on ε.

4.2 Suggested modifications

Globally, our algorithm contains the same steps
as Martyn’s, but the approximate convex hull is
determined at each level of the tree. The choice
of this algorithm is guided by the following con-
siderations. As the calculation of the convex hull
is the most expensive step, we reduce this com-
plexity by computing intermediate convex hulls
and merging them. These intermediate hulls are
calculated at each iteration to eliminate the un-
necessary interior points. This allows us to re-
duce the number of points considered at the next
iteration.

Moreover, at each iteration we perform a sim-
plification of the approximate convex hull. The
algorithm complexity is calculated in section 5.

4.2.1 Initialization

The first step of our algorithm is also to deter-
mine the bounding ball B(c, r). We have cho-
sen the method suggested in [7] because of its
simplicity of implementation. In addition to ef-
ficiency, this approach allows to achieve better
convergence as it computes the minimum bound-
ing ball for a given accuracy.

ha
l-0

07
55

84
2,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
2



T2(Ei)

T0(Ei)

T1(Ei)

Ei+1

Ei

Figure 1: Illustration of the iterative con-
struction of approximations. Given an εi-
approximation of the convex hull, we calculate
its images by applying all the IFS transforma-
tions to its vertices. We then merge all these
images to obtain the εi+1-approximation of the
convex hull.

rnew ≤ εi

cnew
c′

c

rc′

rc

Figure 2: Illustration of the simplification
process. If two neighboring points c and c′

are close, i.e. d(c, c′) + rc + rc′ 6 2εi we
can then replace them with the middle point
without loss of accuracy.

4.2.2 Iterative algorithm

As mentioned above, the approximation of the
convex hull is determined iteratively. This pro-
cess is initialized by the convex hull of the
singleton {c}. c is the center of the initial
bounding ball which can be considered as an r-
approximation of the convex hull.

Suppose that at the ith step we have an εi-
approximation of the convex hull, denoted by Ei.
By construction, Ei is a convex polytope. We
calculate the images of Ei by applying all the
transformations Tj for j ∈ {0, · · · , N − 1} to its
vertices. We then merge all these images to ob-
tain the εi+1-approximation of the convex hull.
We can note that εi+1 6 smax · εi, where smax is
the maximal contraction coefficient of the trans-
formations T0, · · · , TN−1.

The process is repeated iteratively to achieve
an ε-approximation of the convex hull. Figure 1
illustrates this iterative process.

4.2.3 Remarks

Removal of interior points. In the case of
affine transformations, the following statement
holds: The image of a convex hull of points is a
convex hull of the images of these points. This
means that the points inside the intermediate
convex hull may be eliminated for the next it-
eration. In this way, we reduce the number of
points considered in the calculations.

Stopping criterion. The stopping criterion,
given by the inequality 2, is not optimal, be-
cause an IFS can contain transformations with
different scale factors in different directions. By
applying such transformations to the bounding
ball, we obtain an ellipse covering the corre-
sponding part of an attractor. By keeping track
of the directions with the maximum and mini-
mum scaling, it is therefore possible to increase
the convergence rate to the exact convex hull.

ha
l-0

07
55

84
2,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
2



For example, suppose an IFS with the two
following transformations:

T0 =

(
0.1 0
0 0.9

)
, T1 =

(
0.9 0
0 0.1

)
.

After the application of T0T1 to the initial
bounding ball B(c, r), we obtain a ball which
covers the corresponding part T0T1A of the at-
tractor and approximates it with an accuracy of
0.81r. Indeed, by construction, the radius of this
ball is defined as follows: r′ = 0.9 · 0.9 · r.

Let us consider a more precise approximation
by ellipses. Suppose an IFS with the same trans-
formations. The initial bounding ball B(c, r) can
be considered as an ellipse defined by the equa-
tion XTDX = 1, where X is a coordinate vector(
x
y

)
and D is the following matrix:

D =

(
1
r2 0
0 1

r2

)
.

After the application of T0T1 to the initial
bounding ball we obtain an ellipse for which the
semi-major axis is determined by the following
equation:

r′ =
1√
ρ
,

where ρ is the spectral radius of the matrix

(T0T1)
−1T

D(T0T1)
−1

, i.e. the absolute value of
the dominant eigenvalue. Note that we can easily
avoid extra computations and constraint on the
reversibility of the applied IFS transformations
by inverting this matrix. Indeed, a spectral ra-
dius % of the inverted matrix (T0T1)D−1(T0T1)

T

equals % = 1
ρ , therefore, the semi-major axis can

also be determined by the following equation:

r′ =
1√
ρ

=
√
% = 0.09r.

Thus, the new ellipse approximates the corre-
sponding part of the attractor with an accuracy
of 0.09r. This means that we increase the con-
vergence rate if we calculate the dominant eigen-
value of this matrix at each iteration.

To calculate the spectral radius our original
symmetric matrix can be reduced to tridiago-
nal form and then we could easily compute the
dominant eigenvalue by QL method. So the ab-
solute value of the dominant eigenvalue can be
estimated in O(dim3), where dim is a dimension
of the IFS transformation matrices.

Simplification of the convex hull approxi-
mation. We simplify the approximation of the
convex hull at each iteration by replacing ver-
tices that are close enough with one single ver-
tex. To identify such vertices, we simply need to
check the neighboring points on the approximat-
ing convex hull.

If two neighboring points c and c′ satisfy:

d(c, c′) + rc + rc′ 6 2εi (3)

we can then replace them with the middle point
without loss of accuracy, as shown in figure 2.

Thus, the number of points considered in the
construction of intermediate convex hulls is re-
duced and the intermediate convex hulls are sim-
plified without losing accuracy.

To avoid a constant rebuilding of data struc-
tures simplification can be performed during the
merge.

4.2.4 Bounding approximation of the
convex hull

The final step is offsetting the convex hull on ε
to obtain the bounding approximate convex hull.
As for the initialization, this step does not differ
from that described in Martyn’s algorithm, ex-
cept that it will operate in a more dimensional
space. We have chosen the method suggested
in [13] because of its simplicity of implementa-
tion. This method offsets a mesh by moving all
vertices along the multiple normal vectors of a
vertex. Yoo [14] described a more accurate ap-
proach that uses distance fields based on the sub-
division of the grid cells and an implicit surface
interpolation to obtain an accurate model of ar-
bitrary shape.

ha
l-0

07
55

84
2,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
2



5 Complexity

In this section, we describe implementation de-
tails and compare the complexities of the algo-
rithm developed by Martyn and our optimiza-
tions.

5.1 Convex hull of an attractor

First of all, as mentioned in section 4.1, Mar-
tyn’s algorithm consists of four steps. The third
one, i.e. the computation of the convex hull, is
the most expensive step in the algorithm. More
precisely, if an IFS consists of N transforma-
tions and we have to perform k iterations to ob-
tain a given precision ε, the algorithm requires

O
(
h
√
Nk
)

time and O
(
log
(
Nk
))

space, where

h is the number of the approximate hull ver-
tices. The number of iterations k can be found
from the precision ε and the maximal contrac-
tion coefficient smax using the following formula:

k = d log ε/r
log smax

e.

5.2 Our method

The method developed by Martyn to calculate
the approximate convex hull of an attractor is ex-
pensive in computation but requires little mem-
ory. This is because all the calculations are made
without storing many intermediate points. Our
optimization, featuring the elimination of the in-
terior points, represents a complete renewal of
the method.

The salient idea of our method is to take a
convex hull with hi points and to apply all the
transformations of the IFS one time to gener-
ate hiN points. The convex hull of these points
is then constructed and the interior points are
eliminated. Construction of the new convex hull
can be effected by using Chan’s method [15] in
O (hiN log hi+1). However, to avoid extra de-
pendence on h we construct it by using direct
merging. Application of N transformations gen-
erates N convex hulls, each of size hi. The merg-
ing of two convex hulls is linear on the number of

points in the convex hulls. So, the direct merging
of N convex hulls requires O

(
hiN

2
)

time.

The total time complexity of our algorithm
is O

(
hN2k

)
and the space complexity is thus

O

(
max
i=1...k

hi

)
. Note that for a given IFS, the

number of IFS transformations N is constant, so
the complexity of our algorithm is linear on the
number of iterations k. This is a qualitative gain
compared to Martyn’s algorithm which depends
exponentially on k. Also, our algorithm is out-
put sensitive, since it depends on the number of
approximate convex hull vertices h.

The space complexity of our approach is in-
ferior to that required by the method developed
by Martyn. Note that the number of iterations k
grows logarithmically with the reduction of ε, so
the optimized version of the algorithm requires
logarithmic time to increase accuracy.

Moreover, in many cases we are likely to per-
form fewer iterations than Martyn’s approach,
since working with ellipsoids increases the con-
vergence rate. The price we must pay in this case
is increasing the complexity by a factor of dim3

(that is, from O
(
hN2k

)
to O

(
hN2k · dim3

)
,

where dim is a dimension of the space, in which
IFS is defined. However, dim does not depend
on the precision ε, so it is a constant for a given
IFS. Thus, our algorithm is still linear on the
number of iterations k.

The following pseudocode illustrates the im-
plementation of our algorithm:

Input: An affine IFS (X, {Ti}N−1
i=0 ) and an accuracy ε

Output: An ε-approximation of the convex hull
initialBall← Calculate initial ball B(c, r) for a given IFS
// Initial approximation of the convex hull containing
// a single point c with an accuracy r
conv ← new Polytope(initialBall)
while(maximum accuracy of conv vertices > ε)
{

// Create a variable for a new convex hull
newConv ← Empty
for each transform Ti of the IFS
{

// Calculate the image of the convex hull
E ← Ti(conv)
// Merge the image with newConv
if (newConv = Empty)

newConv ← E

ha
l-0

07
55

84
2,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
2



else
// Simplify the convex hull during a merge
newConv ← Merge(newConv, E)

}
conv ← newConv

}
return conv

The merging of convex hulls in 3D can be
effected by approach described in [15]. How-
ever, because of its complexity of implemen-
tation, we simply recalculate the convex hull
of all hN intermediate convex hull vertices at
each iteration. So, the time complexity of the
3D results, presented in section 6, is actually
O
(
hNk · log(hN) · dim3

)
.

6 Results and discussion

We develop an application to test the method
presented in this paper. Our application was de-
signed and coded in C# language.

We examined the presented algorithm for
various IFS attractors and different precisions
in 2D and 3D spaces. It should be pointed out
that all tests were performed on an ordinary PC
(Intel R©CoreTM2 Duo T7500 2.2GHz 3GB RAM)
without any additional computational facilities.

Several results for various IFS attractors are
presented in figures 3 and 4. For each attractor,
the program generates an approximation of the
convex hull at the specified accuracy. The exe-
cution time of our algorithm is presented here:

Attractor N dim ε time(ms)
Sierpinski trian-
gle

3 2 10−9 16

Koch curve 4 2 10−9 27
Dragon curve 2 2 10−9 62
Tree 5 2 10−9 94
Sierpinski tetra-
hedron

4 3 10−9 109

IFS dragon 2 2 10−9 265
Barnsley fern 4 2 10−9 484
FIF 4 3 10−3 3541
3D Barnsley fern 4 3 10−3 10951

An approximation of the convex hull is computed
in an interactive rate for all of the 2D attractors
and also for the attractors whose convex hulls
have a finite number of vertices.

In order to compute an approximate convex
hull by Martyn’s approach in the same condi-
tions, we implemented it as described in [1]. Ta-
ble 1 demonstrates the execution time of our al-
gorithm compared to Martyn’s for 2D IFS at-
tractors.

One can see that Martyn’s approach has
strong dependency on the maximal contraction
coefficient smax and our algorithm depends more
on the number of vertices in the convex hull h.

Elimination of the interior points can sig-
nificantly reduce the number of operations per-
formed, and our optimization therefore provides
a qualitative gain in execution time. This is a
very important advantage of our method, since
more and more tasks in which it is necessary to
calculate the convex hull of IFS attractor require
computations in real time. Most of design tools
to develop fractal structures require interactive
rates. Otherwise, such tools simply become un-
responsive.

ha
l-0

07
55

84
2,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
2



Dragon curve Koch curve

IFS dragon Tree

Barnsley fern Sierpinski triangle

Figure 3: Results for 2D IFS attractors at precision ε = 10−9

ha
l-0

07
55

84
2,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
2



Fractal interpolation function Fractal interpolation function

3D Barnsley fern 3D Barnsley fern

Figure 4: Results for 3D IFS attractors at precision ε = 10−2

ha
l-0

07
55

84
2,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
2



Attractor N smax Martyn’s method Our algorithm
time, ms time, ms

Koch curve 4 0.25 125 16
Sierpinski triangle 3 0.5 647 16
Dragon curve 2 0.70711 756 16
Tree 5 0.66762 1131 31
Barnsley fern 4 0.85094 45630 250
IFS dragon 2 0.91944 more than 60 sec 78

Table 1. The execution time of the algorithms for several IFS attractors with a precision
ε = 10−3. Here N is the number of transformations and smax is their maximal contraction
coefficient.

The simplification of the convex hull is an-
other important process. To improve collision
test performance it is necessary to verify whether
an object intersects with the convex hull of our
attractor. This process requires testing all the
convex hull faces. The simplified convex hull in-
volves a smaller number of vertices and faces, so
verification will take less time. Number of con-
vex hull vertices for ε = 10−3 are presented here:

Attractor Without Simplifying
simplifying

Tree 30 pts. 25 pts.
IFS dragon 67 pts. 59 pts.
Barnsley fern 186 pts. 101 pts.
3D fern 4577 pts. 359 pts.

In average, the efficiency of the simplification
process in 2D is about 46%, but it decreases,
when we improve the precision. In 3D, this pro-
cess is much more efficient - we eliminate about
90% of vertices. However, such efficiency can
be achieved only for the attractors whose convex
hulls have an infinite number of vertices.

Another important advantage is that we can
improve the precision of the obtained approxi-
mation by iterating our algorithm further. That
is, to improve the precision it is not necessary
to recalculate all k iterations, we start with the
obtained approximation and continue to iterate
the algorithm. This can be useful when it is nec-
essary to compute a sequence of the approximate
convex hulls (to obtain different levels of detail

for example).

7 Summary

We have presented an iterative algorithm ap-
proximating the convex hull of an affine IFS at-
tractor. We have shown how the specific features
of the IFS may be exploited to optimize calcu-
lations. Our algorithm can be considered as a
generalization to 3D and as an optimization of
Martyn’s algorithm.

For any required accuracy, we construct a se-
quence of convex hulls in order to eliminate the
interior points. To optimize our calculations, we
merge the images of the convex hull at each itera-
tion. Moreover, we increase the speed of conver-
gence to the exact convex hull using approxima-
tion by ellipses. Performed tests confirm the gain
in execution time of our algorithm over that de-
veloped by Martyn. Another important advan-
tage is that our algorithm is iterative, i.e. we can
improve a precision of the obtained approxima-
tion by iterating our algorithm further (without
recalculating all previous iterations).

In addition, we have presented a method of
simplification which reduces the number of faces
in the output convex hull.

References

[1] T. Martyn, The attractor-wrapping approach to ap-
proximating convex hulls of 2D affine IFS attrac-

ha
l-0

07
55

84
2,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
2



tors. Computers & Graphics 33(1) (2009), pp. 104-
112.

[2] R. S. Strichartz, Y. Wang, Geometry of self-
affine tiles I. Indiana University Mathematics Jour-
nal 48 (1999), pp. 1–23.

[3] R. Kenyon, J. Li, R. S. Strichartz, Y. Wang, Geom-
etry of self-affine tiles II. Indiana University Math-
ematics Journal 48 (1999), pp. 25–42.

[4] O.S. Lawlor, J.C. Hart, Bounding recursive proce-
dural models using convex optimization. Computer
Graphics and Applications (2003), pp. 283-292.

[5] J. Duda, Analysis of the convex hull of the attrac-
tor of an IFS. (http://arxiv.org/ pdf/0710.3863v2),
2008.

[6] T. Martyn, Realistic rendering 3D IFS fractals in
real-time with graphics accelerators. Computers &
Graphics 34(2) (2010), pp. 167-175.

[7] C. Gentil, Les fractales en synthèse d’images: le
modèle IFS. Thèse de doctorat. Université LYON I,
24 mars 1992. Jury: D. Vandorpe, P. Chenin, J. Ma-
zoyer, J. P. Reveilles, J. Levy Vehel, M. Terrenoire,
E. Tosan.

[8] J. C. Hart, T. A. DeFanti, Efficient anti-aliased ren-
dering of 3D linear fractals.. Computer & Graphics
25(4) (1991), pp. 91–100.

[9] J. Rice, Spatial bounding of self-affine iterated
function system attractor sets. Graphics interface
GI’96 (1996), pp. 107–15.

[10] T. Martyn, Tight bounding ball for affine
IFS attractor. Computers & Graphics
27(4) (2003), pp. 535-552.

[11] T. Martyn, The smallest enclosing disc of an
affine IFS fractal. Fractals. Complex Geometry,
Patterns, and Scaling in Nature and Society
17(3) (2009), pp. 269-281.

[12] M. F. Barnsley, Fractals everywhere. 2nd ed. Aca-
demic Press, Boston; 1993.

[13] S. J. Kim , D. Y. Lee , M. Y. Yang, Offset trian-
gular mesh using the multiple normal vectors of a
vertex. CAD’04 conference, Thailand; 2004.

[14] D. J. Yoo, General 3D Offsetting of a Trian-
gular Net Using an Implicit Function and the
Distance Fields. Int. J. Precis. Eng. Manuf.,
10(4) (2009), pp. 131–142

[15] T. Chan, Optimal output-sensitive convex hull al-
gorithms in two and three dimensions. Discrete &
Computational Geometry 16(4) (1996), pp. 361-
368.

[16] J. A. Nelder, R. Mead, A simplex method
for function minimization. Computer Journal
7(4) (1965), pp. 308–313

[17] D. Canright, Estimating the Spatial Extent of At-
tractors of Iterated Function Systems. Computers
& Graphics 18(2) (1994), pp. 231-238.

[18] Yu-Xin He, YaLing He, Hua Li, Fast and accurate

determination of the spatial boundary of IFS attrac-

tors. Computers & Graphics 23(4) (1999), pp. 547-

553.

ha
l-0

07
55

84
2,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
2


