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Abstract. We consider the problem of existence of asymptotic observables in local relativistic
theories of massive particles. Let p̃1 and p̃2 be two energy-momentum vectors of a massive
particle and let ∆ be a small neighbourhood of p̃1 + p̃2. We construct asymptotic observables
(two-particle Araki-Haag detectors), sensitive to neutral particles of energy-momenta in small
neighbourhoods of p̃1 and p̃2. We show that these asymptotic observables exist, as strong
limits of their approximating sequences, on all physical states from the spectral subspace of
∆. Moreover, the linear span of the ranges of all such asymptotic observables coincides with
the subspace of two-particle Haag-Ruelle scattering states with total energy-momenta in ∆.
The result holds under very general conditions which are satisfied, for example, in λφ4

2
. The

proof of convergence relies on a variant of the phase-space propagation estimate of Graf.

1. Introduction

The question of a complete particle interpretation of quantum theories is of fundamental
importance for our understanding of physics. The solution of this problem in non-relativistic
quantum mechanics, obtained in [En78, SiSo87, Gr90, De93] for a large class of physically relevant
Hamiltonians, requires the convergence of suitably chosen time-dependent families of observables.
The existence of these limits, called asymptotic observables, relies on the method of propagation
estimates [SiSo87, Gr90], which is a refined variant of the Cook method. This technique was later
adapted to non-relativistic QFT in [DG99] which initiated a systematic study of the problem
of asymptotic completeness in this context [DG00, FGS02, FGS04, DM12]. In the present work
we implement the method of propagation estimates in local relativistic quantum field theories
of massive particles. We obtain the existence of certain asymptotic observables which can be
interpreted as two-particle detectors. Our results, stated in Theorems 2.6 and 2.7 below, hold in
any massive theory satisfying the Haag-Kastler axioms, for example in λφ4

2. Our work sheds a
new light on the problem of asymptotic completeness in such theories, which is widely open to
date.

The problem of existence of asymptotic observables in the framework of algebraic quantum
field theory (cf. Subsection 2.1) was first studied in the seminal work of Araki and Haag [AH67]
and later by Enss in [En75]. These authors considered families of observables of the form

Ct :=

∫
h
(x
t

)
C(t, x)dx = eitH

∫
h
(x
t

)
C(x)dx e−itH ,(1.1)

where C denotes a suitable (almost local) observable, C(t, x) its translation in space-time by
(t, x) ∈ R1+d, H is the full Hamiltonian of the relativistic theory and h ∈ C∞

0 (Rd). They were
able to show that products of such observables

Qn,t = C1,t . . . Cn,t,(1.2)

associated with functions hi, i = 1, . . . , n, with mutually disjoint supports, converge, as t → +∞,
on suitably chosen domains of Haag-Ruelle scattering states1 (cf. Section 6). The limit Q+

n can
be interpreted as a coincidence arrangement of detectors which is sensitive to states containing
a configuration of n particles, with velocities in the supports of the functions h1, . . . , hn.

1991 Mathematics Subject Classification. 81T05, 81U99.
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asymptotic completeness.
1We consider only the limit t → +∞ and outgoing scattering states in this paper as the case t → −∞ is

completely analogous.
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2 WOJCIECH DYBALSKI AND CHRISTIAN GÉRARD

An important advance was made by Buchholz, who proved, for a sufficiently large class of
observables C, the following bound:

sup
t∈R

‖Ct1l∆(U)‖ < ∞,(1.3)

where 1l∆(U) is the projection on states whose energy-momentum belongs to a bounded Borel
set ∆. (See [Bu90] and Lemma 3.3 below). This a priori estimate is a foundation of the theory of
particle weights [BPS91, Po04a, Po04b, Dy10, DT11b, DT11a] and it implies, in particular, that
the sequences Qn,t converge on all Haag-Ruelle scattering states of bounded energy. However,
the question of their convergence on the orthogonal complement of the subspace of scattering
states, which is of crucial importance for the problem of a complete particle interpretation of the
theory (cf. Chapter 6 of [Ha]), remained unanswered to date.

In this paper we give a solution of this problem in the case of n = 2 for Araki-Haag de-
tectors (1.2) sensitive to massive neutral particles. More precisely, let p̃1, p̃2 be two energy-
momentum vectors of massive particles. We choose almost local observables B1, B2 whose
energy-momentum transfers belong to small neighbourhoods of −p̃1, −p̃2, respectively, and set
C1 := B∗

1B1, C2 := B∗
2B2. Now let ∆ be a small neighbourhood of p̃1 + p̃2. Our main result is

the existence of

Q+
2 (∆) := s− lim

t→+∞
C1,tC2,t1l∆(U).(1.4)

Moreover, we show that the union of the ranges of all the operators Q+
2 (∆), constructed as above,

coincides with the subspace of two-particle Haag-Ruelle scattering states, whose total energy-
momenta belong to ∆. This latter result, stated precisely in Thm. 2.7 below, can be interpreted
as a weak variant of two-particle asymptotic completeness. We point out that this generalized
concept of complete particle interpretation does not imply the conventional one.

To illustrate this point, let us give a simple example of a theory which satisfies our general
assumptions from Subsect. 2.1 and is not asymptotically complete in the conventional sense:
Let O 7→ A(O) be the net of local algebras of massive scalar free field theory acting on the Fock
space F and let U be the corresponding unitary representation of translations. Let O 7→ Aev(O)
be a subnet generated by even functions of the fields acting on the subspace Fev ⊂ F spanned

by vectors with even particle numbers and let us set Uev = U |Fev
. Then the net Â(O) =

A(O)⊗Aev(O), acting on F ⊗Fev and equipped with the unitary representation of translations

Û = U ⊗ Uev, satisfies the assumptions from Subsect. 2.1 but is not asymptotically complete
in the conventional sense. In fact, the subspace Ω ⊗ Fev, where Ω is the Fock space vacuum,
is orthogonal to all the Haag-Ruelle scattering states of the theory (except for the vacuum).
In physical terms, this subspace describes ‘pairs of oppositely charged particles’, whose mass
hyperboloids do not appear in the vacuum sector. Due to the choice of the energy-momentum
transfers of Bi, the asymptotic observables Q+

2 (∆) annihilate such pairs of charged particles and,
as stated in Thm. 2.7 below, only neutral particles remain in their ranges.

We would like to stress that our result applies to concrete interacting quantum field theories,
as for example the λφ4

2 model. This theory is known to possess a lower and upper mass gap at
small coupling constants λ, but its particle aspects are rather poorly understood. Asymptotic
completeness is only known for total energies from the intervals [0, 3m− ε] and [3m+ ε, 4m− ε],
where m is the particle mass and ε → 0 as λ → 0 [GJS73, SZ76, CD82]. Since we can choose
the region ∆ in (1.4) outside of these intervals, our result provides new information about the
asymptotic dynamics of this theory.

Let us now describe briefly the main ingredients of the proof of existence of the limit (1.4):
Let Q2,t(∆) be the approximants on the r.h.s. of (1.4). Exploiting locality and the disjointness
of supports of h1, h2 one can write

(1.5)
Q2,t(∆) =

∫
h1

(
x1

t

)
h2

(
x2

t

)
B∗

1(t, x1)B
∗
2 (t, x2)B1(t, x1)B2(t, x2)1l∆(U)dx1dx2

+O(t−∞),

where O(t−∞) is a term tending to zero in norm faster than any inverse power of t. In the next
step we exploit our assumptions on the energy-momentum transfers of B1, B2, which give for
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ASYMPTOTIC COMPLETENESS OF TWO-PARTICLE SCATTERING 3

any Ψ ∈ Ran 1l∆(U):

B1(t, x1)B2(t, x2)Ψ = Ω(Ω|B1(t, x1)B2(t, x2)Ψ),(1.6)

due to the presence of the lower mass-gap. Thus we obtain

Q2,t(∆)Ψ =

∫
Ht(x1, x2)Ft(x1, x2)B

∗
1(t, x1)B

∗
2 (t, x2)Ωdx1dx2 +O(t−∞),(1.7)

where

Ft(x1, x2) := (Ω|B1(t, x1)B2(t, x2)Ψ), Ht(x1, x2) := h1

(x1

t

)
h2

(x2

t

)
.

We note that by replacing Ht(x1, x2)Ft(x1, x2) in the first term on the r.h.s. of (1.7) with
g1(t, x1)g2(t, x2), where g1, g2 are positive energy solutions of the Klein-Gordon equation, one
would obtain a Haag-Ruelle scattering state (cf. Thm. 6.5). While such replacement is not
possible at finite times, it turns out that it can be performed asymptotically. In fact, Thm. 4.1
below, reduces the problem of strong convergence of t 7→ Q2,t(∆) to the existence of the following
limit in the norm topology of L2(R2d):

F+ := lim
t→∞

eitω̃(Dx̃)HtFt,(1.8)

where x̃ = (x1, x2) ∈ R2d, ω̃(Dx̃) = ω(Dx1
) + ω(Dx2

) and ω(k) =
√
k2 +m2 is the dispersion

relation of the massive particles under study.
A large part of our paper is devoted to the proof of existence of the limit (1.8). In the first step,

taken in Lemma 4.2, we show that Ft satisfies the following inhomogeneous evolution equation

∂tFt = −iω̃(Dx̃)Ft + 〈R〉t,(1.9)

where, using locality, we show that the term 〈R〉t satisfies ‖H̃t〈R〉t‖2 = O(t−∞), for any H̃t(x̃) :=

H̃
(
x̃
t

)
with H̃ ∈ C∞

0 (R2d) vanishing near the diagonal {x1 = x2}. Given (1.9), we prove the
existence of the limit (1.8) by extending the method of propagation estimates to inhomogeneous
evolution equations.

An important step is to obtain a large velocity estimate, for which the usual quantum me-
chanical proof does not apply, since in our case all propagation observables must vanish near the
diagonal. Instead we use a relativistic argument, based on the fact that hyperplanes {t = v · x}
for |v| > 1 are space-like (see Lemma 5.1). Another key ingredient is a phase-space propagation
estimate, whose proof follows closely the usual quantum mechanical one. One new aspect, to
which we will come back below, is the fact that the convex Graf function R must now vanish near
the diagonal. By combining the two propagation estimates in Prop 5.5, we obtain the existence
of the limit (1.8) and therefore the convergence of Araki-Haag detectors (1.4).

It is a natural question if the convergence of Qn,t can also be shown for n 6= 2 by the methods
described above. Perhaps surprisingly, this does not seem to be the case for n = 1, since it is
difficult to filter out possible ‘pairs of charged particles’ using only one detector (cf. the discussion
above). However, the situation looks much better for n > 2. Here the initial steps of our analysis
can be carried out and difficulties arise only at the level of the phase-space propagation estimate:
The Graf function R must vanish not only near the diagonal x1 = x2, but also near all the other
collision planes x1 = x3, x2 = x3 etc. Since R is supposed to be convex in some ball around the
origin it must be zero in a neighbourhood of the convex hull of the collision planes restricted to
this ball. Thus a large and physically interesting part of the configuration space is out of reach of
the phase-space propagation estimate for n > 2. It seems to us that new propagation estimates
have to be developed to handle this problem.

We would like to point out that our analysis is closely related to quantum-mechanical scat-
tering theory for dispersive systems (see e.g. [Ge91, Zi97]). A simple example of a dispersive
system is the following Hamiltonian

Hd =

n∑

i=1

ω(Dxi
) +

∑

i<j

V (xi − xj),(1.10)
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4 WOJCIECH DYBALSKI AND CHRISTIAN GÉRARD

where V ∈ S(Rd). We note that the corresponding Schrödinger equation has the form

∂tΨt = −i

n∑

i=1

ω(Dxi
)Ψt − i

∑

i<j

V (xi − xj)Ψt,(1.11)

where Ψt = e−itHdΨ, Ψ ∈ L2
sym((R

d)×n). For n = 2 equation (1.11) has a form of the evolution

equation (1.9) with Ft = Ψt, and 〈R〉t = −iV (x1−x2)Ψt which satisfies ‖Gt〈R〉t‖2 = O(t−∞) as
a consequence of the rapid decay of the potential. In the light of our discussion of equation (1.9),
it is not a surprise that asymptotic completeness holds for dispersive systems for n = 2, (which
is actually a well known fact). However, the case n > 2 is still open and requires new ideas.

Our paper is organized as follows: In Sect. 2 we recall the framework of local relativistic
quantum field theory and state precisely our results. In Sect. 3 we introduce some notation
and terminology and collect the main properties of particle detectors. In Sect. 4 we reduce the
problem of convergence of the families of observables (1.4) to the existence of the limit (1.8)
and derive the inhomogeneous evolution equation (1.9). In Sect. 5 we prove the convergence in
(1.8) by showing large velocity and phase-space propagation estimates. In Sect. 6 we recall some
basic facts on the Haag-Ruelle scattering theory in the two-particle case. The proof of Thm. 2.7,
which gives a weak form of two-particle asymptotic completeness, is presented in Sect. 7. In
Appendix A we state some generalizations of standard abstract arguments to the inhomogeneous
evolution equations. They are used in Section 5.

Acknowledgment: W.D. would like to thank Detlev Buchholz for pointing out to him the
problem of existence of particle detectors in relativistic QFT and numerous interesting discus-
sions. W.D. is also grateful for stimulating discussions with Jacob Schach Møller, Alessan-
dro Pizzo and Wojciech De Roeck concerning the problem of existence of asymptotic observables
in non-relativistic QFT. W.D. acknowledges financial support of the German Research Founda-
tion (DFG) within the stipend DY107/1–1 and hospitality of the Hausdorff Research Institute
for Mathematics, Bonn.

2. Framework and results

In this section we recall the conventional framework of local quantum field theory and formu-
late precisely our main results.

2.1. Nets of local observables. As usual in the Haag-Kastler framework of local quantum
field theory, we consider a net

O 7→ A(O) ⊂ B(H)

of von Neumann algebras attached to open bounded regions of Minkowski space-time R1+d,
which satisfies the assumptions of isotony, locality, covariance w.r.t. translations, positivity of
energy, uniqueness of the vacuum and cyclicity of the vacuum.

The assumption of isotony says that A(O1) ⊂ A(O2) if O1 ⊂ O2. It allows to define the
C∗-inductive limit of the net, which will be denoted by A. Locality means that A(O1) ⊂ A(O2)

′

if O1 and O2 are space-like separated. To formulate the remaining postulates, we assume that
there exists a strongly continuous unitary representation of translations

R
1+d ∋ (t, x) 7→ U(t, x) =: ei(tH−x·P ) on H.

We also introduce the group of automorphisms of A induced by U :

αt,x(B) := B(t, x) := U(t, x)BU∗(t, x), B ∈ A, (t, x) ∈ R
1+d.

The assumption of covariance says that

αt,x(A(O)) = A(O + (t, x)), ∀ open bounded O and (t, x) ∈ R
1+d.(2.1)

We will need a restrictive formulation of positivity of energy, suitable for massive theories. We

denote by Hm := {(E, p) ∈ R1+d : E =
√
p2 +m2} the mass hyperboloid of a particle of mass
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ASYMPTOTIC COMPLETENESS OF TWO-PARTICLE SCATTERING 5

m > 0 and set Gµ := {(E, p) ∈ R1+d : E ≥
√
p2 + µ2}. We assume that:

(2.2)
i) SpU = {0} ∪Hm ∪Gµ for some m < µ ≤ 2m,

ii) 1l{0}(U) = |Ω〉〈Ω|, Ω cyclic for A.

The unit vector Ω will be called the vacuum vector, we denoted by Sp U ⊂ R1+d the spectrum
of (H,P ) and by 1l∆(U) the spectral projection on a Borel set ∆ ⊂ Rd+1. Part i) in (2.2)
encodes positivity of energy and the presence of an upper and lower mass-gap. Part ii) covers
the uniqueness and cyclicity of the vacuum.

2.2. Relevant classes of observables. In this subsection we introduce some classes of observ-
ables, which enter into the formulation of our main results. First, we recall the definition of
almost local operators.

Definition 2.1. B ∈ A is almost local if there exists a family Ar ∈ A(Or), where Or := {x ∈
R1+d : |x| ≤ r} is the double cone of radius r centered at 0, s.t. ‖B −Ar‖ ∈ O(〈r〉−∞).

To introduce another important class – the energy-decreasing operators – we need some defi-

nitions: If B ∈ A, we denote by B̂ its Fourier transform:

(2.3) B̂(E, p) := (2π)−(1+d)/2

∫
e−i(Et−p·x)B(t, x)dtdx,

defined as an operator-valued distribution. We denote by supp(B̂) ⊂ R1+d the support of B̂,
called the energy-momentum transfer of B. We recall the following well-known properties:

(2.4)

i) α̂t,x(B)(E, p) = ei(Et−p·x)B̂(E, p),

ii) supp(B̂∗) = −supp(B̂),

iii) B1l∆(U) = 1l
∆+supp(B̂)

(U)B1l∆(U), ∀ Borel sets ∆ ⊂ R1+d.

Now we are ready to define the energy-decreasing operators:

Definition 2.2. B ∈ A is energy decreasing if supp(B̂)∩V+ = ∅, where V+ := {(E, p) : E ≥ |p|}
is the closed forward light cone.

In the rest of the paper we will work with the following set of observables:

Definition 2.3. We denote by L0 ⊂ A the subspace spanned by B ∈ A such that:

i) B is energy decreasing, supp(B̂) is compact,

ii) R1+d ∋ (t, x) 7→ B(t, x) ∈ A is C∞ in norm,

iii) ∂α
t,xB(t, x) is almost local for all α ∈ N1+d.

Note that if i) and ii) hold, then ∂α
t,xB(t, x) is energy decreasing for any α ∈ N1+d. Note also

that if A ∈ A(O) and f ∈ S(R1+d) with suppf̂ compact and suppf̂ ∩ V+ = ∅ then

(2.5) B = (2π)−(1+d)/2

∫
f(t, x)A(t, x)dtdx

belongs to L0 by (2.4) i), since B̂(E, p) = f̂(E, p)Â(E, p). (See (3.1) below for definition of f̂).

2.3. Results. For any B1, B2 ∈ L0 and h1, h2 ∈ C∞
0 (Rd) with disjoint supports we define the

approximating families of one-particle detectors:

C1,t :=

∫
h1

(x1

t

)
(B∗

1B1)(t, x1)dx1, C2,t :=

∫
h2

(x2

t

)
(B∗

2B2)(t, x2)dx2(2.6)

which have appeared already in (1.1) above. We note that in view of Lemma 3.3, stated below,

supt∈R
‖Ci,t1l∆̃(U)‖ < ∞, i = 1, 2, for any bounded Borel set ∆̃.

Now for any open bounded subset ∆ ⊂ G2m we define the two-particle detectors:

Q2,t(∆) := C1,tC2,t1l∆(U).(2.7)
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6 WOJCIECH DYBALSKI AND CHRISTIAN GÉRARD

Our main result is the strong convergence of Q2,t(∆) as t → ∞ if the extension of ∆ is smaller

than the mass-gap (i.e., (∆ −∆) ∩ SpU = {0}) and (B1, B2) is ∆−admissible in the following
sense:

Definition 2.4. Let ∆ ⊂ R1+d be an open bounded set and B1, B2 ∈ L0. We say that (B1, B2)
is ∆−admissible if

(2.8) (−supp(B̂i)) ∩ Sp U ⊂ Hm, i = 1, 2,

(2.9) −(supp(B̂1) + supp(B̂2)) ⊂ ∆,

(2.10) (∆ + supp(B̂1) + supp(B̂2)) ∩ SpU ⊂ {0}.
Remark 2.5. In Lemma 7.4, it is shown that if ∆ ⊂ G2m is an open bounded set s.t. (∆ −
∆) ∩ SpU ⊂ {0} and −supp(B̂1), −supp(B̂2) are sufficiently small neighbourhoods of vectors
p̃1, p̃2 ∈ Hm s.t. p̃1 6= p̃2 and p̃1 + p̃2 ∈ ∆ then (B1, B2) is ∆−admissible.

Theorem 2.6. Let ∆ ⊂ G2m be an open bounded set such that (∆ − ∆) ∩ SpU = {0}. Let
B1, B2 ∈ L0 be ∆−admissible and suppose that h1, h2 ∈ C∞

0 (Rd) have disjoint supports. Then
there exists the limit

Q+
2 (∆) := s− lim

t→∞
C1,tC2,t1l∆(U),(2.11)

where Ci,t are defined in (2.6) for Bi, hi, i = 1, 2. The range of Q+
2 (∆) belongs to 1l∆(U)H+

2 ,
where H+

2 is the subspace of two-particle Haag-Ruelle scattering states defined in Thm. 6.5.

Proof. Follows immediately from Theorems 4.1 and 5.5. 2

Thm. 2.6 is complemented by Thm. 2.7, stated below, which says that any two-particle
scattering state can be prepared with the help of Araki-Haag detectors. This weak variant
of two-particle asymptotic completeness ensures, in particular, that sufficiently many asymptotic
observables (2.11) are non-zero. The proof is given in Sect. 7.

Theorem 2.7. Let ∆ ⊂ G2m be an open bounded set such that (∆ −∆) ∩ SpU = {0}. Let J
be the collection of quadruples α = (B1, B2, h1, h2) satisfying the conditions from Thm. 2.6 and
let Q+

2,α(∆) be the limit (2.11) corresponding to α. Then

1l∆(U)H+
2 = Span{RanQ+

2,α(∆) : α ∈ J}cl.(2.12)

3. Preparations

In this section we introduce some notation and collect some properties of particle detectors.

3.1. Notation.

- By x, x1, x2 we denote elements of Rd. We set x̃ = (x1, x2) to denote elements of R2d.
- we write K ⋐ R1+d if K is a compact subset of R1+d.

- we set 〈x〉 := (1 + x2)
1
2 for x ∈ Rd and ω(p) = (p2 +m2)

1
2 for p ∈ Rd.

- the momentum operator i−1∇x will be denoted by Dx.
- we denote by (t, x) or (E, p) the elements of R1+d.
- if f : R1+d → C we will denote by ft : R

d → C the function ft( · ) := f(t, · ).
- we denote by S(R1+d) the Schwartz class in R1+d. If f ∈ S(R1+d) we define its (unitary)
Fourier transform:

(3.1) f̂(E, p) := (2π)−(1+d)/2

∫
ei(Et−p·x)f(t, x)dtdx,

so that

(3.2) f(t, x) = (2π)−(1+d)/2

∫
e−i(Et−p·x)f̂(E, p)dEdp.

Note the different sign in the exponent in comparison with (2.3).
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ASYMPTOTIC COMPLETENESS OF TWO-PARTICLE SCATTERING 7

If f ∈ S(Rd) we set:

f̂(p) = (2π)−d/2

∫
e−ip·xf(x)dx,

and

qf(x) = (2π)−d/2

∫
eip·xf(p)dp.

- If B is an observable, we write B(∗) to denote either B or B∗. We will also set

Bt := B(t, 0), B(x) := B(0, x) so that B(t, x) = Bt(x).

3.2. Auxiliary maps aB. For B ∈ A, f ∈ S(Rd) we set:

B(f) :=

∫
B(x)f(x)dx,

so that B∗(f) = B(f)∗. Clearly, if B1, B2 ∈ A are almost local, then

(3.3) ‖[B1(x1), B2(x2)]‖ ≤ CN 〈x1 − x2〉−N , ∀ N ∈ N.

This immediately implies that

(3.4) ‖[B1(f1), B2(f2)]‖ ≤ CN

∫
|f1(x1)|〈x1 − x2〉−N |f2(x2)|dx1dx2, f1, f2 ∈ S(Rd).

Now we introduce auxiliary maps which will be often used in our investigation:

Definition 3.1. We denote by aB : H → S ′(Rd;H) the linear operator defined as:

aBΨ(x) := B(x)Ψ, x ∈ R
d.

Clearly aB : H → S ′(Rd;H) is continuous and

(3.5) B(f) = (1lH ⊗ 〈f |) ◦ aB, f ∈ S(Rd),

where (1lH ⊗ 〈f |) : S ′(Rd;H) → H is defined on simple tensors by

(1lH ⊗ 〈f |)(Ψ ⊗ T ) = T (f)Ψ, Ψ ∈ H, T ∈ S ′(Rd).(3.6)

By duality a∗B : S(Rd;H) → H is continuous and

(3.7) B∗(f) = a∗B ◦ (1lH ⊗ |f〉), f ∈ S(Rd).

The group of space translations

τyΨ(x) := Ψ(x− y), y ∈ R
d,

is a strongly continuous group on S ′(Rd;H), and its generator is Dx i.e., τy = e−iy·Dx . It is easy
to check the following identity:

(3.8) aB ◦ e−iy·P = e−iy·(Dx+P ) ◦ aB, y ∈ R
d.

We collect now some properties of aB.

Lemma 3.2. Let B ∈ A. Then:
(1) For any Borel set ∆ ⊂ R1+d:

aB1l∆(U) = (1l
∆+supp(B̂)

(U)⊗ 1lS′(Rd)) ◦ aB1l∆(U),

a∗B ◦ (1l∆(U)⊗ 1lS(Rd)) = 1l
∆−supp(B̂)

(U)a∗B ◦ (1l∆(U)⊗ 1lS(Rd)).

(2) For any f ∈ S(Rd) one has f(Dx)aB = aBf
for

Bf := (2π)−d/2
∫

qf(−y)B(0, y)dy = (2π)−(d+1)/2
∫
f(−p)B̂(E, p)dEdp,

B̂f (E, p) = f(−p)B̂(E, p).

(3) If supp(B̂) is compact and f ∈ C∞(Rd) then the above properties also hold.
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8 WOJCIECH DYBALSKI AND CHRISTIAN GÉRARD

Proof. (1) follows from (2.4). (2) and (3) follow from the identity:

e−iy·DxaB = aB(0,−y), y ∈ R
d,

which is a rephrasing of (3.8). 2

If B ∈ L0, then aB has much stronger properties. In particular, for ∆ ⋐ R1+d the operator
aB1l∆(U) maps H into L2(Rd;H) ≃ H ⊗ L2(Rd), see Lemma 3.4 below. This is a consequence
of the following important property of energy-decreasing operators, proven in [Bu90].

Lemma 3.3. Let B ∈ A be energy-decreasing with supp(B̂) ⋐ R1+d and ∆ ⊂ R1+d be some
bounded Borel set. Let Y ⊂ R1+d be a subspace and let dy be the Lebesgue measure on Y . Then
there exists c > 0 such that for any F ⋐ Y , one has:

‖
∫

F

(B∗B)(y)1l∆(U)dy‖ ≤ c

∫

F−F

‖[B∗, B(y)]‖dy.(3.9)

Note that if B is in addition almost local and Y is spacelike, then the function Y ∋ y 7→
‖[B∗, B(y)]‖ vanishes faster than any inverse power of |y| as |y| → ∞, hence we can take F = Y

in (3.9). We will usually apply this lemma with Y = {0} × Rd. In view of this lemma, it is
convenient to introduce the subspace of vectors with compact energy-momentum spectrum:

Hc(U) := {Ψ ∈ H : Ψ = 1l∆(U)Ψ, ∆ ⋐ R
1+d}.

We note the following simple fact:

Lemma 3.4. Assume that ∆ ⋐ R1+d and let B ∈ L0. Then

aB1l∆(U) : H → H⊗ L2(Rd) is bounded.

Remark 3.5. Considering aB as a linear operator from H to H⊗ L2(Rd) with domain Hc(U),
we see that H⊗ S(Rd) ⊂ Dom a∗B, hence aB is closable.

Proof. It suffices to note that

1l∆(U)a∗B ◦ aB1l∆(U) =

∫

Rd

1l∆(U)(B∗B)(x)1l∆(U)dx,

and use Lemma 3.3. 2

3.3. Particle detectors. In this subsection we make contact with the particle detectors Ct

introduced in (2.6).

Definition 3.6. Let B ∈ L0. For h ∈ B(L2(Rd)) we set:

NB(h) := a∗B ◦ (1lH ⊗ h) ◦ aB, Dom NB(h) = Hc(U).

Denoting by h(x, y) the distributional kernel of h we have the following expression for NB(h),

(3.10) NB(h) =

∫
B∗(x)h(x, y)B(y)dxdy,

which makes sense as a quadratic form identity on Hc(U). If h is the operator of multiplication
by the function x 7→ h(x), then NB(h) can be written as

NB(h) =

∫
(B∗B)(x)h(x)dx.

Setting ht(x) := h
(
x
t

)
, we see that Ct defined in (2.6) equals NBt

(ht), where Bt = B(t, 0). The
following lemma is a direct consequence of Lemmas 3.2 and 3.4.

Lemma 3.7. We have:

(1) ‖NB(h)1l∆(U)‖B(H) ≤ c∆,B‖h‖B(L2(Rd)),

(2) ∀ ∆ ⋐ R1+d, NB(h)1l∆(U) = 1l∆1
(U)NB(h)1l∆(U), for some ∆1 ⋐ R1+d.
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ASYMPTOTIC COMPLETENESS OF TWO-PARTICLE SCATTERING 9

3.4. Auxiliary maps aB1,B2
. We start with the following definition which is meaningful due

to Lemma 3.4:

Definition 3.8. If B1, B2 ∈ L0, then we can define the linear operator:

(3.11) aB1,B2
:

Hc(U) → H⊗ L2(R2d, dx1dx2),

Ψ 7→ aB1,B2
Ψ = (aB1

⊗ 1lL2(Rd)) ◦ aB2
Ψ.

Formally we have

aB1,B2
Ψ(x1, x2) = B1(x1)B2(x2)Ψ.

We note the following lemma, which is a direct consequence of Lemmas 3.2 and 3.4.

Lemma 3.9. Assume ∆ ⊂ R1+d is compact and let B1, B2 ∈ L0. Then:
(1) aB1,B2

1l∆(U) : H → H⊗ L2(R2d, dx1dx2) is bounded,
(2) for any ∆ ⋐ R1+d one has:

aB1,B2
1l∆(U) = (1l∆+supp(B̂1)+supp(B̂2)

(U)⊗ 1lL2(R2d)) ◦ aB1,B2
1l∆(U),

a∗B1,B2
◦ (1l∆(U)⊗ 1lL2(R2d)) = 1l∆−supp(B̂1)−supp(B̂2)

(U)a∗B1,B2
◦ (1l∆(U)⊗ 1lL2(R2d)).

For later use we state in Lemma 3.10 below a simple consequence of almost locality. To
simplify the formulation of this result, we introduce the following functions for N > d:

(3.12) gN(k) =

∫
e−ik·x〈x〉−Ndx.

Clearly

∂α
k gN(k) ∈ O(〈k〉−p), ∀ p ∈ N, |α| < N − |d|,

and the operator on L2(Rd) with kernel 〈x− y〉−N equals gN(Dx).

Lemma 3.10. Let ∆ ⋐ R1+d, Bi ∈ L0, hi ∈ C∞
0 (Rd), i = 1, 2. We denote by hi ∈ B(L2(Rd))

the operator of multiplication by hi. Then for any N ∈ N one has:
(3.13)
‖
(
NB1

(h1)◦NB2
(h2)−a∗B2,B1

◦(1lH⊗h1⊗h2)◦aB1,B2

)
1l∆(U)‖ ≤ CN,∆,B1,B2

‖h1gN (Dx)h2‖B(L2(Rd)).

Remark 3.11. In applications we will often estimate the operator norm on the r.h.s. of (3.13)
by the Hilbert-Schmidt norm ‖ · ‖HS.

Proof. Let R be the operator in the l.h.s. of (3.13). By Lemmas 3.7, 3.9 R = 1l∆1
(U)R1l∆2

(U)
for some ∆i ⋐ R1+d. For ui ∈ H we have

|(u1|Ru2)H|
= |

∫
(1l∆1

(U)u1|B∗
1(x1))[B1(x1), B

∗
2 (x2)]B2(x2)h1(x1)h2(x2)1l∆2

(U)u2)Hdx1dx2|
≤ C

∫
‖B1(x1)1l∆1

(U)u1‖H‖B2(x2)1l∆2
(U)u2‖H|h1|(x1)|h2|(x2)〈x1 − x2〉−Ndx1dx2.

By Lemma 3.7 we know that vi(x) = ‖Bi(x)1l∆i
(U)ui‖H ∈ L2(Rd) with ‖vi‖L2(Rd) ≤ Ci‖ui‖H.

Therefore

|(u1|Ru2)|H ≤ C‖|h1|gN (Dx)|h2|‖B(L2(Rd))‖u1‖H‖u2‖H.

Writing hi = |hi|sign(hi) and using that the operator of multiplication by sgn(hi) is unitary, we
obtain the lemma. 2

4. An intermediate convergence argument

For B ∈ L0 and h ∈ C∞
0 (Rd) we set:

(4.1) ht(x) := h
(x
t

)
, NB(h, t) := NBt

(ht).

Recalling the notation x̃ = (x1, x2), we also define ω̃(Dx̃) = ω(Dx1
)+ω(Dx2

), acting on L2(R2d).
The following theorem is an important step in the proofs of Thms. 2.6 and 2.7. It essentially
allows to reduce their proofs to arguments adapted from non-relativistic scattering theory.
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10 WOJCIECH DYBALSKI AND CHRISTIAN GÉRARD

Theorem 4.1. Let ∆ ⊂ R1+d be a bounded open set, B1, B2 ∈ L0 with (B1, B2) ∆−admissible
and let h1, h2 ∈ C∞

0 (Rd) have disjoint supports. Let

(4.2) Ht(x1, x2) := h1,t(x1)h2,t(x2)

and set for Ψ ∈ 1l∆(U)H:

(4.3) Ft := (〈Ω| ⊗ 1lL2(R2d)) ◦ aB1,B2
e−itHΨ ∈ L2(R2d),

so that

Ft(x1, x2) = (Ω|B1(t, x1)B2(t, x2)Ψ)H, (x1, x2) ∈ R
2d.

Assume that:

(4.4) F+ := lim
t→∞

eitω̃(Dx̃)HtFt exists.

Then

(4.5) lim
t→∞

NB1
(h1, t)NB2

(h2, t)Ψ

exists and belongs to 1l∆(U)H+
2 .

Proof. Applying Lemma 3.10 and noting that ‖h1,tgN(Dx)h2,t‖HS ∈ O(td−N ), we get:

NB1
(h1,t)NB2

(h2,t)1l∆(U) = a∗B2,B1
◦ (1lH ⊗Ht) ◦ aB1,B2

1l∆(U) +O(t−∞).

By (2.10) and Lemma 3.9 we have:

aB1,B2
1l∆(U) = a(1l{0}(U)⊗ 1lL2(R2d)) ◦ aB1,B2

1l∆(U) = (|Ω〉〈Ω| ⊗ 1lL2(R2d)) ◦ aB1,B2
1l∆(U),

using (2.2). Therefore we have:

(4.6)
eitHNB1

(h1,t)NB2
(h2,t)e

−itHΨ = eitHa∗B2,B1
(Ω⊗HtFt) +O(t−∞)

= eitHa∗B2,B1
(Ω⊗ e−itω̃(Dx̃)F+) + o(t0).

Set

St : L
2(R2d) ∋ F 7→ eitHa∗B2,B1

(Ω⊗ e−itω̃(Dx̃)F ) ∈ H.

By Lemma 3.9 the family St is uniformly bounded in norm. Moreover if g1, g2 are two positive
energy KG solutions with disjoint velocity supports (see Subsect. 6.1 for terminology) and
f1, f2 ∈ S(Rd) are their initial data, then

St(f1 ⊗ f2) = B∗
1,t(g1)B

∗
2,t(g2)Ω,

where the Haag-Ruelle creation operators B∗
i,t(gi) are defined in Subsect. 6.2. From Thm. 6.5 we

know that limt→∞ St(f1⊗f2) exists. By linearity and density, using the uniform boundedness of
St, we conclude that limt→∞ StF exists for any F ∈ L2(R2d). By (4.6) this implies the existence
of the limit in (4.5). The approximation argument above implies that this limit belongs to H+

2 .
The fact that it belongs to the range of 1l∆(U) follows from the ∆−admissibility of (B1, B2).2

The proof of the existence of the limit (4.4) will be given in the next section. As a preparation,
we collect some properties of the vectors Ft ∈ L2(R2d). The most important property is that Ft

solves a Schrödinger equation with Hamiltonian ω̃(Dx̃) and a source term 〈R〉t whose L2 norm
outside of the diagonal decreases very fast when t → +∞.

Lemma 4.2. Let Ft be defined in (4.3). Then:
(1) Ft is uniformly bounded in L2(R2d),
(2) t 7→ Ft ∈ L2(R2d) is C1 with

∂tFt = −iω̃(Dx̃)Ft + 〈R〉t,

where ‖H̃
(
x̃
t

)
〈R〉t‖L2(R2d) ∈ O(t−∞) for any H̃ ∈ C∞

0 (R2d) with suppH̃ ∩ {x1 = x2} = ∅.
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ASYMPTOTIC COMPLETENESS OF TWO-PARTICLE SCATTERING 11

Proof. We have Ft(x1, x2) = (Ω|B1(t, x1)B2(t, x2)Ψ)H and from Lemma 3.9 we know that Ft is
uniformly bounded in L2(R2d). Moreover, since Ψ ∈ Hc(U), we see that t 7→ Ft ∈ L2(R2d) is C1

with:

∂tFt = (Ω|Ḃ1(t, x1)B2(t, x2)Ψ)H + (Ω|B1(t, x1)Ḃ2(t, x2)Ψ)H

= (Ω|Ḃ1(t, x1)B2(t, x2)Ψ)H + (Ω|Ḃ2(t, x2)B1(t, x1)Ψ)H

+(Ω|[B1(t, x1), Ḃ2(t, x2)]Ψ)H,

where Ḃi := ∂sBi(s, 0)|s=0 are again almost local by the definition of L0. We have for any Φ ∈ H:

(Ω|Bj(t, xj)Φ)H = (Ω|1l{0}(U)Bj(t, xj)Φ)H = (Ω|Bj(t, xj)1lHm
(U)Φ)H

= (Ω|Bj(xj)e
−itω(P )Φ)H = e−itω(Dxj

)(Ω|Bj(xj)Φ),

using (2.4), (2.8) and finally (3.8). Differentiating this identity we obtain

(Ω|Ḃj(t, xj)Φ)H = −iω(Dxj
)(Ω|Bj(t, xj)Φ)H.

Therefore we get:

∂tFt = −iω(Dx1
)(Ω|B1(t, x1)B2(t, x2)Ψ)H − iω(Dx2

)(Ω|B2(t, x2)B1(t, x1)Ψ)H

+(Ω|[B1(t, x1), Ḃ2(t, x2)]Ψ)H

= −iω(Dx1
)(Ω|B1(t, x1)B2(t, x2)Ψ)H − iω(Dx2

)(Ω|B1(t, x1)B2(t, x2)Ψ)H

−iω(Dx2
)(Ω|[B2(t, x2), B1(t, x1)]Ψ)H + (Ω|[B1(t, x1), Ḃ2(t, x2)]Ψ)H

= −iω̃(Dx̃)Ft + 〈R〉t,

for

〈R〉t = −iω(Dx2
)(Ω|[B2(t, x2), B1(t, x1)]Ψ)H + (Ω|[B1(t, x1), Ḃ2(t, x2)]Ψ)H

=: 〈R〉1,t + 〈R〉2,t.

Since Ḃ2 is almost local, we have ‖[B1(t, x1), Ḃ2(t, x2)]‖ ∈ O(〈x1 − x2〉−N ) uniformly in t and

‖H̃t〈R〉2,t‖L2(R2d) ∈ O(t−∞) because of the support properties of H̃t(x̃) := H̃
(
x̃
t

)
.

To estimate 〈R〉1,t we write it as (Ω|[ω(Dx2
)B2(t, x2), B1(t, x1)]Ψ)H. By Lemma 3.2 (2) we

see that ω(Dx2
)B2(t, x2) = C2(t, x2), where

C2 = (2π)−d/2

∫
f(x)B(0, x)dx, f ∈ S(Rd), f̂(−p) ≡ ω(p) near supp(B̂2).

Therefore C2 is almost local and ‖[C2(t, x2), B1(t, x1)]‖ ∈ O(〈x1 − x2〉−N ). The same argument

as above shows that ‖H̃t〈R〉1,t‖L2(R2d) ∈ O(t−∞). 2

5. Non-relativistic scattering with source terms

In this section we give the proof of the existence of the limit

F+ = lim
t→+∞

eitω̃(Dx̃)HtFt,

appearing in Thm. 4.1. The proof is obtained by adapting to our situation the standard ar-
guments based on propagation estimates. The main difference with the usual scattering theory
is that Ft solves a Schrödinger equation with a source term. This implies that one has to use
propagation observables supported in regions where the source term is small, in our case outside
the diagonal in R2d. The necessary abstract arguments are collected in Appendix A.
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12 WOJCIECH DYBALSKI AND CHRISTIAN GÉRARD

5.1. Large velocity estimates. In this subsection we prove large velocity estimates. Note that
we do not prove them directly for Ft, but use instead a general argument based on Lemma 3.3,
locality and the fact that the hyperplanes {t = v · x} for |v| > 1 are space-like.

Lemma 5.1. Let B ∈ L0, ∆ ⋐ R1+d and 1 < c < C. Then,
∫ +∞

1

(e−itHΨ|1l∆(U)NB(1l{z∈Rd : c≤|z|≤C}

(x
t

)
)1l∆(U)e−itHΨ)H

dt

t
≤ c1‖Ψ‖2H, Ψ ∈ H,

where x in the formula above denotes the corresponding multiplication operator on L2(Rd).

Proof. Set z = (z1, z′) ∈ Rd where z1 ∈ R is the first component of z. We can find constants
ci > 1 and rotations Ri ∈ SO(Rd) such that

{z : c ≤ |z| ≤ C} ⊂ ⋃N
i=1{z : ci ≤ |(Riz)

1| ≤ C}.
So it suffices to prove the lemma with 1l{z : c≤|z|≤C} replaced with 1l{z : c≤|(Rz)1|≤C} for c > 1,

R ∈ SO(Rd). We parametrize the set S = {z : ci ≤ |(Rz)1| ≤ C} by coordinates (y1, y′) with
y1 = (Rx)1 so that it equals S = {(y1, y′) : c ≤ |y1| ≤ C}. We have:

I :=
∫∞
1 eitHNB(1lS

(
x
t

)
)e−itH dt

t =
∫∞
1

dt
t

∫
Rd 1lS(

y
t )(B

∗B)(t, y)dy

=
∫∞
1 dt

∫ C

c dv
∫
Rd−1(B

∗B)(t, tv, y′)dy′ =
∫ C

c dv
∫
Rd(B

∗B)(t, tv, y′)dtdy′.

We now apply Lemma 3.3 to the subspace Yv = {(t, tv, y′) : t ∈ R, y′ ∈ Rd−1} for c ≤ v ≤ C

which yields:

(5.1) ‖1l∆(U)I1l∆(U)‖ ≤ C′
∫ C

c

dv

∫

Rd

‖[B∗, B(t, tv, y′)]‖dtdy′.

Since B is almost local, there exist Br ∈ A(Or) with ‖B −Br‖ ∈ O(〈r〉−n). Therefore

‖[B∗, B(t, tv, y′)]‖ ≤ C〈r〉−n + ‖[B∗
r , Br(t, tv, y

′)]‖.
Set u · u = x2 − t2 for u = (t, x) ∈ R1+d. If v1, v2 ∈ Or and u1 = v1 + (t, tv, y′), u2 = v2, then
u = u1 − u2 = (t, tv, y′) + w, for w ∈ Or −Or ⊂ O2r. It follows that

u · u = t2(|v|2 − 1) + |y′|2 +O(r)(〈t〉 + 〈y′〉) +O(r2).

Using that c > 1, we conclude that there exists 0 < δ ≪ 1 such that if 〈r〉 = δ(〈t〉+ 〈y′〉) then Or

and Or + (t, tv, y′) are spacelike separated for any (t, y′) ∈ Rd s.t. t2 + |y′|2 ≥ 1 and c ≤ v ≤ C.
Therefore ‖[B∗, B(t, tv, y′)]‖ ∈ O(〈t〉+ 〈y′〉)−n, and the integral in the r.h.s. of (5.1) is finite. 2

To proceed we need the following definitions: For 0 ≤ r1 < r2 and ǫ ≥ 0 we set:

Cr1,r2 := {x̃ ∈ R
2d : r1 ≤ |x̃| ≤ r2}, Cr := C0,r, Dǫ := {x̃ ∈ R

2d : |x1 − x2| ≤ ǫ}.
Let us now prove the following corollary of Lemma 5.1:

Proposition 5.2. Let
√
2 < r < r′, ǫ > 0 and let Ft be defined in (4.3). Then

∫ +∞

1

∥∥∥∥1lCr,r′\Dǫ

(
x̃

t

)
Ft

∥∥∥∥
2

L2(R2d)

dt

t
< ∞,

where x̃ in the formula above denotes the corresponding multiplication operator on L2(R2d).

Proof. Set x̃ = (x1, x2) ∈ R2d. By a covering argument, it suffices to prove the lemma with
1lCr,r′\Dǫ

(x̃) replaced with h1(x1)h2(x2), where hi ∈ C∞
0 (Rd) are supported near some points

yi ∈ Rd with (y1, y2) ∈ Cr,r′\Dǫ and d(supph1, supph2) > 0. Set Ht(x̃) = h1(
x1

t )h2(
x2

t ). By
(4.3) we have:

(Ft|HtFt)L2(R2d) =

∫

R2d

(e−itHΨ|B∗
2(x2)B

∗
1 (x1)B1(x1)B2(x2)e

−itHΨ)Hh1

(x1

t

)
h2

(x2

t

)
dx1dx2.
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ASYMPTOTIC COMPLETENESS OF TWO-PARTICLE SCATTERING 13

Since |(y1, y2)| >
√
2, necessarily |yi| > 1 either for i = 1 or i = 2, and we can assume that

supphi ⊂ {y ∈ Rd : |y| > 1}. If this holds for i = 2 then

(Ft|HtFt)L2(R2d) ≤ C
∫
(e−itHΨ|B∗

2(x2)B2(x2)e
−itHΨ)Hh2(

x2

t )dx2

≤ C(e−itHΨ|NB2
(h2(

x
t ))e

−itHΨ)H,

where x denotes the corresponding multiplication operator on Rd. Then we apply Lemma 5.1.
If the above property holds for i = 1 then using almost locality as in the proof of Lemma 3.10
we obtain that

(Ft|HtFt)L2(R2d)

=
∫
R2d(e

−itHΨ|B∗
1(x1)B

∗
2 (x2)B2(x2)B1(x1)e

−itHΨ)Hh1(
x1

t )h2(
x2

t )dx1dx2 +O(t−∞)

=
∫
Rd(B1(x1)e

−itHΨ|NB2
(h2(

x
t ))B1(x1)e

−itHΨ)Hh1(
x1

t )dx1 +O(t−∞)

≤ C(e−itHΨ|NB1
(h1(

x
t ))e

−itHΨ)H +O(t−∞),

using that h1, h2 have disjoint supports. We complete the proof as before. 2

5.2. Phase-space propagation estimates. We start with a geometrical consideration related
to a well-known construction of Graf [Gr90].

Lemma 5.3. Let K ⋐ R2d\D0. Then there exist
√
2 < r < r′, c1, c2, ǫ > 0 and a function

R ∈ C∞
0 (R2d) vanishing near D0 such that

(5.2) ∇2R(x̃) ≥ c11lK(x̃)− c21lCr,r′\Dǫ
(x̃).

Proof. Set x̃ = (x1, x2) ∈ R2d, u = 1√
2
(x1 + x2), v = 1√

2
(x1 − x2). We choose

√
2 < r < r′ such

that K ⊂ Cr and set

g(x̃) = (u2 + βv2 − c)F (x̃),

for F ≥ 0, F ∈ C∞
0 (Cr′

1
), F ≡ 1 in Cr1 where r < r1 < r′1 < r′. The constants c, β > 0 will be

determined later. Note that g is convex in Cr1 , hence

R0(x̃) = sup{g, 0}(x̃)
is convex in Cr1 (but not smooth). We first fix c = r′2 so that R0(x̃) = 0 for x̃ ∈ Dǫβ , for some

ǫβ > 0 tending to 0 when β → +∞. We choose then β ≫ 1 such thatK ⊂ {x̃ ∈ R2d : R0(x̃) > 0}
and set ǫ = ǫβ. By the continuity of R0 we also obtain:

(5.3) K ⊂
⋂

|x̃′|≤ǫ′

{x̃ : R0(x̃− x̃′) > 0},

(5.4) Dǫ/2 ⊂
⋂

|x̃′|≤ǫ′

{x̃ : R0(x̃− x̃′) = 0},

for some ǫ′ ≪ 1.
We now choose η ≥ 0, η ∈ C∞

0 (Cǫ′) with
∫
η(x̃)dx̃ = 1 and set:

R(x̃) :=

∫
η(x̃′)R0(x̃− x̃′)dx̃′ = η ⋆ R0(x̃).

Clearly R ∈ C∞
0 (R2d) and R is convex in Cr, hence

(5.5) ∇2R(x̃) ≥ 0, x̃ ∈ Cr.

By relation (5.3), R = η ⋆ g on K, hence

(5.6) ∇2R(x̃) ≥ c11l, x̃ ∈ K,

for some c1 > 0. In Cr,r′ , ∇2R is bounded, and outside of Cr′ , ∇2R(x̃) ≥ 0 since R(x̃) ≡ 0 there
by construction. By (5.5), (5.6) we obtain (5.2). 2
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14 WOJCIECH DYBALSKI AND CHRISTIAN GÉRARD

Proposition 5.4. Let Ft be defined in (4.3) and K ⋐ R2d\D0. Then
∫ +∞

1

∥∥∥∥1lK
(
x̃

t

)(
x̃

t
−∇ω̃(Dx̃)

)
Ft

∥∥∥∥
2

L2(R2d)

dt

t
< ∞.

Proof. We will apply Lemma A.1 to H = L2(R2d), u(t) = Ft, H = ω̃(Dx̃) and

M(t) = R

(
x̃

t

)
− 1

2

(
∇R

(
x̃

t

)
·
(
x̃

t
−∇ω̃(Dx̃)

)
+ h.c.

)
.

Recall that DM(t) denotes the associated Heisenberg derivative. By standard pseudo-differential
calculus we obtain that:

(5.7)
DM(t) = 1

t

(
x̃
t −∇ω̃(Dx̃)

)
· ∇2R

(
x̃
t

)
·
(
x̃
t −∇ω̃(Dx̃)

)
+O(t−2)

≥ c1
t

(
x̃
t −∇ω̃(Dx̃)

)
1lK

(
x̃
t

)
·
(
x̃
t −∇ω̃(Dx̃)

)
− C

t 1lCr,r′

(
x̃
t

)
+O(t−2),

where O(t−2) denotes a term with norm O(t−2) and we have used Lemma 5.3 in the second
line. Since R is supported away from the diagonal, we obtain by Lemma 4.2 and pseudo-
differential calculus that ‖M(t)〈R〉t‖ ∈ L1(R+, dt), where we recall that ∂tFt =: −iω̃(Dx̃)Ft +
〈R〉t. Lemma 4.2 also gives that supt ‖Ft‖ < ∞. The negative term in the r.h.s. of (5.7) is
controlled by Proposition 5.2. Applying Lemma A.1 we obtain the desired result.2

5.3. Existence of the intermediate limit.

Theorem 5.5. Let Ft, Ht be defined in (4.3). Then the limit

F+ = lim
t→+∞

eitω̃(Dx̃)HtFt exists.

Proof. All the norms and scalar products in this proof are in the sense of L2(R2d). We proceed
as in the proof of [DG97, Prop. 4.4.5]. Set first H(x̃) = h1(x1)h2(x2) and

M(t) = H

(
x̃

t

)
−
(
x̃

t
−∇ω̃(Dx̃)

)
· ∇H

(
x̃

t

)
.

By pseudo-differential calculus, we obtain that

(5.8)
DM(t) = 1

t

(
x̃
t −∇ω̃(Dx̃)

)
· ∇2H

(
x̃
t

)
·
(
x̃
t −∇ω̃(Dx̃)

)
+O(t−2),

‖M(t)〈R〉t‖, ‖M∗(t)〈R〉t‖ ∈ L1(R+, dt),

where in the second line we use that H is supported away from the diagonal. Note that the
following analog of Prop. 5.4 is well-known and easy to prove by mimicking the arguments in
[DG97, Prop. 4.4.3]:

(5.9)

∫ +∞

1

∥∥∥∥1lK
(
x̃

t

)(
x̃

t
−∇ω̃(Dx̃)

)
e−itω̃(Dx̃)u

∥∥∥∥
2
dt

t
≤ C‖u‖2, u ∈ L2(R2d),

for any K ⋐ R2d\{0}. Combining this estimate with the one in Prop. 5.4, we obtain by
Lemma A.3 that

lim
t→+∞

eitω̃(Dx̃)M(t)Ft exists.

Therefore the proposition follows if we show that

lim
t→∞

(
x̃

t
−∇ω̃(Dx̃)

)
· ∇H

(
x̃

t

)
Ft = 0,

or equivalently

(5.10) lim
t→+∞

(Ft|
(
x̃

t
−∇ω̃(Dx̃)

)
G̃

(
x̃

t

)(
x̃

t
−∇ω̃(Dx̃)

)
Ft)L2(R2d) = 0,

for G̃ = H̃1l, H̃ ∈ C∞
0 (R2d\D0) and H̃ ≥ 0. It suffices to prove that the limit in (5.10) exists,

since it will then be equal to 0 by Prop. 5.4. To this end, we apply Lemma A.2 with

M(t) =

(
x̃

t
−∇ω̃(Dx̃)

)
G̃

(
x̃

t

)(
x̃

t
−∇ω̃(Dx̃)

)
.
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ASYMPTOTIC COMPLETENESS OF TWO-PARTICLE SCATTERING 15

Again ‖M(t)〈R〉t‖, ‖M∗(t)〈R〉t‖ ∈ L1(R+, dt) and by pseudo-differential calculus we have:

DM(t) = − 2
t

(
x̃
t −∇ω̃(Dx̃)

)
G̃
(
x̃
t

) (
x̃
t −∇ω̃(Dx̃)

)

− 1
t

(
x̃
t −∇ω̃(Dx̃)

)
∇G̃

(
x̃
t

)
·
(
x̃
t −∇ω̃(Dx̃)

) (
x̃
t −∇ω̃(Dx̃)

)
+O(t−2)

= 1
t

(
x̃
t −∇ω̃(Dx̃)

)
1lK

(
x̃
t

)
A(t)1lK

(
x̃
t

) (
x̃
t −∇ω̃(Dx̃)

)
+O(t−2),

for a compact set K ⊂ R2d\D0 and A(t) ∈ O(1). Now the existence of the limit follows from
Prop. 5.4 and Lemma A.2. 2

6. Haag-Ruelle scattering theory

In this section we recall some basic facts concerning the Haag-Ruelle scattering theory.

6.1. Positive energy solutions of the Klein-Gordon equation.

Definition 6.1. Let f ∈ S(Rd), such that f̂ has compact support. The function

g(t, x) = gt(x) for gt = e−itω(Dx)f,

which solves (∂2
t −∆x)g +m2g = 0, will be called a positive energy KG solution.

Proposition 6.2. There hold the following facts:
(1) Let h ∈ C∞

0 (Rd). Then

s− lim
t→±∞

eitω(Dx)h
(x
t

)
e−itω(Dx) = h(∇ω(Dx)).

(2) Let χ1, χ2 ∈ C∞(Rd) be bounded with all derivatives and having disjoint supports. Let

f ∈ S(Rd) be s.t. f̂ has compact support. Then

‖χ1

(x
t

)
e−itω(Dx)χ2(∇ω(Dx))f‖L2(Rd) ∈ O(t−∞).

Proof. (1) is obvious. For (2) see [RS3]. 2

The following notion of velocity support will be useful later on.

Definition 6.3. Let ∆ ⋐ Hm. We set

Vel(∆) := {∇ω(p) : p ∈ R
d, (ω(p), p) ∈ ∆}.

Clearly if ∆1 and ∆2 are disjoint, then so are Vel(∆1) and Vel(∆2). If g is a positive energy KG

solution with initial data f , then suppĝ ⊂ Hm and Vel(suppĝ) = {∇ω(p) : p ∈ suppf̂} can be
called the velocity support of g, as illustrated by Prop. 6.2 (2).

6.2. Haag-Ruelle scattering theory. Let B ∈ L0 satisfy (2.8), i.e.,

−supp(B̂) ∩ SpU ⊂ Hm.

Let now g be a positive energy KG solution. The Haag-Ruelle creation operator is given by
{B∗

t (gt)}t∈R, that is,

B∗
t (gt) =

∫
g(t, x)B∗(t, x)dx.

Note that since e−itω(Dx) preserves S(Rd) the integral is well defined.

Lemma 6.4. The following properties hold:

(1) B∗
t (gt)Ω = B∗(f)Ω = (2π)d/2f̂(P )BΩ, if gt = e−itω(Dx)f .

(2) Let ∆ ⋐ R1+d, f ∈ L2(Rd). Then ‖B(∗)(f)1l∆(U)‖ ≤ c∆,B‖f‖L2(Rd).

(3) ∂tB
∗
t (gt) = Ḃ∗

t (gt) +B∗
t (ġt), where Ḃ = ∂sB(s, 0)|s=0 ∈ L0 and ġ = ∂tg is a positive energy

KG solution with the same velocity support as g.
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16 WOJCIECH DYBALSKI AND CHRISTIAN GÉRARD

Proof. We use the notation from Subsect. 3.2. We have

B∗
t (gt)Ω = (〈gt| ⊗ 1l) ◦ aB∗

t
Ω = (〈gt| ⊗ 1l) ◦ (1l⊗ eitH) ◦ aB∗Ω.

By (2.8) and (2.4) iii) we have aB∗Ω = (1l⊗ 1lHm
(U)) ◦ aB∗Ω, hence

(1l⊗ eitH) ◦ aB∗Ω = (1l⊗ eitω(P )) ◦ aB∗Ω.

From (3.8) we obtain that:

(6.1) (1l⊗ e−iy·P ) ◦ aB∗Ω = (eiy·Dx ⊗ 1l) ◦ aB∗Ω, y ∈ R
d,

which implies that

(1l⊗ eitω(P )) ◦ aB∗Ω = (eitω(Dx) ⊗ 1l) ◦ aB∗Ω,

using that ω(p) = ω(−p). Hence

B∗
t (gt)Ω = (〈gt| ⊗ 1l) ◦ (eitω(Dx) ⊗ 1l) ◦ aB∗Ω = (〈e−itω(Dx)gt| ⊗ 1l) ◦ aB∗Ω

= (〈f | ⊗ 1l) ◦ aB∗Ω = B∗(f)Ω.

The fact that B∗(f)Ω = (2π)d/2f̂(P )B∗Ω is immediate. Statement (2) follows from Lemma 3.4,
using (3.5) for B and (3.7) for B∗. In the case of B∗ we also use Lemma 3.2 (1) and the fact

that supp(B̂) is compact. (3) is a trivial computation. 2

The following result is a special case of the Haag-Ruelle theorem [Ha58, Ru62]. For the
reader’s convenience we give an elementary proof which combines ideas from [BF82, Ar99, Dy05]
and exploits the bound (2) in Lemma 6.4.

Theorem 6.5. Let B1, B2 ∈ L0 satisfy (2.8). Let g1, g2 be two positive energy KG solutions
with disjoint velocity supports. Then:
(1) There exists the two-particle scattering state given by

Ψ+ = lim
t→∞

B∗
1,t(g1,t)B

∗
2,t(g2,t)Ω.(6.2)

(2) The state Ψ+ depends only on the single-particle vectors Ψi = B∗
i,t(gi,t)Ω, and therefore we

can write Ψ+ = Ψ1

out
× Ψ2. Given two such vectors Ψ+ and Ψ̃+ one has:

(Ψ̃+|Ψ+) = (Ψ̃1|Ψ1)(Ψ̃2|Ψ2) + (Ψ̃1|Ψ2)(Ψ̃2|Ψ1),(6.3)

U(t, x)(Ψ1

out
× Ψ2) = (U(t, x)Ψ1)

out
× (U(t, x)Ψ2), (t, x) ∈ R

1+d.(6.4)

Before giving the proof of the theorem, let us explain how to obtain two-particle scatter-
ing states from arbitrary one-particle states, thereby defining the (outgoing) two-particle wave
operator. Let

Hm := 1lHm
(U)H,

be the space of one-particle states. For Ψ1,Ψ2 ∈ H we set

Ψ1⊗sΨ2 :=
1√
2
(Ψ1 ⊗Ψ2 +Ψ2 ⊗Ψ1) ∈ H ⊗s H.

Proposition 6.6. There exists a unique isometry

W+
2 : Hm ⊗s Hm → H

with the following properties:

(1) If Ψ1, Ψ2 are as in Thm. 6.5, then W+
2 (Ψ1⊗sΨ2) = Ψ1

out
× Ψ2,

(2) U(t, x) ◦W+
2 = W+

2 ◦ (Um(t, x)⊗Um(t, x)), (t, x) ∈ R1+d, where we denote by Um(t, x) the
restriction of U(t, x) to Hm.

Definition 6.7. (1) The map W+
2 : Hm⊗sHm → H is called the (outgoing) two-particle wave

operator.
(2) The range of W+

2 is denoted by H+
2 .
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ASYMPTOTIC COMPLETENESS OF TWO-PARTICLE SCATTERING 17

Proof of Prop. 6.6. Let us denote by F ⊂ Hm ⊗s Hm the subspace spanned by the vectors
Ψ1⊗sΨ2 for Ψ1, Ψ2 as in Thm. 6.5. By (6.3) there exists a unique isometry W+

2 : F → H such
that

W+
2 (Ψ1⊗sΨ2) = Ψ1

out
× Ψ2,

for all Ψ1, Ψ2 as in the theorem. Moreover by (6.4) U(t, x) ◦W+
2 = W+

2 ◦ (Um(t, x)⊗ Um(t, x)).
To complete the proof of the proposition it suffices to prove that the closure of F is Hm ⊗s Hm.

Denote by (H1, P1), resp. (H2, P2) the generators of the groups Um(t, x)⊗1l, resp. 1l⊗Um(t, x)

acting on Hm ⊗ Hm, and set (H̃, P̃ ) := ((H1, P1), (H2, P2)), whose joint spectral measure is
supported by Hm ×Hm.

By Lemma 6.4 (1) and the cyclicity of the vacuum, the set of vectors B∗
t (gt)Ω, for B ∈ L0

satisfying (2.8) and g a positive energy KG solution, is dense in Hm. Moreover for ∆ ⋐ Hm, the
set of such vectors with g having the velocity support included in Vel(∆) is dense in 1l∆(U)Hm.
It follows from these density properties that the closure of F in Hm ⊗s Hm equals

Fcl = Θs ◦ 1l(Hm×Hm)\D(H̃, P̃ )(Hm ⊗Hm),

where Θs : Hm ⊗ Hm → Hm ⊗s Hm is the orthogonal projection, and D ⊂ Hm × Hm is the
diagonal. From [BF82, Prop. 2.2] we know that the spectral measure of the restriction of (H,P )
to Hm is absolutely continuous w.r.t. the Lorentz invariant measure on Hm. This implies that
1lD(H̃, P̃ ) = 0, which completes the proof of the proposition. 2

Proof of Thm. 6.5. Let us first prove (1). Let B1, B2, g1, g2 satisfy the hypotheses of the theorem.
We claim that

(6.5) [B
(∗)
1,t (g1,t), B

(∗)
2,t (g2,t)] ∈ O(t−∞).

In fact by Prop. 6.2 (2) we can find cutoff functions χ1, χ2 ∈ C∞
0 (Rd) with disjoint supports

such that

gi,t = χi

(x
t

)
gi,t +O(t−∞) in L2(Rd).

Setting χi,t(x) = χi(
x
t ), this implies by Lemma 6.4 (2) that:

[B
(∗)
1,t (g1,t), B

(∗)
2,t (g2,t)] = [B

(∗)
1,t (χ1,tg1,t), B

(∗)
2,t (χ2,tg2,t)] +O(t−∞).

By the almost locality of B
(∗)
1 , B

(∗)
2 we obtain from (3.4) and the Cauchy-Schwarz inequality that

the commutator in the r.h.s. is bounded by

CN‖χ1,tgN(Dx)χ2,t‖HS‖g1,t‖L2(Rd)‖g2,t‖L2(Rd) ∈ O(t−∞),

which proves (6.5). (Cf. the proof of Lemma 3.10). Now we get that

∂t(B
∗
1,t(g1,t))B2,t(g2,t))Ω = [∂tB

∗
1,t(g1,t), B

∗
2,t(g2,t)]Ω ∈ O(t−∞),

where we made use of Lemma 6.4 (1) and applied (6.5) to Bi,gi, Ḃi and ġi. This proves (1) by
the Cook argument.

Let now B ∈ L0, satisfying (2.8), and ∆ = −supp(B̂)∩ SpU ⊂ Hm. We fix O ⊂ R1+d, which

is an arbitrarily small neighborhood of ∆, and a function h ∈ S(R1+d) with suppĥ ⊂ O and

ĥ = (2π)−(d+1)/2 on ∆. Setting C∗ =
∫
B∗(t, x)h(t, x)dtdx we have: C ∈ L0 and:

Ĉ∗(E, p) = (2π)(d+1)/2ĥ(E, p)B̂∗(E, p), C∗Ω = (2π)(d+1)/2ĥ(H,P )B∗Ω.

This implies that −supp(Ĉ) ⊂ O, and

(6.6)
B∗

t (gt)Ω = (2π)d/2f̂(P )B∗Ω = (2π)d/2f̂(P )1l∆(U)B∗Ω

= (2π)d/2f̂(P )(2π)(d+1)/2ĥ(H,P )B∗Ω = (2π)d/2f̂(P )C∗Ω = C∗
t (gt)Ω.

Introducing observables Ci as above for Bi and using also (6.5) and Lemma 6.4 (2) we obtain
that

(6.7) Ψ+ = lim
t→∞

B∗
1,t(g1,t)B

∗
2,t(g2,t)Ω = lim

t→∞
C∗

1,t(g1,t)C
∗
2,t(g2,t)Ω.
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18 WOJCIECH DYBALSKI AND CHRISTIAN GÉRARD

Thus we can assume that the energy-momentum transfers of B∗
i entering in the construction

of scattering states are localized in arbitrarily small neighborhoods of subsets of Hm. This
observation will be important in the proof of (2) to which we now proceed.

Let Ψ̃t = B̃∗
1,t(g̃1,t)B̃

∗
2,t(g̃2,t)Ω be the approximants of the scattering state Ψ̃+. In order to

compute the scalar product (Ψ̃t|Ψt) we first observe that

[[B̃1,t(g̃1,t), B
∗
1,t(g1,t)], B

∗
2,t(g2,t)] ∈ O(t−∞).(6.8)

This relation can be justified by writing g̃1 = g̃1,1 + g̃1,2, where g̃1,i are positive energy KG
solutions such that the velocity support of g̃1,i and gi are disjoint for i = 1, 2. Then (6.8) follows
from (6.5) and the Jacobi identity. Next we note that

B̃i,t(g̃i,t)B
∗
j,t(gj,t)Ω = Ω(Ω|B̃i,t(g̃i,t)B

∗
j,t(gj,t)Ω), 1 ≤ i, j ≤ 2.(6.9)

This relation follows from the fact that B̃i,t(g̃i,t)B
∗
j,t(gj,t)Ω belongs to the range of 1l−Kj+K̃i

(U),

where Kj and K̃i are the energy-momentum transfers of Bj and B̃i, respectively. In view of (6.7)

−Kj, −K̃i can be chosen in arbitrarily small neighbourhoods of Hm. Since a non-zero vector
which is a difference of two vectors from Hm is space-like, (6.9) follows.

We set for simplicity of notation Bi(t) := Bi,t(gi,t), B̃j(t) := B̃j,t(g̃j,t). Then

(6.10)

(Ψ̃t|Ψt) = (Ω|B̃2(t)B
∗
1 (t)B̃1(t)B

∗
2 (t)Ω)

+(Ω|B̃2(t)B
∗
2 (t)B̃1(t)B

∗
1 (t)Ω)

+(Ω B̃2(t)[[B̃1(t), B
∗
1 (t)], B

∗
2 (t)]Ω).

Making use of (6.8) and (6.9), we conclude the proof of (6.3). It follows immediately from (6.3)
that the scattering states Ψ+ depend only on the single-particle states Ψi (and not on a particular
choice of Bi and gi). Finally, relation (6.4) is an easy consequence of Lemma 6.4 (1). 2

7. Proof of Theorem 2.7

In the next proposition we will use the notation NB(h, t) introduced in (4.1) for B ∈ L0 and
h ∈ C∞

0 (Rd).

Proposition 7.1. Let i = 1, 2, ∆i ⋐ Hm with ∆1,∆2 disjoint and Bi ∈ L0 with supp(B̂1),

supp(B̂2) disjoint. Assume moreover that:

−supp(B̂i) ∩ SpU ⊂ ∆i,(7.1)

(∆i + supp(B̂i)) ∩ Sp(U) ⊂ {0}, i = 1, 2,(7.2)

(∆i + supp(B̂j)) ∩ Sp(U) = ∅, i 6= j.(7.3)

Let hi ∈ C∞
0 (Rd) with disjoint supports and hi ≡ 1 on Vel(∆i). Then for Ψi ∈ 1l∆i

(U)H one
has:

(7.4) lim
t→+∞

NB1
(h1, t)NB2

(h2, t)W
+
2 (Ψ1 ⊗s Ψ2) = W+

2 (NB1
(1l)Ψ1 ⊗s NB2

(1l)Ψ2).

Remark 7.2. Note that W+
2 (Ψ1⊗sΨ2) belongs to Hc(U), and that NBi

(1l)Ψi belong to 1l∆i
(U)H,

because of (7.1), (7.2), hence all the expressions appearing in (7.4) are well defined.

Proof. We first claim that for B,∆,Ψ, h as in the proposition one has:

(7.5) lim
t→+∞

NB(h, t)Ψ = NB(1l)Ψ.

In fact we first note that because of (7.1), (7.2) we have

(7.6) B∗B1l∆(U) = B∗|Ω〉〈Ω|B1l∆(U) = 1l∆(U)B∗B1l∆(U).
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ASYMPTOTIC COMPLETENESS OF TWO-PARTICLE SCATTERING 19

Therefore

NB(h, t)Ψ = eitHNB(ht)e
−itHΨ

= eitω(P )a∗B ◦ (1lH ⊗ ht) ◦ aBe−itω(P )Ψ

= a∗B ◦ eitω(P+Dx)(1lH ⊗ ht)e
−itω(P+Dx) ◦ aBΨ,

using (3.8). Since eitω(P+Dx)xe−itω(P+Dx) = x+ t∇ω(P +Dx), we have

eitω(P+Dx)(1lH ⊗ ht)e
−itω(P+Dx) = h

(x
t
+∇ω(P +Dx)

)
,

from which we easily deduce that

s− lim
t→+∞

eitω(P+Dx)(1lH ⊗ ht)e
−itω(P+Dx) = h(∇ω(P +Dx)).

Inserting as usual energy-momentum projections, this implies that

lim
t→+∞

NB(h, t)Ψ = a∗B ◦ h(∇ω(P +Dx)) ◦ aBΨ = a∗BaBh(∇ω(P ))Ψ,

using once again (3.8). From the support property of h we have h(∇ω(p)) = 1 for (ω(p), p) ∈ ∆,
hence h(∇ω(P ))Ψ = Ψ, which completes the proof of (7.5).

We now proceed to the proof of (7.4). Since NB1
(h1, t)NB2

(h2, t)1l∆1
(U) is uniformly bounded

in time for any ∆1 ⋐ R1+d, it suffices by density to assume that Ψi = A∗
i,t(gi,t)Ω for Ai ∈ L0

satisfying (2.8) and gi a positive energy KG solution with the velocity support included in
Vel(∆i), so that Ψi = 1l∆i

(U)Ψi. Let us fix such Ai, gi.
By (7.3) we have BiA

∗
jΩ = 0 if i 6= j, hence:

(7.7) NBi
(hi, t)A

∗
j,t(gj,t)Ω = 0, i 6= j.

Next we note that for i 6= j:

(7.8) ‖[NBi
(hi, t), A

∗
j,t(gj,t)]‖ ∈ O(t−∞).

In fact since the support of hi and the velocity support of gj are disjoint, we can pick a smooth
partition of unity 1 = χi(x) +χj(x) with χi ≡ 0 near the velocity support of gj and χj ≡ 0 near
the support of hi. We have then by almost locality

‖[NBi
(hi, t), A

∗
j,t(gj,t)]‖ ≤

∫
‖[(B∗

i Bi)(t, x), A
∗
j (t, y)]‖|hi(

x
t )||gj(t, y)|dxdy

≤ CN

∫
〈x− y〉−N |hi(

x
t )||gj(t, y)|χj(

y
t )dxdy

+CN

∫
〈x− y〉−N |hi(

x
t )||gj(t, y)|χi(

y
t )dxdy.

The first integral is O(t−∞) because hi and χj have disjoint supports, the second is also O(t−∞)
using that suppχi is disjoint from the velocity support of gj and applying Prop. 6.2 (2). This
proves (7.8).

Finally since NBi
(1l)Ψi ∈ 1l∆i

(U)H, we can find for any 0 < ǫi ≪ 1 operators Ãi ∈ L0 and
positive energy solutions g̃i satisfying the same properties as Ai, gi such that

(7.9) ‖NBi
(1l)Ψi − Ã∗

i,t(g̃i,t)Ω‖ ≤ ǫi, i = 1, 2.

Using successively (7.8), (7.5) and (7.9), we obtain:

NB1
(h1, t)NB2

(h2, t)(Ψ1

out
× Ψ2) = NB1

(h1, t)NB2
(h2, t)A

∗
1,t(g1,t)A

∗
2,t(g2,t)Ω + o(t0)

= NB1
(h1, t)A

∗
1,t(g1,t)NB2

(h2, t)A
∗
2,t(g2,t)Ω + o(t0)

= NB1
(h1, t)A

∗
1,t(g1,t)NB2

(1l)Ψ2 + o(t0)

= NB1
(h1, t)A

∗
1,t(g1,t)Ã

∗
2,t(g̃2,t)Ω + o(t0) +O(t0)ǫ2.
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Using then (6.5), (7.8), (7.5), we have:

NB1
(h1, t)A

∗
1,t(g1,t)Ã

∗
2,t(g̃2,t)Ω = NB1

(h1, t)Ã
∗
2,t(g̃2,t)A

∗
1,t(g1,t)Ω + oǫ2(t

0)

= Ã∗
2,t(g̃2,t)NB1

(h1, t)A
∗
1,t(g1,t)Ω + oǫ2(t

0) = Ã∗
2,t(g̃2,t)NB1

(1l)Ψ1 + oǫ2(t
0)

= Ã∗
2,t(g̃2,t)Ã

∗
1,t(g̃1,t)Ω + oǫ2(t

0) +Oǫ2(t
0)ǫ1 = Ã∗

1,t(g̃1,t)Ã
∗
2,t(g̃2,t)Ω + oǫ1,ǫ2(t

0) +Oǫ2(t
0)ǫ1

= Ψ̃1

out
× Ψ̃2 + oǫ1,ǫ2(t

0) +Oǫ2(t
0)ǫ1,

for Ψ̃i = Ã∗
i,t(g̃i,t)Ω. By Prop. 6.6 (1) we have also

‖NB1
(1l)Ψ1

out
× NB2

(1l)Ψ2 − Ψ̃1

out
× Ψ̃2‖ ≤ C(ǫ1 + ǫ2).

We obtain finally

NB1
(h1, t)NB2

(h2, t)(Ψ1

out
× Ψ2)

= NB1
(1l)Ψ1

out
× NB2

(1l)Ψ2 + oǫ1,ǫ2(t
0) +O(ǫ1 + ǫ2) +Oǫ2(t

0)ǫ1.

Picking first ǫ2 ≪ 1, then ǫ1 ≪ 1 and then t ≫ 1, we obtain (7.4). 2

Lemma 7.3. Let ∆ ⊂ G2m be an open bounded set. Then

1l∆(U)H+
2 = Span{W+

2 (Ψ1 ⊗s Ψ2) : Ψi ∈ 1l∆i
(U)H, ∆i ⋐ Hm, ∆1 +∆2 ⊂ ∆, ∆1 ∩∆2 = ∅}cl.

Proof. The proof follows immediately from Prop. 6.6 (2) and the absolute continuity of the
spectral measure of (H,P ) restricted to Hm recalled in its proof. 2

Lemma 7.4. Let ∆ ⊂ G2m be an open bounded set s.t. (∆−∆)∩Sp U = {0}. Let ∆1,∆2 ⋐ Hm

be disjoint and such that ∆1 +∆2 ⊂ ∆. Then there exist O1, O2 ⊂ R1+d which are disjoint open
neighbourhoods of ∆1,∆2, respectively, such that for any K1,K2 ⋐ R1+d satisfying −Ki ⊂ Oi,
−Ki ∩ SpU ⊂ ∆i, one has:

(∆ +K1 +K2) ∩ SpU ⊂ {0},(7.10)

−(K1 +K2) ⊂ ∆,(7.11)

(∆i +Ki) ∩ SpU ⊂ {0},(7.12)

(∆i +Kj) ∩ SpU = ∅, i 6= j.(7.13)

Proof. Assume that Oi ⊂ ∆i +B(0, ε), where B(0, ε) is the ball of radius ε centered at zero. To
prove (7.10), we write

∆ +K1 +K2 ⊂ ∆−O1 −O2 ⊂ ∆−∆1 −∆2 +B(0, 2ε)

⊂ ∆−∆+B(0, 2ε).(7.14)

Since, by assumption, (∆−∆)∩SpU = {0} and 0 is isolated in SpU , we obtain that (∆−∆+
B(0, 2ε)) ∩ SpU = {0} for ε ≪ 1. As for (7.11), we obtain that

−(K1 +K2) ⊂ O1 +O2 ⊂ ∆1 +∆2 +B(0, 2ε) ⊂ ∆,(7.15)

for ε ≪ 1 using that ∆i are compact and ∆ is open. Finally we write:

∆i +Kj ⊂ Oi −Oj ⊂ ∆i −∆j +B(0, 2ǫ).(7.16)

We note that a difference of two vectors from Hm is either 0 or space-like. For ε ≪ 1 we obtain
(7.12) if i = j and (7.13) if i 6= j.2

Lemma 7.5. Let ∆ ⋐ Hm and O ⊂ R1+d be a sufficiently small neighbourhood of ∆. Then

1l∆(U)H = Span{NB(1l)1l∆(U)H : B ∈ L0, −supp(B̂) ⊂ O,−supp(B̂) ∩ SpU ⊂ ∆ }cl.
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ASYMPTOTIC COMPLETENESS OF TWO-PARTICLE SCATTERING 21

Proof. Arguing as in the proof of (7.12) we fix O sufficiently small such that for all B in the

lemma one has (∆ + supp(B̂)) ∩ SpU = {0}. Let now S be the subspace in the r.h.s. of the
equality stated in the lemma and let PS be the corresponding projection. By (7.6) we have
PS ≤ 1l∆(U). To complete the proof we adapt an argument from the proof of [DT11a, Thm. 3.5].
Assume that PS 6= 1l∆(U) and let Ψ 6= 0 with Ψ = 1l∆(U)Ψ, PSΨ = 0. Clearly there exists

f ∈ S(R1+d) such that suppf̂ ⊂ −O and f̂(−H,−P )Ψ 6= 0. By cyclicity of the vacuum there
exists A ∈ A(O), for some open bounded O ⊂ R1+d, such that:

0 6= (A∗Ω|f̂(−H,−P )Ψ) = (Ω|BΨ), for B := (2π)−
1+d
2

∫
f(t, x)A(t, x)dtdx.(7.17)

Since B̂(E, p) = f̂(E, p)Â(E, p) we see that B satisfies the conditions from the lemma, and
BΨ 6= 0. By the norm continuity of x 7→ B(x) this implies that (Ψ|NB(1l)Ψ) 6= 0 which
contradicts the fact that PSΨ = 0. 2

Proof of Thm. 2.7. In view of Thm. 2.6, it suffices to verify the inclusion

1l∆(U)H+
2 ⊂ Span{RanQ+

2,α(∆) : α ∈ J}cl.(7.18)

By Lemma 7.3, it is enough to show that for any ∆1,∆2 ⋐ Hm such that ∆1 + ∆2 ⊂ ∆ and
∆1 ∩∆2 = ∅ one has

W+
2 (1l∆1

(U)H⊗s 1l∆2
(U)H) ⊂ Span{RanQ+

2,α(∆) : α ∈ J}cl.(7.19)

Let O1, O2 ∈ R1+d be sufficiently small open neighbourhoods of ∆1,∆2, respectively, so that the

assertions of Lemma 7.4 hold. We choose B1, B2 ∈ L0, such that −supp(B̂i) ⊂ Oi, −supp(B̂i)∩
SpU ⊂ ∆i. By Lemma 7.4, B1, B2 are ∆−admissible in the sense of Definition 2.4 and satisfy
the assumptions of Prop. 7.1. Finally, we choose h1, h2 ∈ C∞

0 (Rd) as in Prop. 7.1.
Let J0 be the set of quadruples (B1, B2, h1, h2) as specified above. We get

Span{Q+
2,α(∆) ◦W+

2 (1l∆1
(U)H⊗s 1l∆2

(U)H) : α ∈ J0}
= Span{W+

2 (NB1
(1l)1l∆1

(U)H⊗s NB2
(1l)1l∆2

(U)H) : α ∈ J0}(7.20)

= W+
2 (1l∆1

(U)H⊗s 1l∆2
(U)H) .

In the first step we use Prop. 7.1 and in the second Lemma 7.5. Clearly, J0 ⊂ J , thus the
subspace on the l.h.s. of (7.20) is included in the subspace on the r.h.s. of (7.19). This concludes
the proof. 2

Appendix A. Propagation estimates for inhomogeneous evolution equations

In this section we extend standard results on propagation estimates and existence of limits
for unitary propagators to the case of an inhomogeneous evolution equation:

∂tu(t) = −iHu(t) + r(t).

Let H be a Hilbert space and H a self-adjoint operator on H. We fix a function

R
+ ∋ t 7→ u(t) ∈ H,

such that

(A.1)
i) supt≥0 ‖u(t)‖ < ∞,

ii) u(t) ∈ C1(R+,H) ∩ C0(R+,Dom H),

and set:

r(t) := ∂tu(t) + iHu(t).

For a map R+ ∋ t 7→ M(t) ∈ B(H) we denote by DM(t) = ∂tM(t) + [H, iM(t)] the Heisenberg
derivative of M(t), w.r.t. the evolution e−itH . We assume that [H, iM(t)], defined first as a
quadratic form on Dom H , extends by continuity to a bounded operator.

The following three lemmas can be proved by mimicking standard arguments, see e.g. [DG97,
Sect. B.4]. By Cj( · ), B( · ), B1( · ) we denote auxiliary functions from R+ to B(H).
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Lemma A.1. Let R+ ∋ t 7→ M(t) ∈ B(H) be such that:

i) supt∈R+ ‖M(t)‖ < ∞, ‖M(·)r(·)‖, ‖M∗(·)r(·)‖ ∈ L1(R+, dt),

ii) DM(t) ≥ B∗(t)B(t) −∑n
j=1 C

∗
j (t)Cj(t),

∫
R+ ‖Cj(t)u(t)‖2dt < ∞.

Then ∫ +∞

0

‖B(t)u(t)‖2dt < ∞.

Lemma A.2. Let R+ ∋ t 7→ M(t) ∈ B(H) be such that:

i) supt∈R+ ‖M(t)‖ < ∞, ‖M(·)r(·)‖, ‖M∗(·)r(·)‖ ∈ L1(R+, dt),

ii) |(u1|DM(t)u2)| ≤
∑n

j=1 ‖Cj(t)u1‖‖Cj(t)u2‖, u1, u2 ∈ H,

with
∫
R+ ‖Cj(t)u(t)‖2dt < ∞.

Then
lim

t→+∞
(u(t)|M(t)u(t)) exists.

Lemma A.3. Let R+ ∋ t 7→ M(t) ∈ B(H) be such that:

i) ‖M(·)r(·)‖ ∈ L1(R+, dt),

ii) |(u1|DM(t)u(t))| ≤ ‖B1(t)u1‖‖B(t)u(t)‖, with

iii)
∫
R+ ‖B(t)u(t)‖2dt < ∞,

∫
R+ ‖B1(t)e

−itHu1‖2dt ≤ C‖u1‖2, u1 ∈ H.

Then
lim

t→+∞
eitHM(t)u(t) exists.
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