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Stability analysis of sampled-data systems using Sum of

Squares
Alexandre Seuret and Matthew M. Peet

Abstract—This article proposes a new approach to stability analysis of

linear systems with sampled-data inputs or channels. The method, based

on a variation of the discrete-time Lyapunov approach, provides stability

conditions using functional variables subject to convex constraints. These

stability conditions can be solved using the sum of squares method-

ology with little or no conservatism in both the case of synchronous

and asynchronous sampling. Numerical examples are included to show

convergence.

Index Terms—Sampled-Data systems, Lyapunov function, Sum of

Squares.

I. INTRODUCTION

In recent years, much attention has been paid to Networked

Control Systems (NCS) (see [1], [2]). These systems contain several

distributed controllers and plants which are connected through a

communication network. In this model, the inputs to the plants are

updated as often as the network capacity allows (sampling times)

- ideally once per round-trip-time. In such applications, however, a

heavy transient load on the network or on a processor can change

the sampling period of the controller. To compensate for this effect,

the sampling period is sometimes explicitly included in the controller

design. However, this approach is problematic in that the sampling

period is difficult to predict and variation of this sampling period may

destabilize the closed-loop system. The result is that a significant

effort has been made to develop stability conditions for sampled-

data systems which are robust with respect to variations of sampling

period.

Sampled-data systems have been extensively studied in the litera-

ture [3]–[7] and the references therein. It is now possible to design

controllers which guarantee the robustness of the solutions of the

closed-loop system under periodic samplings. However in the case

of asynchronous sampling, there are still several open problems.

For example, consider the practical situation where the difference

between two successive sampling instants is not constant but time-

varying. Recently, several articles have addressed the problem of

time-varying periods based on a discrete-time approach, [8]–[10].

Recent papers have considered the modeling of continuous-time

systems with sampled-data control in the form of continuous-time

systems with delayed control input. In [4], a Lyapunov-Krasovskii

approach was introduced. Improvements were provided in [5], [11],

using the small gain theorem, and in [12], based on the analysis

of impulsive systems. These approaches dealt with time-varying

sampling periods as well as with uncertain systems (see [4] and

[12]). Despite much progress, however, all these conditions are

conservative. This means that the sufficient conditions obtained using
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continuous time approaches are not able to guarantee asymptotic

stability for certain stable systems. Recently several authors [13]–

[15] refined those approaches and obtained tighter conditions.

The key insight of this paper is that once we have developed

the discrete-continuous Lyapunov conditions sufficient for stability,

then these conditions can be verified computationally using recently

developed algorithms for the optimization of polynomial functions.

In particular, we use the tools developed in [16] to reformulate the

stability question as a convex optimization problem with polynomial

variables. We then use the software package SOSTOOLS [17] to

solve the optimization problem. As can be seen in the numerical

examples, the result is a sequence of stability tests of increasing

accuracy. Furthermore, in the numerical examples, the accuracy of

the stability test approaches the analytical limit exponentially fast as

the degree of the polynomial variables increases.

This article is based on a Lyapunov approach introduced in [18].

This previous result was based on the discrete-time Lyapunov theo-

rem and was expressed using a continuous-time model of sampled-

data systems. More precisely, this article analyzed the link between

the discrete-time Lyapunov theorem employed, for instance in [8]–

[10], and the continuous-time approach proposed in [4], [12], [13],

[15]. In previous work, asymptotic stability criteria can be found

for both synchronous and asynchronous samplings. Those criteria

were expressed in terms of linear matrix inequalities. The main

contribution of this paper is the use of sum of squares tools to

construct more sophisticated Lyapunov functions and consequently

prove larger upper-bounds for the maximum allowable sampling

period than bounds existing in the literature (based on the continuous-

time modeling).

This article is organized as follows. The next section formulates

the problem. Section III presents a theorem on exponential stability of

sampled-data systems expressed in terms of sum of squares. Section

IV provides some details on the implementation of the stability

conditions using SOSTOOLS. Some examples and simulations are

provided in Section V and show the efficiency of the method. Section

VI concludes the article.

Notation : Throughout the article, the sets N, R
+, R

n, R
n×n and

S
n denote respectively the set of natural numbers, nonnegative real

numbers, the set of n-dimensional real-valued vectors, the set of n×n

real valued matrices and the subspace of R
n×n of symmetric matrices.

The superscript ‘T ’ stands for the matrix transposition. The notation

P ≻ 0 for P ∈ S
n means that P is positive definite. The symbols

I and 0 represent the identity and the zero matrices of appropriate

dimension. For any matrix A ∈ R
n×n, the notation He(A) stands for

A + AT . We define a functional as any map whose domain includes

a function space.

II. PROBLEM FORMULATION

Consider the following sampled-data system

ẋ(t) = Ax(t)+Bu(tk) ∀t ∈ [tk, tk+1), (1)

where x ∈ R
n and u ∈ R

m represent the state and the input vectors.

Define the sampling times {tk}k∈N to be an increasing sequence of
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positive scalars such that
⋃

k∈N[tk, tk+1) = [0, + ∞). Suppose that

the sampling intervals, Tk, are bounded so that there exist positive

scalars Tmin ≤ Tmax such that

Tk := tk+1 − tk ∈ [Tmin, Tmax], ∀k ∈ N. (2)

The sequence {tk}k∈N represents the sampling instants of the con-

troller. The matrices A and B are constant, known, and of appropriate

dimension. The control law is chosen to be linear state feedback,

u = Kx (3)

with a gain K ∈ R
m×n. Then the closed-loop system is governed by

ẋ(t) = Ax(t)+BKx(tk) ∀t ∈ [tk, tk+1). (4)

The differential equation (4) with the control law (3) can be integrated

over a sampling period. If we define the function

Γ(s) =

[

eAs +

∫ s

0
eA(s−θ)dθBK

]

∀s ∈ [0, Tmax],

we have the following discrete-time system

x(tk+1) = Γ(Tk)x(tk), (5)

where x(t) = Γ(t − tk)x(tk) for t ∈ [tk, tk+1).
Notation: Taking a cue from time-delay systems theory, we denote

the segment of solution on t ∈ [tk, tk+1) by xT k, so that

xT k(s) = Γ(s)x(tk) ∀s ∈ [0,Tk).

We use K n to denote the space of continuous maps from

[0, Tmax] → R
n, where recall Tmax is the upper-bound on the Tk.

This function-based model for sampled-data systems was introduced

in [19].

If Tk is constant, the discrete dynamics become x(tk+1) =
Γ(T )x(tk), where T is the sampling period. A simple method to check

stability of the system is to ensure that Γ(T ) has all eigenvalues

inside the unit circle. If Tk is time-varying, then it is not sufficient

to verify that Γ(Tk) has all eigenvalues inside the unit circle for all

Tk ∈ [Tmin, Tmax] to prove stability. However, it is still possible to

apply the Lyapunov Theorem for discrete-time systems, i.e. find a

positive definite matrix P such that ΓT (Tk)PΓ(Tk)− P ≺ 0 for all

Tk ∈ [Tmin, Tmax]. This is an infinite dimensional problem in that

we must perform an eigenvalue test at an infinite number of points.

It is well-known that verifying such infinite-dimensional stability

conditions can prove difficult. If the system contains uncertainty

in system parameters such as the sampling period, the difficulty

increases. Nonetheless, several authors have successfully investigated

this approach to stability analysis [8], [9], [20].

Noting that sampled-data systems are a special case of time-

delay systems with time-varying delay, many authors treat sampled-

data systems in a manner similar to time-delay systems and use

similar approaches to the question of stability. For example, sufficient

conditions for stability of sampled-data systems were derived in [4]

by analyzing stability of a class of systems with time-varying delay.

However, these results were somewhat conservative in that they did

not account for the unique structure of the variation in delay in a

sampled-data system. In [12], the authors introduce a new type of

Lyapunov-Krasovskii functional which depends more explicitly on

the delay function. In particular, they use the fact the derivative of

the delay function representing the effect of the sampling is equal to

1 almost everywhere in their formulation. This led to improvement

in the accuracy of the stability conditions. In the present article ,

we take a different approach which does not model the hold as a

delay, but rather uses a new type of sampled-data Lyapunov Theorem

introduced in [18] and inspired by [16]. The conditions are enforced

using sum of squares optimization.

III. STABILITY OF SAMPLED-DATA SYSTEMS

A. Main Theorem

In this section we introduce a new Lyapunov theorem which applies

to general linear sampled-data systems. This theorem accounts for the

interaction between the continuous and discrete states of a sampled-

data system. A version of this result was introduced in [18] and

was partially inspired by the concept of spacing functions introduced

in [16]. Essentially, the theorem says that if there exists a Lyapunov

function which has a net decrease over every sampling interval, then

there exists a storage function which is continuously decreasing for

all time. We assume global existence and continuity of solutions.

Theorem 1: [18] For given positive scalars α , 0 < Tmin ≤ Tmax,

suppose V : R
n → R

+ satisfies the following for 0 < µ1 < µ2

µ1|x|
2 ≤V (x) ≤ µ2|x|

2
, for all x ∈ R

n
. (6)

Assume that the sampling interval, Tk, satisfies (2), then the following

two statements are equivalent.

(i) There exists a positive constant ε , such that for all solutions

x of (4), and for all k ≥ 0,

V (x(tk+1))− e−2αTkV (x(tk)) < −ε|x(tk)|
2
.

(ii) There exist a positive constant δ , continuous functionals

Qk : R×K n →R, differentiable over [tk tk+1] which satisfy,

for all k ≥ 0 and for all z ∈ K n

Qk(Tk,z(·)) = e−2αTk Qk(0,z(·)), (7)

and such that for all solutions of system (4), and for all

t ∈ [tk, tk+1]

d
dt [V (x(t))+Qk(t − tk,xT k)]

+2αV (x(t))+2αQk(t − tk,xT k) < −δ‖xT k‖.
(8)

where ‖xT k‖ = maxτ∈[0, Tmax] |xT k(τ)|.

Moreover, if either of these statements is satisfied, then system (4)

is exponentially stable about the origin with a guaranteed decay rate

α .

Proof: The proof of this theorem can be found in [18].

There are several articles in the literature which use related

approaches (see for instance [12], [13]). Typically, these results are

derived from a Lyapunov-Krasovskii-type theorem which requires

positive definiteness of the functional. In the above result, positivity

is relaxed through the use of the spacing functional Q.

The following sections show how the conditions of Theorem 1

can be enforced using sum of squares optimization for exponential

stability in both the synchronous and asynchronous case. This is

similar to the approach taken in [16].

B. Stability under asynchronous sampling

The case of asynchronous sampling, where Tk is unknown but

bounded in some range, is clearly more realistic than the synchronous

case in a networked control scenario.

ẋ(t) = Ax(t)+BKx(tk), for t ∈ [tk, tk +Tk), k ≥ 0, (9)

where Tk, for all k ≥ 0 is a time-varying positive parameter in

[Tmin,Tmax]. The following theorem gives conditions for stability. The

conditions of the theorem can be enforced using sum of squares, as

will be described shortly.

Theorem 2: Consider System (4). For given α > 0 and 0 <

Tmin < Tmax < ∞, if there exist P ∈ S
n, positive definite and a bi-

polynomial matrix M : [0, Tmax]× [Tmin, Tmax] → S
2n such that for
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all T ∈ [Tmin, Tmax],

P ≻ 0,

[

In

In

]T

M(0,T )

[

In

In

]

= 0, M(T,T ) = 0, (10)

and such that for all τ ∈ [0, T ] and for all T ∈ [Tmin, Tmax], the

following inequality holds

Ψα (τ,T ) ≺ 0,

where

Ψα (τ,T ) = Ψ(τ,T )+2α

[

0

In

]

P

[

0

In

]T

+2αM(τ,T )

Ψ(τ,T ) = He





[

0

In

]

P

[

(BK)T

AT

]T




+He

(

M(τ,T )

[

0 0

BK A

])

+ ∂
∂τ

M(τ,T )

(11)

Then if Tk ∈ [Tmin, Tmax] for all k ≥ 0, the closed loop system is

exponentially stable about the origin with the guaranteed decay rate

α . Moreover the condition

ΓT (T )PΓ(T )− e−2αT P ≺ 0

is satisfied for all T ∈ [Tmin, Tmax]

Proof: Let k be a positive integer and Tk ∈ [Tmin, Tmax]. Consider

the classical quadratic Lyapunov function for linear continuous-time

systems. Define V : R
n → R

+ as V (x) = xT Px, where P ≻ 0 is in S.

This function V satisfies condition (6) from Theorem 1. Now define

the following function for all τ ∈ [0, Tk] and z ∈ K n

Q(τ,Tk,z) =

[

z(0)

z(τ)

]T

M(τ,Tk)

[

z(0)

z(τ)

]

.

First, from (10), we note that

Q(0,Tk,z) =

[

z(0)

z(0)

]T

M(0,Tk)

[

z(0)

z(0)

]

= z(0)T

[

In

In

]T

M(0,Tk)

[

In

In

]

z(0)

= 0.

Furthermore,

Q(Tk,Tk,z) =

[

z(0)

z(T )

]T

M(Tk,Tk)

[

z(0)

z(T )

]

= 0.

Therefore, we have Q(Tk,Tk,z) = Q(0,Tk,z) = 0 and hence condition

(7) is satisfied.

Computing the derivative term (8), we get

d
dt [V (x(t))+Q(t − tk,Tk,xT k)]

= ẋT (t)Px(t)+ x(t)T Pẋ(t)

+ d
dt





[

xT k(0)

xT k(t − tk)

]T

M(t − tk,Tk)

[

xT k(0)

xT k(t − tk)

]





= xT (t)Pẋ(t)+ ẋT (t)Px(t)

+2

[

0

ẋ(t)

]T

M(t − tk,Tk)

[

x(tk)

x(t)

]

+

[

x(tk)

x(t)

]T

d
dt M(t − tk,Tk)

[

x(tk)

x(t)

]

.

Recalling that ẋ(t) = Ax(t)+BKx(tk), we get

d
dt [V (x(t))+Q(t − tk,Tk,xT k)]

= 2

[

x(tk)

x(t)

]T ([

0

In

]

P
[

BK A
]

)[

x(tk)

x(t)

]

+2

[

x(tk)

x(t)

]T [

0 0

BK A

]T

M(t − tk,Tk)

[

x(tk)

x(t)

]

+

[

x(tk)

x(t)

]T

Ṁ(t − tk,Tk)

[

x(tk)

x(t)

]

=

[

x(tk)

x(t)

]T

Ψ(t − tk,Tk)

[

x(tk)

x(t)

]

,

for all t ∈ [tk, tk + Tk). Introducing the matrix Ψα in the previous

equality yields

d
dt [V (x(t))+Q(t − tk,Tk,xT k)]

+2α [V (x(t))+Q(t − tk,Tk,xT k)]

=

[

x(tk)

x(t)

]T

Ψα (t − tk,Tk)

[

x(tk)

x(t)

] (12)

Thus if there exists a solution of inequality (11), it implies that the

left hand side of the previous equality is strictly negative definite.

Then integrating this inequality yields, for all t ∈ [tk, tk +T )

V (x(t))+Q(t − tk,Tk,xT k) < e−2α(t−tk)V (x(tk)).

In particular, taking t = tk +T = tk+1, we get

V (x(tk+1)) < e−2αTkV (x(tk)).

This ensures exponential stability of the discrete-time system for the

constant sampling period T . Finally Theorem 1 allows us to conclude

the proof.

We emphasize that Theorem 2 only guarantees exponential stability

of the solutions of system (9) for any asynchronous sampling which

belongs to the interval [Tmin, Tmax]. If Tmin = Tmax = T , the conditions

of Theorem 2 address the problem of exponential stability under

constant sampling period T .

If α is chosen equal to zero, then the conditions of Theorem 2

concerns now the problem of asymptotic stability under asynchronous

samplings characterized by Tmin and Tmax.

As mentioned in the introduction, the case of asymptotic stability

of sampled-data systems with a constant sampling period can also

be verified numerically by checking if the eigenvalues of the matrix

Γ(T ) lie within the unit circle. However, this method fails if the

system matrices (A,B) are uncertain. For example, if matrices (A,B)
lie in a polytope, it is difficult to investigate the eigenvalues of

the matrix Γ(T ). By contrast, in Theorem 2, the stability condition

depends linearly on the matrices A and B. Therefore, it is relatively

simple to extend the previous results to the case of systems with

polytopic uncertainty. This is a significant advantage of the proposed

methodology.

Another remark concerns the choice of the functional Q introduced

in Theorem 2. Note that, in (12) in the proof of Theorem 2,

the condition Ψα (τ,T ) < 0, for all τ in [0, T ] and for all T ∈
[Tmin, Tmax], is equivalent to the negativity of the derivative of the

function V (x(t))+Q(t−tk,xT k). The stability condition Ψα (τ,T ) < 0

is equivalent to the negativity of the derivative of the function

V (x(t))+Q(t−tk,Tk,xT k). This is not the case in [13] or [18]. Indeed,

in these articles, the authors introduce an integral term of the form

Q̃(t − tk,Tk,xKT ) = (tk+1 − t)

∫ t

tk

ẋT (s)Rẋ(s)ds,
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so that V + Q + Q̃. Although this term has an important role in

reducing the conservatism of the stability conditions in [13] and [18],

it unavoidably leads to the use of the Jensen’s inequality [21] to

compute an upper bound of the derivative of V + Q + Q̃. It is

well known that the Jensen’s inequality introduces conservatism

in the stability conditions [22]. In the present paper, this term is

unnecessary, yielding an exact condition for the derivative of V +Q.

This implies that the stability conditions from Theorem 2 should be

less conservative than the ones from [13] or [18]. The conservatism

of the previous Theorem 2 only depends on the degree, N, of the

polynomial matrix M.

IV. SUM OF SQUARES AS ALGORITHMIC TOOL

The conditions associated with Theorem 2 require us to find a

matrix P and a function M(τ) which satisfy linear matrix inequality

conditions at an infinite number of values of τ . To test these condi-

tions we must use algorithms for the optimization of functions subject

to positivity/negativity constraints. One such algorithm is based on

the sum of squares (SOS) decomposition of positive polynomials.

To apply this methodology we assume that M is polynomial, can be

approximated by a polynomial, or there is a change of coordinates

that renders it polynomial.

Denote by R[y] the ring of polynomials in y = (y1, . . . ,yn) with

real coefficients. Denote by Σs the cone of polynomials that admit

a SOS decomposition, i.e., those p ∈ R[y] for which there exist hi ∈
R[y], i = 1, . . . ,M so that

p(y) =
M

∑
i=1

h2
i (y).

If p ∈ Σs, then clearly p(y) ≥ 0 for all y. The converse is not always

true, although the converse does hold for univariate matrix-valued

polynomials. The advantage of SOS is that while the problem of

testing if p(y) ≥ 0 is known to be NP-hard, testing if p(y) ∈ Σs is

an SDP, [23], and hence is worst-case polynomial-time. The SDPs

related to SOS can be formulated and solved efficiently the Matlab

toolbox SOSTOOLS [17], which interfaces with semidefinite solvers

such as SeDuMi [24].

Consider now the conditions in Theorem 2. These can be expressed

as L1(0) = L2(T ) = 0 with positivity condition

L3(s) ≥ 0, s ∈ S . (13)

where L1, L2 and L3 are linear functions of M and P and S =
[0,T ]. The equality constraints and global positivity can be easily

implemented using SOSTOOLS. However, because we only desire

positivity on an interval, global positivity may be overly restrictive.

To eliminate this conservatism we represent S = [0,T ] as a semial-

gebraic set:

S = {s ∈ R | gi(s) ≥ 0, i = 1, . . . ,M},

where gi(s) are polynomial functions. For S = [0,T ], we use

g1(s,T ) = −(T − s)s. In order to test condition (13), we apply

S-procedure-style results which allow us to test positivity on a

semialgebraic set using SOS. Specifically, condition (13) holds if

there exists SOS polynomials Pi ∈ Σs, subject to the constraint

L3(s)+
M

∑
i=1

gi(s)Pi(s,y) = P0(s).

Intuitively, the above condition guarantees that when s ∈ S , we

have L(s) ≤ −∑M
i=1 gi(s)pi(s,y) ≤ 0 since gi ≥ 0 and pi ≥ 0, and

therefore L(s) ≤ 0 for those s. While these conditions are relatively

simple, they can, in fact, be made non-conservative through the use

of Positivstellensatz results [25].

Theorems Tmax for Ex.1 Tmax for Ex.2

[4] 0.869 0.99
[12] 1.113 1.99
[13] 1.695 2.03
[14] 1.695 2.53
[18] 1.723 2.62

Th.2 N = 1 0.701 2.310

Th.2 N = 3 1.729 3.218

Th.2 N = 5 1.729 3.269

TABLE I: Maximum allowable sampling period Tmax for examples

1, 2, with Tmin = 10−6.

Theorems for Ex.3 T = Tmin = Tmax ∈ [T̄min, T̄max]

[18] [0.201, 1.623]
Th.2 N = 1 ∅

Th.2 N = 3 [0.2007, 2.016]
⋃

[2.606, 3.055]
Th.2 N = 5 [0.2007, 2.020]

⋃

[2.470, 3.694]

TABLE II: Interval of allowable constant sampling period T for

example 3 and α = 10−6.

a) Application to Theorem 2: For Theorem 2, M(s,T ) is a

function of two variables s and T , where T ∈ [Tmin, Tmax] and

s ∈ [0,T ]. To describe the relevant semialgebraic set we use

g1(s,T ) = −(T − s)s and g2(T ) = −(Tmax −T )(T −Tmin).

Given these gi, we apply the same procedure as for Theorem 2.

V. NUMERICAL EXAMPLES

To illustrate the methodology, we consider control of system (1)

with controller u(t) = Kx(t) using a network connection where u(t)
is updated at times tk where tk+1 − tk = Tk for all k = 1,2, · · · ,∞.

• Example 1 from [4], [12]:

A =

[

0 1

0 −0.1

]

,BK =

[

0 0

−0.375 −1.15

]

,

• Example 2 from [13]:

A =

[

−2 0

0 −0.9

]

,BK =

[

−1 0

−1 −1

]

,

• and Example 3 from [21], [26]:

A =

[

0 1

−2 0.1

]

,BK =

[

0 0

1 0

]

.

Tables I, II and III summarize the results obtained in the literature

and using the theorems provided in the present paper for examples

1,2 and 3. One can see that the obtained results are less conservative

then existing ones.

In Figures 1, 2 and 3, we use our algorithm to examine the effect

of samplings on the decay rate of the system based on the conditions

from Theorem 2 applied to synchronous samplings, asynchronous

samplings with Tmin = 0 and Tmin = 0.9Tmax (6= 0), respectively.

Our result shows that for synchronous samplings, the use of an

Theorems for Ex.3 [Tmin, Tmax]

[18] [0.400, 1.251]
Th.2 N = 1 ∅

Th.2 N = 3 [0.4, 1.820] or [2.680, 3.005]
Th.2 N = 5 [0.4, 1.828] or [2.520, 3.550]

TABLE III: Interval of allowable asynchronous samplings of the form

[Tmin, Tmax] for example 3 and α = 10−6.
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Fig. 1: Bound on Decay Rate vs. Synchronous Sampling Period,

Tmin = Tmax for Example 2 with N = 3.
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Fig. 2: Bound on Decay Rate vs. Asynchronous Sampling Period,

Tmax and Tmin = 0 for Example 2 with N = 3.
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Fig. 3: Bound on Decay Rate vs. Asynchronous Sampling Period,

Tmax and Tmin = 0.9Tmax for Example 2 with N = 3

appropriate sampling period can increase the convergence rate of the

same system with a continuous-time controller. This behavior can also

be appreciated when one considers asynchronous samplings whose

lower bound is strictly greater than 0 as it is shown in Figure 2.

Another important remark deals with Example 3. This system is

well known in the time-delay literature because the delay has a

stabilizing effect. This means that its solutions are not stable for

sufficiently small delay but become stable for sufficiently large delay.

The method proposed in this article is able to take into account this

phenomena and is also able to isolate several intervals of possible

values for the length of the sampling interval where the system

is stable for asynchronous and synchronous sampling. Figure 4

illustrates the intervals of stability and exponential decay rate for

synchronous sampling.

Note that our analysis of Example 3 indicates that Theorem 2 (with

N = 5) can be used to prove stability for asynchronous sampling in

[0.4, 1.828] OR [2.520, 3.550], but not over both simultaneously.

This means that stability is not guaranteed if the sampling switches

from one interval to the other. This recalls the classical behavior

of switched systems: A system which switches between two stable

subsystems is not necessarily stable.
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Fig. 4: Bound on Decay Rate vs. Synchronous Sampling Period, T

for Example 3 with N = 3

VI. CONCLUSION

In this article, a novel analysis of continuous linear systems

under asynchronous sampling is provided. This approach is based

on the discrete-time Lyapunov Theorem applied to the continuous-

time model of the sampled-data systems. Numerical results compare

favorably with results in the literature. Perhaps the most important

feature of the method presented in this paper is that it is expressed

using the sum-of-squares framework and is thus easily extended to

nonlinear systems and systems with parametric uncertainty.
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