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Abstract The paper is devoted to the study of uncertainties when studying buildings

under seismic loading. These uncertainties are related to the simplifications used when

constructing the model (model uncertainties) and to the numerical data needed at the

computation stage (data uncertainties). It has been shown in previous papers that

nonparametric models are able, in the case of linear dynamics, to deal simultaneously

with these two kinds of uncertainties. The paper presents an extension of this kind

of model by taking into account a ”mixed” approach for concrete frame structures,

which uses a nonparametric model for the part of the structure which behaves linearly

and a parametric approach for the parts of the structure (plastic hinges) which behave

non-linearly. A numerical application is presented in the case of a residential building.

Keywords Probabilistic model · earthquake reliability · nonlinear dynamics · inelastic
material

1 Introduction

The estimation of the response of existing buildings when submitted to seismic loads

led to the use of pseudo-static methods and of fully non-linear dynamic formulations.

In this last case, a mechanical model of the building has to be constructed to predict its

transient nonlinear dynamical response. However, the position of the parts of the struc-

ture needing a nonlinear modelling is usually known, because it involves plastic hinges

which are known from the engineer. For instance, in the case of a building with a rein-

forced concrete frame structure, the nonlinearities are related to the inelastic behaviour

of the material at the ends of the beams and columns [4,10]. The complexity level of a
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real building is so high that modelling approximations are necessarily introduced, which

yield a model built by the engineer called thereafter ”simplified nonlinear mechanical

model”. Such a model can be improved by taking into account all the uncertainties

through reliability analyses (see for instance [6,11] ) and by considering that the simpli-

fied model is the ”mean model” in the probabilistic sense. The sources of uncertainties

are related to the data of the model (for instance, the mechanical parameters of the

inelastic constitutive equations) and to the model approximations introduced when

constructing the simplified nonlinear mechanichal model (for instance, suppression of

”non-significant” structural elements). These uncertainties are very significant in the

case of existing buildings due to the lack of data concerning the original design and the

historical evolution of the mechanical properties of the materials (concrete damage,

corrosion...).

In this paper, a residential building is considered for applying the proposed method-

ology. A simplified nonlinear mechanical model is built by using the finite element

method. In this model, the reinforced concrete frame structure of the building is meshed

and secondary parts are represented by their masses. The Takeda nonlinear model [18]

is used to describe the inelastic constitutive equations of the material at the ends of

the beams and columns of the frame structure. These inelastic constitutive equations

are mainly relevant for lateral loads as induced by horizontal ground accelerations. A

local-to-global approach [1] is used to compute the parameters of the inelastic con-

stitutive equations at the macroscopic scale. Other parts of the structure is assumed

to be made up of a linear viscoelastic medium. Then, a reduced nonlinear model is

built by using the eigenvectors of the associated undamped linearized model and a

stochastic model is developed to take into account the uncertainties by modelling (1)

the parameters of the inelastic constitutive equations as random variables (parametric

approach) and (2) the generalized mass, stiffness and damping matrices as random

matrices (nonparametric approach). The probabilistic model of these random variables

and random matrices are built by using the information theory (see for instance [7–9,

13,14,16]). According to this theory, the entropy of a random system is a functional

of the probability density function related to the uncertain physical parameters. The

information theory states that each probability density function must be chosen as the

one which maximises the entropy of the system with the constrains to comply with all

known informations (mean values, standard deviations, etc). Thus, we present a mixed

nonparametric-parametric probabilistic approach for modelling the uncertainties of a

nonlinear dynamical system. Such a formulation has already been proposed for instance

in [2,15]) in the case of geometric nonlinearities. In this paper, we propose to develop

such a formulation for structures where nonlinearities are related to the elastoplastic

behaviour of constitutive materials.

2 Description of the structure and of the seismic motion

The methodology developed in this paper is applied to a relatively simple existing res-

idential building (see Fig.1). The building under consideration is a reinforced concrete

frame structure. The strength of the structure is mainly due to the columns whose

sections are between 15cmx15cm and 50cmx15cm. It is assumed that the floor and

the roof are made up of a linear homogeneous isotropic material and that the frames

(beams and columns) are made up of an inelastic heterogenous anisotropic material.
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Let (O,X,Y,Z) be an orthogonal reference frame such that (O,X,Y) is the horizontal

plane of the structure. The structure is submitted to a seismic loading that induces

a ground acceleration along direction X and for which the time history is shown in

Fig. 2-a. The modulus of the Fourier transform of the acceleration is shown in Fig. 2-b.

It can be seen that the accelerogram belongs to the frequency band B1 = [0, 50]Hz.

(a)  X
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Fig. 1 Residential building under consideration (Fig. a), columns distribution (Fig. b) and a
typical outline (Fig. c)

3 Constitutive equations for the material which behaves inelastically

As explained in the introduction, the inelastic behaviour of the material at the ends

of the beams and columns of the reinforced concrete frame structure is strongly rel-

evant for lateral loads induced by horizontal accelerations. Such a behaviour induces

localized plastic hinges. The Takeda nonlinear model [18] is used to describe the inelas-

tic constitutive equations within the hinges. The Takeda nonlinear model for a beam

is completely defined by a trilinear moment-curvature curve, representing the elastic

undamaged, damaged and post yielding stages [18]. This trilinear moment-curvature

curve is defined by 6 mechanical parameters (see Fig. 3-a): the curvature and moment
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Fig. 2 Accelerogram of the seismic signal (Fig. a) and modulus of the Fourier transform of
the seismic signal (Fig. b)
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Fig. 3 (a) Takeda characteristic trilinear moment-curvature curve - (b) Moment-curvature
curve under cyclic loading using Takeda nonlinear model

at the beginning of the damaged state, c1 and m1, the yielding curvature and moment

c2 and m2 and the collapse curvature and moment c3 and m3. All these parameters

are such that 0 < c1 ≤ c2 ≤ c3 and 0 < m1 ≤ m2 ≤ m3. In addition, the following

equations hold

m1 = E0 Ic1 , (1)

m2 = m1 + E1 I(c2 − c1) , (2)

m3 = m2 + E2 I(c3 − c2) , (3)

where E0, E1, E2 are the elastic, cracked and plastic stiffness moduli and I is the

moment of inertia of the cross section of the beam ( underlined characters are used

to avoid confusion with other notations within the paper). In addition, the hysteretic

phenomena are controlled by 3 parameters: h1 for the reduction of Young’s modulus

during cyclic loading, h2 for the pinching effect and h3 for the strength degradation

under cyclic loading (see Fig. 3-b).
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Fig. 4 The finite element mesh of the simplified nonlinear mechanical model

4 Nonlinear mechanical model

For such a structure, the simplified nonlinear mechanical model (see section 1) is built

by using the finite element method (see for instance [19]) for the reinforced concrete

frame structure. The finite element mesh used thereafter is shown in Fig. 3. It is made

of 436 beam and plate elements and comprises 2006 degrees of freedom. Let [M ], [D]

and [K] be the finite element mass, damping and stiffness matrices of the reinforced

concrete frame structure. At time t > 0, the vector of the N degrees of freedom related

to the finite element mesh of the structure is denoted by u(t) and belongs to RN . We

then have, for t > 0

[M ] ü(t) + [D] u̇(t) + [K]u(t) = − [M ] üs(t)− gNL({u(τ)}0≤τ≤t, t;w) , (4)

with the initial conditions

u(0) = u̇(0) = üs(0) = 0 , (5)

where a dot means the derivative with respect to time t and us(t) is the vector of

the constrained degrees of freedom at the foundation points of the structure mesh-

ing. Stiffness matrix [K] takes into account the linear part of the elastoplastic model

(modulus E0 shown in Fig. 3-a). Matrices [M ] , [D] , [K] define the low strain ”linear

model” used thereafter to build a basis of eigenvectors. The vector of the ”equivalent

nonlinear forces” gNL represents the effect of the inelastic constitutive equations of

the material at the ends of the beams and columns of the reinforced concrete frame

structure. The vector w = (c1,m1, c2,m2, c3,m3, h1, h2, h3) includes all parameters

of the Takeda nonlinear model. It should be noted that the vector of the ”nonlinear

forces” gNL depends of the parameters of the Takeda model (components of vector w)

and of the history {u(τ)}0≤τ≤t of u.

5 Modal formulation of the nonlinear model : the reduced nonlinear model

The formulation of the previous section has shown that taking into account the non-

linear behaviour of the plastic hinges leads to solve a system of nonlinear equations.
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From another point of view, the nonparametric model is built from the reduced dy-

namic model of the structures built on the linear modes. A modal formulation of the

nonlinear model, built on the modes related to the associated linear model is therefore

presented in this section. Let λ1 ≤ . . . ≤ λN be the N eigenvalues which are solutions of

the generalized eigenvalue problem: find ϕ ∈ RN and λ > 0 such that [K]ϕ = λ [M ]ϕ.

Let {ϕ1, . . . ,ϕN} be the N eigenvectors associated with eigenvalues λ1 ≤ . . . ≤ λN .

Then, the vector u(t) can be rewritten as u(t) =
∑N

α=1 qα(t)ϕα where qα(t) are the

generalized coordinates of vector u(t) within the basis of eigenvectors ϕα. The reduced

nonlinear model is built with the approximation u(t) ≃ un(t) in which

un(t) =

n∑
α=1

qα(t)ϕα , (6)

where n is the order of the reduced modal expansion which is chosen such that n < N .

This last equation is rewritten as

un(t) = [Φn] q
n(t) , (7)

where the n×N modal matrix [Φn] is such that [Φn]α j = {ϕα}j and where the vector

qn(t) is such that {qn(t)}α = qα(t). Equations (4) and (5) yield

[M] q̈n(t)+[D] q̇n(t)+[K]qn(t) = − [M] q̈n
s (t)−[Φn]

T gNL({[Φn]q
n(τ)}0≤τ≤t, t;w) ,

(8)

qn(0) = q̇n(0) = q̈n
s (0) = 0 , (9)

where [M], [D] and [K] are the generalized mass, damping and stiffness matrices defined

as

[M] = [Φn]
T [M ] [Φn] , [D] = [Φn]

T [D] [Φn] , [K] = [Φn]
T [K] [Φn] , (10)

and where qn
s = [M]−1 [Φn]

T [M ] us(t). The second term in the right hand side of

Eq. (8) represents the ” equivalent nonlinear forces” due to the nonlinearities induced

by the inelastic behaviour of materials (see section 3). It should be noted that the

nonlinear forces are located at the ends of the beams and columns within the frame

structure. It is noteworthy that strong nonlinear deformations do appear within these

parts of the structure and that a projection onto the low frequency eigenvectors only is

not sufficient to represent accurately such a deformation. Then, it is necessary to use a

basis which also contains higher frequencies eigenvectors that allow local displacements

to be accurately represented even if they are out of the frequency content of the signal

related to seismic loading. Thus, a higher number of eigenvectors may be necessary to

build the reduced nonlinear model.

For any given symmetric positive-definite matrices [M], [D], [K] and any given

vector w, Eqs. (8) and (9) are solved by using an implicit Newmark scheme. For each

time step of the Newmark scheme, the nonlinear equations are solved with a Newton

algorithm. Then, using Eq. (7), approximation t 7→ un(t) can be built. Consequently, we

can define a mapping fn such that for any values of [M], [D], [K] and w, displacement

un(t) is given by

un(t) = fn(t; [M], [D], [K],w) . (11)

ha
l-0

07
50

18
3,

 v
er

si
on

 1
 - 

14
 N

ov
 2

01
2



7

6 Stochastic model

6.1 Mixed nonparametric-parametric probabilistic formulation of the uncertainties

This chapter is devoted to the presentation of the probabilistic approach which is used

to account for the uncertainties involved during the process of studying the behaviour

of buildings under seismic loading. From a general point of view, the designer prepares

a ”nominal model” which is the best approximation which takes into account the

main features of the structure under study : geometry, structural elements, physical

properties, etc, as defined within the previous sections. When a probabilistic approach

is used, this ”nominal model” can be considered as a ”mean model” (in the probabilistic

sense), within a probabilistic model whose objective is to take into account uncertainties

related to the geometry, the physical parameters,etc.

(A) Nominal model

Simplification of the structure : → Mean model

keeping main structural elements,

beam and plates simplification

use of mean beam and plate thickness

mean physical properties

(B) Alea on parameters

Random physical properties, → Parametric model

Dispersion on thickness,...

(C) Alea on the model

Random stiffness, damping → NonParametric model

and mass matrices

Coupling induced between

dynamical modes

Alea on nonlinear properties (B) + on model and linear properties (C)

Randomness on all parts of the model → Mixed model

Table 1 : Comparison of the different kinds of modelling

Table 1 presents different probabilistic approaches which account for the scattering

of variables around the ”mean model”. For the usual probabilistic approach or so-called

”parametric probabilistic approach”, only uncertainties related to the physical param-

eters (mechanical strength, geometrical properties of the structural elements, etc) are

taken into account, while for a ”nonparametric probabilistic approach”, it is possible to

take into account, within a global approach and in the dynamic case, the uncertainties

related to the model and to the physical parameters. The ”model uncertainties” come

from the necessary simplifications involved during the process of modelling : suppression

of ”non significant” structural elements, discretization procedures, simplified structural

elements (beams, plates, etc). As shown in previous works, one of the consequences of

these model uncertainties leads to the coupling of the modes which are estimated from

the ”mean model”. The ”nonparametric” method is therefore well suited to deal with

structures or parts of the structures which behave linearly. The present work combines

the parametric and nonparametric approaches to recover the advantages of both meth-

ods : uncertainties related to the linear part of the dynamical system are modeled by
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a ”nonparametric” probabilistic approach and uncertainties related to the nonlinear

part of the dynamical system are modeled by a ”parametric” probabilistic approach.

The approach thus developed is called ”mixed probabilistic formulation”, to recall both

components of the method. In the following, both ”nonparametric” and ”parametric”

probabilistic formulations are presented.

6.2 Nonparametric probabilistic formulation

Entering into more details, the nonparametric probabilistic approach (see for instance(

[13-15]) consists in substituting in Eq. (11) the matrices [M], [D], [K] by random

matrices [M], [D], [K]. Usually, these random matrices are full as shown in [16]. In

the following, it will be assumed that only uncertainties affecting the eigenfrequencies

around the frequency content of the excitation signal are relevant for the dynamic com-

putation of the structure. Let ϕ1, . . . ,ϕnd , be the eigenvectors whose eigenfrequencies

are relevant for the dynamic computation. Then, matrices [M], [D], [K] can be rewritten

as :

[M] =

[
[Mnd ] 0

0 [Mnqs ]

]
, [D] =

[
[Dnd ] 0

0 [Dnqs ]

]
, [K] =

[
[Knd ] 0

0 [Knqs ]

]
, (12)

where [Mnd ], [Dnd ] and [Knd ] are positive diagonal (nd × nd) matrices and where

[Mnqs ], [Dnqs ] and [Knqs ] are positive diagonal (nqs × nqs) matrices such that nqs =

n− nd.

In the present paper, the nonparametric probabilistic model for the model uncer-

tainties yields random matrices [M], [D], [K] defined as

[M] =

[
[Mnd ] 0

0 [Mnqs ]

]
, [D] =

[
[Dnd ] 0

0 [Dnqs ]

]
, [K] =

[
[Knd ] 0

0 [Knqs ]

]
, (13)

where [Mnd ], [Dnd ] and [Knd ] are random full matrices whose probabilistic model

is built in [16] by using the information theory. In other words, it means that the

probability density functions which appear in the model maximize the entropy under

the constraint to comply to the available information. This information is defined as

follows :

(1) [Mnd ], [Dnd ], [Knd ] are second order random variables with values in the set M+

of all the (nd × nd) real symmetric positive-definite matrices;

(2) the mean values of these random matrices are E{[Mnd ]} = [Mnd ], E{[Dnd ]} =

[Dnd ], E{[Knd ]} = [Knd ];

(3) the Frobenius norm of inverse matrices [Mnd ]
−1, [Dnd ]

−1, [Knd ]
−1 are second-

order random variables.

The nonparametric probabilistic model of such random matrices is presented [16]

and briefly recalled in Appendix A. It should be noticed that the statistical fluctuation

of random matrices [M], [D], [K] in this probabilistic model are only controlled by

three dispersion coefficients δM, δD and δK (see also Appendix A). This low number

of parameters accounting for the dispersion is one of the advantages of the method.

ha
l-0

07
50

18
3,

 v
er

si
on

 1
 - 

14
 N

ov
 2

01
2



9

6.3 Parametric probabilistic formulation of the uncertainties for the parameters of the

inelastic constitutive equation

The parametric probabilistic approach consists in substituting in Eq. (11) the de-

terministic vector w = (c1,m1, c2,m2, c3,m3, h1, h2, h3) which contains the physical

parameters defining the non-linear behaviour of plastic hinges by a random vector

W = (C1,M1, C2,M2, C3,M3,H1, H2, H3) in which C1,M1, C2,M2, C3,M3 are sta-

tistically dependent R-valued random variables such that, as deduced from Eqs (1) to

(3),

M1 = E0 IC1 , M2 = M1+E1 I(C2−C1) , M3 = M2+E2 I(C3−C2) , (14)

0 < C1 ≤ C2 ≤ C3 , 0 ≤ H1 ≤ 1 , 0 ≤ H2 ≤ 1 , 0 < H3 (15)

In addition, the mean values and the standard deviations of C1, C2, C3, H1, H2, H3 are

assumed to be given and they are denoted by c1, c2, c3, h1, h2, h3 (for the mean values)

and σC1
, σC2

, σC3
, σH1

, σH2
, σH3

(for the standard deviations). The construction of the

probabilistic model of these random variables is presented in [5] using the information

theory and is briefly recalled in Appendix B.

6.4 Random response spectrum

The solution of the stochastic model is a RN -valued stochastic field {Un(t) : t ∈
[0, T ]} such that

Un(t) = fn(t; [M], [D], [K],W) (16)

It means that at each realization of W, [M], [D], [K] is associated a realization of

Un(t). Let Sj(ξ, ω) be the random normalized acceleration response spectrum of the

stochastic transient response {Un}j of the jth degree of freedom in which the damping

ratio ξ ∈ [0, 1] and the eigenfrequency ω belongs to the frequency band of analysis

[ωmin, ωmax]. We then have, for any given damping ratio ξ and radial frequency ω

Sj(ξ, ω) =
ω2

g
max

t∈[0,T ]
|Xj(t)| (17)

where g is a normalization constant and Xj(t) is the R-valued stochastic field indexed

by [0, T ] such that

Ẍj(t) + 2ξωẊj(t) + ω2Xj(t) = −{Ün(t)}j , t ∈ [0, T ], (18)

Xj(0) = Ẋj(0) = 0. (19)

The stochastic solver used to estimate the confidence region of Sj(ξ, ω) is based on the

Monte Carlo method and is presented in Appendix C.
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Fig. 5 Convergence analysis of the reduced matrix model. Graph of the mapping n 7→
Conv1(n). Horizontal axis: dimension n of the reduced model. Vertical axis: Conv1(n)

7 Application and numerical results

7.1 Parameters of the stochastic model for the application

In this section, the results related to an application concerning the building defined in

section 2 are presented. For this application, it is necessary to precise all parameters

defining the probabilistic model : mean values and dispersion parameters in the case

of the parametric part of the model(parameters related to the nonlinear behaviour),

dispersion parameters in the case of the nonparametric part of the model (dispersion

parameters on stiffness, damping and mass matrices). The application is performed

hereafter with δM = δD = δK = 0.15 for the nonparametric probabilistic formulation

and c1 = 0.0018m−1, m1 = 10.5×103N.m, c2 = 0.0123m−1, m2 = 22×103N.m, c3 =

0.1225m−1, m3 = 24.5 × 103N.m, h1 = 0.3, h2 = 0.8, h3 = 50 and the standard

deviation σC1
= 9×10−5m−1, σC2

= 5×10−3m−1, σC3
= 6.13×10−3m−1, σH1

= 0.06,

σH2
= 0.23, σH3

= 5 for the parametric probabilistic formulation.

7.1.1 Convergence analysis with respect to the number of modes n

The convergence analysis of the nonlinear reduced model with respect to the parameter

n is carried out by using the mapping n 7→ Conv1(n) that is defined as

Conv1(n) =

∫ T

0

∥ t(un(t)) ∥2 dt (20)

where t(un(t)) is the vector of the shear forces due to the displacement un(t) =

fn(t; [M], [D], [K],w). Figure 5 shows the graph of mapping n 7→ Conv1(n). It can be

deduced that the reduced nonlinear model is converged with n = 1400 as shown by the

plateau which can be seen in this figure. This number is high when compared with the

number of eigenfrequenies belonging to the frequency band of analysis B1 = [0, 50]Hz

which is nB1
= 5. This high value of n was discussed in section 5. Figures 6 and 7 allow

the solutions of the nonlinear model by time-step computation (i.e solving Eqs. (4 for

the whole structure) and (5)) and of the reduced nonlinear model (i.e solving Eqs. (8)

ha
l-0

07
50

18
3,

 v
er

si
on

 1
 - 

14
 N

ov
 2

01
2



11

0 0.5 1 1.5 2 2.5 3
−8

−6

−4

−2

0

2

4

6

8
x 10

−3

Time (s)

T
op

 d
is

pl
ac

em
en

t (
m

)

2.3 2.4 2.5 2.6 2.7 2.8

−6

−4

−2

0

2

4

x 10
−3

Time (s)

T
op

 d
is

pl
ac

em
en

t (
m

)

Fig. 6 Comparison between the time-step solution and the reduced modal solution. Graphs
of the jAth degree of freedom t 7→ {u(t)}jA (solid lines) and t 7→ {un(t)}jA (dashed lines).
Horizontal axis: time t ∈ [0, 3] s (left) and time t ∈ [2.3, 2.8] s (right). Vertical axis : {u(t)}jA
(solid lines) and {un(t)}jA (dashed lines) in m

−8 −6 −4 −2 0 2 4 6 8

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

5

Top displacement  (m)

S
he

ar
 e

ffo
rt

 (
N

)

1 2 3 4 5 6 7

x 10
−3

−2

−1

0

1

2

3

4

5

6

7

8

9
x 10

4

Top displacement  (m)

S
he

ar
 e

ffo
rt

 (
N

)

Fig. 7 Comparison between the time-step solution and the reduced modal solution. Graphs of
the time evolution of the shear force {t}jA with respect to the displacements {u(t)}jA (solid
lines) and {un(t)}jA (dashed lines). Horizontal axis: displacement {u(t)}jA and {un(t)}jA
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and (9) and using Eq. (7)) to be compared. Figures 6 show the graphs of t 7→ {u(t)}jA
(solid lines) and t 7→ {un(t)}jA (dashed lines) representing the displacement along

direction X of the node A. Figures 7 show the time evolution of the shear forces

{t(u(t))}jA and {t(un(t))}jA at node A with respect to the displacement {u(t)}jA
(solid lines) and {un(t)}jA (dashed lines). It should be noted that, for node A and

n = 1400, there is a good matching for displacements and shear forces obtained from

the modal response and from the finite element computation taking into account all

the structure and discretized time history.

7.2 Confidence region of Sj(ξ, ω)

In order to buildthe confidence regions associated with a probability level Pc = 95% of

the random normalized response spectrum, we choose nd = nB2
where nB2

= 27 is the

number of eigenfrequencies that belong to the frequency band B2 = [0, 100]Hz. The

stochastic solver used for this construction is based on the Monte Carlo method with

ns = 300 statistical independant realizations of SjAk
(ξ, ω) related to the displacement
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Fig. 8 Uncertainties quantification of the building for a linear stochastic approach (left) and a
stochastic nonlinear approach (right). Horizontal axis: frequency in Hz. Vertical axis: confidence
region of random acceleration spectrum SjAk

(ξ, ω) with the probability level Pc = Pc = 95%

for the nodes Ak with k = 1, . . . , 4 in the column P13 (see fig. 1).

of node Ak along direction X (see Fig. 1b) and whose coordinates are (xk, yk, zk) with

xk = −6.93m, yk = 6.3m and zk ∈ [0, 2.36]m.

The confidence regions of Sj(ξ, ω) for j = jA1
, jA2

, jA3
, jA4

, where z1 = 0.29 m,

z2 = 0.58 m, z3 = 0.98 m and z4 = 2.36 m, are shown in Fig. 8 (right) for the solution of

the nonlinear model. It can be seen that for the frequency band [0, 10]Hz, the widthes

of the confidence regions are nearly constant and similar for every node Ak. It means

that the uncertainties levels related to the random acceleration response spectrum

SjAk
(ξ, ω) do not depend of frequency ω and of coordinate zk of node Ak. On the other

hand, the width of the confidence region in the frequency band [10, 100]Hz increases

with frequency ω and decreases with coordinate zk. It means that the uncertainties

levels increase with ω in frequency band [10, 100]Hz and decrease with coordinate zk.

Thus, the most important uncertainties levels are reached for nodes close to the base

of columns where plastic hinges are located. These plastic hinges support the most

important plastic strain.

The confidence regions of Sj(ξ, ω) for j = jA1
, jA2

, jA3
, jA4

, jA5
are shown in Fig. 8

(left) for the linear case, i.e. with gNL = 0 (stochastic linearized reduced model). It

can be seen that the widthes of the confidence regions are similar for all nodes Ak

and for all ω in the frequency band of analysis. It means that the uncertainties levels

are equivalent for all nodes Ak and are nearly frequency independent in the frequency

range [0, 10]Hz.

8 Conclusions

A mixed nonparametric-parametric probabilistic model for the uncertainties in a struc-

ture made up of inelastic materials has been presented. The nonparametric formulation

allows the model uncertainties due to approximations in the construction of the sim-

plified nonlinear model to be taken into account. The parametric formulation allows

uncertainties related to the parameters of the inelastic materials to be taken into ac-

count. It should be noted that such a probablistic model does not allow to take into

account uncertainties related to the seismic loads, physical nonlinearities other than

those already accounted for, geometrical nonlinearities, etc. In addition, the main dif-

ficulty for using such a probabilistic model comes from the choice of the value of the
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dispersion parameters δM , δD, δK . In other engineering fields, these parameters can be

identified from experimental data by solving a stochastic inverse problem (see for in-

stance [3,17]). Unfortunately, such experimental data are difficult to obtain in seismic

engineering. In this case, these parameters must be chosen from expert appraisement.

The parametric probabilistic model has been developed and presented in the paper us-

ing the information theory. The method developed in the paper allows the confidence

regions of the random normalized acceleration response spectrum to be estimated by

using a stochastic solver based on the Monte Carlo method. An example of one-storey

building has been studied and it has been shown that material nonlinearities increase

the uncertainties levels of the random normalized acceleration response spectrum when

compared to the stochastic dynamical linear model, especially for frequencies higher

than 10 Hz and for nodes located close to the base of the columns. Within the class of

uncertainties taken into account by this probabilistic model, it appears that the non-

linear mean model is robust (no increase dispersion with frequency) up to frequencies

around 20Hz which is the practical upper band for frequency range in seismic engineer-

ing. In addition, the dispersion of sprectra would appear of second order compared to

uncertainties associated with seismic excitations.

A. Probabilistic model of random matrices for the nonparametric proba-

bilistic formulation of the model uncertainties

In this appendix, we present the construction of the probabilistic model of the random matrices
involved by the nonparametric probabilistic formulation of the model uncertainties. It has been
shown in [16] that the probabilistic model of random matrices [Mnd ], [Dnd ] and [Knd ] can
be constructed using the information theory with the available information (see section 6.2)
yielding

[Mnd ] = [LM]T [GM][LM] , [Dnd ] = [LD]T [GD][LD] , [Knd ] = [LK]T [GK][LK] .

in which the (nd×nd) upper triangular matrices [LM], [LD], [LK] correspond to the Cholesky
factorizations [Mnd ] = [LM]T [LM], [Dnd ] = [LD]T [LD], [Knd ] = [LK]T [LK] and where
[GM], [GD], [GK] are random matrices for which the probability density functions p[GM],
p[GD], p[GK] are such that

p[GM]([G]) = IM+ ([G]) c(δM) (det[G])b(δM) exp{−a(δM)tr[G]} ,

p[GD]([G]) = IM+ ([G]) c(δD) (det[G])b(δD) exp{−a(δD)tr[G]} ,

p[GK]([G]) = IM+ ([G]) c(δK) (det[G])b(δK) exp{−a(δK)tr[G]} ,

where IM+ ([G]) is equal to 1 if [G] belongs to M+ and is equal to zero if [G] does not belong
to M+, tr[G] is the trace of matrix [G], a(δ) = (nd + 1)/(2δ2), b(δ) = a(δ) × (1− δ2), c(δ) =

(2π)−nd(nd−1)/4a(δ)nd a(δ)/
∏n+1

j=1 Γ (αj(δ)) in which αj(δ) = a(δ)+ (1− j)/2 and where Γ is

the Gamma function.
Then, it has then shown in [16] that random matrices [GM], [GD], [GK] can be written

as
[GM] = [LM]T [LM] , [GD] = [LD]T [LD] , [GK] = [LK]T [LK] ,

where [LM], [LD] and [LK] are random upper triangular (nd × nd) real matrix such that

(1) for j < j′, [LM]jj′ , [LD]jj′ and [LK]jj′ are real-valued Gaussian random variables

with zero mean and variance equal to σM = δM /
√
nd + 1, σD = δD /

√
nd + 1 and σK =

δK /
√
nd + 1;
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(2) for j = j′, [LM]jj′ , [LD]jj′ and [LK]jj′ are positive-valued random variables written as

[LM]jj′ = σM

√
2VM,j , [LD]jj′ = σD

√
2VD,j where VM,j , VD,j and VK,j are positive-

valued Gamma random variables whose probability density function pVM,j
, pVD,j

, pVK,j
are

written as

pVM,j
(v) = IR+ (v)

vαj(δM) e−v

Γ (αj(δM)
, pVD,j

(v) = IR+ (v)
vαj(δD) e−v

Γ (αj(δD)
, pVK,j

(v) = IR+ (v)
vαj(δK) e−v

Γ (αj(δK)
.

Then, ns statistical independent realizations of random matrices [Mnd ], [Dnd ] and [Knd ] are
constructed such that

[Mnd (θ1)] = [LM]T [GM(θ1)] [LM] , . . . , [Mnd (θns)] = [LM]T [GM(θns )] [LM]

[Dnd (θ1)] = [LD]T [GD(θ1)] [LD] , . . . , [Dnd (θns )] = [LD]T [GD(θns )] [LD]

[Knd (θ1)] = [LK]T [GK(θ1)] [LK] , . . . , [Knd (θns )] = [LK]T [GK(θns )] [LK]

B.Probabilistic model of the random vector for parametric formulation of

uncertainties

related to the inelastic constitutive equations

In order to satisfy the first inequality in Eq. (15), random variables C1 and C2 are rewritten
as

C2 = AC1 , C3 = ABC1 , (21)

where A and B are two random variables with values in [1, +∞[ for which the mean values are
A = c2/c1 and B = c3/c2 and for which the standard deviations σA and σB are such as (see
[5]) σ2

A = (σ2
C2

+c22)/(σ
2
C1

+c21)−(c2/c1)2 and σ2
B = (σ2

C3
+c23)/(σ

2
C2

+c22)−(c3/c2)2. It should

be noted that σA and σB are defined only if inequalities σC3/c3 > σC2/c2 > σC1/c1 hold.
Let pC1 , pA, pB , pH1 , pH2 and pH3 be the probability density functions of random variables
C1, A,B,H1, H2 and H3. It has been shown in [5] that

pC1 (x) = p1(x; c1, σC1 , 0) , pA(x) = p1(x;A, σA, 1) , pB(x) = p1(x;B, σB , 1) (22)

pH1 (x) = p2(x;h1, σH1 ) , pH2 (x) = p2(x;h2, σH2 ) , pH3 (x) = p1(x;h3, σH3 , 0) (23)

in which

p1(x;X,σ, a) = I[a,+∞[(x) e
−

∑3
k=1{L1(X,σ,a)}k xk−1

(24)

p2(x;X,σ) = I[0,1](x) e−
∑3

k=1{L2(X,σ)}k xk−1
(25)

where ID(x) is the indicator function of a given subset D ⊂ R and

L1(X,σ, a) = arg min
L∈R3

H1(L;X,σ, a) , L2(X,σ) = arg min
L∈R3

H2(L;X,σ) (26)

in which

H1(L;X,σ, a) = {L}1 + {L}2 X + {L}3 (σ2 +X2) +

∫ +∞

a
e−

∑3
k=1{L}k xk−1

dx (27)

H2(L;X,σ) = {L}1 + {L}2X + {L}3 (σ2 +X2) +

∫ 1

0
e−

∑3
k=1{L}k xk−1

dx (28)
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C. Stochastic solver for the estimation of the confidence region of Sj(ξ, ω)

The confidence region associated with a probability level Pc is constructed using quantiles
(see for instance [12]). The method is briefly recalled. Let FSj(ξ,ω)(sj ; ξ, ω) = P{Sj(ξ, ω) ≤
sj} be the cumulative distribution function of the random variable Sj(ξ, ω). For p ∈]0, 1[,
the pth quantile of FSj(ξ,ω) is defined as ζ(p) = inf{sj : FSj(ξ,ω)(sj ; ξ, ω) ≥ p}. Then,

the upper envelope s+j and the lower envelope s−j of the confidence interval are defined by

s+j = ζ((1 + Pc)/2) and s−j = ζ((1 − Pc)/2). Let s1j = Sj(ξ, ω; θ1), . . . , s
ns
j = Sj(ξ, ω; θns ) be

ns independent realizations of Sj(ξ, ω). Let s̃1j = Sj(ξ, ω; θ1) ≤ . . . ≤ s̃ns
j = Sj(ξ, ω; θns ) be

the order statistics associated with s1j , . . . , s
ns
j . Therefore, we have the following estimation:

s+j = s̃k
+

j with k+ = int(ns(1 + Pc)/2) and s−j = s̃k
−

j with k− = int(ns(1 − Pc)/2) in which

int(z) is the integer part of the real number z.
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