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Abstract Optimization by simulation of agricultural practices can help to improve irrigation
water use efficiency. This work introduces an efficient hierarchical decomposition method
to design irrigation management strategies that is modelled as a continuous stochastic prob-
lem. Various combinations of selection (greedy, Pareto-based), division (middle, pivot, max-
imization) and evaluation techniques (global, standard deviation) were tested. We present
results of an 8-continuous-parameter irrigation strategies design. Two criteria were chosen
to evaluate the different combinations: the achieved direct margin, and the number of simu-
lation runs that were needed to reach it. Selection techniques impacted the resolution time,
while the evaluation techniques impacted the direct marginefficiency. Based on the two for-
mer criteria, the trade-off combination of greedy selection, pivot partition and average value
evaluation appeared to be the most efficient to design irrigation strategies.

Keywords Simulation optimization· crop model· irrigation management

1 Introduction

According to the FAO, one of the most important challenges for the agriculture in the
decades to come is to increase agricultural production to feed the increasing world popu-
lation. Much of this increase has to come from an intensive and scientifically-based agri-
culture, supported by irrigation (FAO (2002)). However, inmany countries, water resources
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are already very heavily exploited (Smith (2000)). Where irrigated agriculture is developed,
water used for irrigation can represent more than 90% of the water consumption. Thus we
investigate the possibility of increasing the agriculturalproduction by increasing the effi-
ciency of irrigation water use without increasing the quantity of water used.

Agricultural practices have been modelled for some time using decision rules (Papy
(2000), Aubry et al (1998), Shaffer and Brodahl (1998)). Such modeling allows uncertain
events such as weather to modify planned technical action onthe biophysical system in an
adaptive way. For example, the weather influences the sowingdate. This type of modeling
aims at representing the farmer’s behavior: actions are decided with regard to both con-
straints and goals, and are in addition modified depending oncontext and local conditions.
MODERATO (Bergez et al (2001a)) has been developed using such a modeling framework.
The cultural operations are decided with elementary conditional rules. These rules involve
condition parameters such as cumulative thermal units, water deficit or irrigation amounts.
Its purpose is to evaluate current irrigation strategies for corn and to propose improved
strategies.

To optimize management strategies, two main approaches canbe applied: either control-
based optimization or simulation-based optimization (Bergez et al (2006)). The former ap-
proach was used with MODERATO, by testing stochastic dynamic programming and rein-
forcement learning methods for identifying optimal decision rules (Bergez et al (2001b)). In-
put variables to the optimization problem were the condition parameter of the decision rules.
It gave poor results due to the complexity of the problem and the large variable space to op-
timize. Thesimulation-based optimizationapproach deals with large continuous parameters
problems andinvolves explicit techniques to handle withuncertainty. Various methods have
been introduced and developed in this field. Reviews from Andradóttir (1998),Ólafsson and
Kim (2002) or Fu et al (2005) provide a clear insight of this diversity: gradient-based proce-
dures, stochastic approximation, sample path optimization, response surface methodology,
ranking & selection, and a few branching approaches dealingwith continuous or discrete
input variable problems. These methods include stochasticsearch techniques moving from
a current best solution to the next, or deterministic searchtechniques relying on an approxi-
mation of either the response or the objective function.

Among them, a few branching procedures have been introducedin which the feasible
region is iteratively broken down before separating promising subsets from unpromising
ones. For example, Norkin et al (1994) proposed a version of the branch-and-bound method
for discrete parameter optimization where promising and unpromising regions are selected,
based on objective function value bounds. This method has recently been introduced for
continuous parameter optimization. As another example,PBnB from Prasetio et al (2004)
seeks to identify the most promising sub-region containinga desired solution by an iterative
pruning-or-branching procedure. Branching action is performed according to the probability
of reaching a targeted function measurement, while pruningis performed according to the
significant difference of statistical tests between the most- and least-promising regions.

The aim of this paper is to present theP2 algorithm, a development ofP2p introduced in
Bergez et al (2004).P2 is a hierarchical decomposition procedure dedicated to continuous
parameter optimization, and is one of the simulation-basedoptimization methods. Promising
regions are selected by a heuristic, relying both on the average value and on the standard
deviation of simulation responses. The promising region isthen divided into two parts, and
each of them is evaluated by simulation. Different options for the three steps of selection,
division and evaluation were tested on a corn crop irrigation management problem in order
to identify the combination of techniques that lead to the most efficient algorithm.
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We first describe the principle of theP2 algorithm and the various techniques that are
tested for selection, division and evaluation. In section 3, we give some information on the
MODERATO bio-decisional simulation model used to simulatethe irrigation strategies and
we set up the simulation experiments. We present the resultsof the combinations of tech-
niques and we eventually discuss the bestP2 algorithm options and the optimized irrigation
strategies.

2 From P2p to P2 algorithm

TheP2p algorithm is based on the DIRECT (Jones et al (1993)) and the MCS (Huyer and
Neumaier (1999)) algorithms which have been developed for deterministic optimization.
The P2p algorithm is dedicated to large continuous input variable problems. It includes a
single objective function, which can be the combination of weighted multiple objectives.
P2p belongs to the family of stochastic branching methods, likestochastic branch-and-
bound or nested partitions methods. It is based on a hierarchical decomposition of the deci-
sion space into a binary tree.

This algorithm is dedicated to the optimization problem

max
θ∈Θ

J(θ), (1)

whereΘ is the set of possible decisions, andJ(θ) is a performance function that can not be
computed analytically. The evaluation ofJ(θ) thus relies only on the responses of stochastic
simulation runs. The formulation of this kind of optimization involves input continuous
D-dimensional variablesθ constrained to be contained within a feasible regionΘ ⊂ R

D.
An objective function is defined on these variables, such that J : θ → R, whereJ(θ) =
E[L(θ,ω)] andω is the uncontrollable input variables vector of the stochastic system. The
general formulation of simulation-based optimization is:

max
θ∈Θ

J(θ) = E[L(θ,ω)] . (2)

The decision spaceΘ is a hyper-rectangle, orregion, of R
D. TheP2 optimization aims

at finding small hyper-rectangles included inΘ which contain the decision vector that max-
imizes the expected value ofL(θ,ω). We assume a minimal size of these small regions,
defined by the user for every dimension as the widthpstep

d of the dimensiond ∈ D.
Let us callpending regionsthe regions that are still divisible (or breakable). The prin-

ciple of theP2 algorithm is described in the Algorithm 1. Initializationallocates the initial
decision space as the single pending region of the listpendingRLof all the pending regions.
The first step consists ofSELECTINGout from the pending regions list the region which is
potentially optimal: we call it thepromisingregion. The second stepDIVIDES this promis-
ing region into two parts. These two parts are offspring regions and are collected in the
o f f springRLlist. During the third step, each of these regions is sampled, simulated and
indices areEVALUATED . Eventually, the pending regions list is updated, and the three previ-
ous steps are repeated until stopping criteria are reached or the pending regions list is empty.
TheP2 algorithm main stopping criterion is achieved when there is no more pending region,
i.e. there is no more potentially optimal region which could still be divided for further ex-
ploration. This division limit is explain in the next section 2.2. For practical reasons, time
limits and/or simulation number limits are usually added tothe previous stopping criterion.
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pendingRL← initial decision space;
while (stopping criteria are not reached andpendingRLis not empty){

promisingReg← SELECTone region intopendingRL;
o f f springRL← BREAK DOWN the promisingReginto two parts;
for each (region∈ o f f springRL){

simulateregion;
EVALUATE region;

}
pendingRL← take outpromisingReg;
pendingRL← put in the breakableregions of o f f springRL;
}

Algorithm 1 The P2 algorithm and its three main steps.

main loop processtree search

evaluation

selection

division

new sampled point

estimated point

pending region

root

investigated region

decision space
iteration 0

iteration 3

iteration 2

iteration 1

iteration 4

Fig. 1 P2 process illustration: left hand side displays the tree construction related to the decision space
exploration, and the right hand side shows iteration 1.

Figure 1 illustrates the three main steps considering a 2-dimensional decision space
related to the decision tree produced. TheP2p algorithm included theβ-selection, mid-
dle partition, average value and standard deviation evaluations. The major improvements
leading fromP2p to P2 consisted in proposing, testing and selecting combinations of new
techniques.

2.1 Selecting the promising region

The selection step is involved in the process efficiency according to its ability to lead straight
to the optimal region. At each iteration, the promising region to be selected is one of the
pending regions. Each pending region is sampled, simulatedand indices are computed dur-
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ing the evaluation step. The focus here is to choose one promising regionr∗ within the pend-
ing regions set, based on these indices. Three selection techniques have been tested, based
on two indices: the average value and the standard deviationof the simulated responses. We
extended the consideration of these two indices toscore1 andscore2 which could be either
the average value, the standard deviation or the maximum, the minimum or the median value
for example.

a. Thegreedy selection consists in choosing the promising region considering onlythe
expected value criterion to be optimized. Consideringscore1 as a generalization of the
criterion to be optimized and maximized, the promising region r∗ will be chosen such
thatr∗ = argmaxr [score1(r)].

b. We propose a trade-off between greedy and systematic search. Theβ-selection takes
into account both the average value of the region and the standard deviation of the sam-
pled decision vectors. Let us definescore1 as the average value andscore2 as the stan-
dard deviation. The figure 2 represents the set of the convexnon dominated1 regions, in
which we select the promising one. We use an approach based onmultiobjective opti-
mization, which looks for regions with a large standard deviation when regions are large,
and for regions with a large average value when regions are small (Bergez et al (2004)).
Consideringscore1 andscore2 as a generalization of the criteria to be optimized and
maximized, let us defineβ as following.

β(r) = score2(r)+score1(r). tan(γ) with γ =
current depth

maximum depth+ ε
.
π
2

(3)

current depthis the tree depth of the last region of interest, andmaximum depthis
the depth of an unbreakable region assuming middle partitioning. ε is an infinite small
value excludingπ/2 from reachable values. Asγ ∈ [0..π/2[ is tree depth dependant,
maximizingβ is selecting one region among all non dominated ones as shownon figure
2. Then the promising regionr∗ will be chosen among all the pending regionsr such
thatr∗ = argmaxr β(r).

c. The previous approach can only reach the convex non dominated front. In order to
generalize the method to non convex front, theConcβ-selection combines the previ-
ous method with non convex dominance1. The selection technique still gives priority
to the standard deviation when regions are large, and to average value when regions
are small.In that case only the generalized criteriascore1 andscore2 have to be min-
imized. pro j1 and pro j2 are the projections of respectivelyscore1 and score2 onto
the line angled(π/2)− γ such thatpro j1(r) = score1(r) ∗ cos(π

2 − γ) and pro j2(r) =
score2(r) ∗sin(π

2 −γ). The promising regionr∗ is still part of the Pareto’s set and will
be chosen such that

r∗ = argmax
r

(min[pro j1(r), pro j2(r)]) . (4)

The figure 3 describe the concβ-selection technique. Depending on the current depth it
allows to select pending regions from the non-convex Paretofront1.

1 See for example Ehrgott (2005) fordominancedefinitions.
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score 1

score 2

Fig. 2 Some of the pending regions are incorporated in the convex non dominated front. The promising
region is one of these. N.B. score1 and score2 have to be maximized.

π/2 − γ

sc
or

e 
2

score 1

Fig. 3 Concβ-selection visual description. N.B. In that case only, score1 and score2 have to be minimized.

2.2 Breaking down the promising region

The division step is involved in the resolution time that is needed and in the global op-
timization efficiency: producing small regions could trap the process in local optima, and
producing large regions could be time-consuming.

We proposed inP2p to break theD−dimensional promising region into 2D sub-regions.
The depth of the decision tree to reach an unbreakable regionis small, but at every nodes one
region is taken out from the pending regions list while potentially 2D are put in. The number
of simulations needed to evaluate every new pending regionsis then enormously expended
at every division. We chose in theP2 method to cut down theD−dimensional promising
region into only two parts to save simulations. Hence we firstneed to choose the parameter
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p∗ to be cut. We proposed to choose this parameter with the largest relative range such that

p∗ =
D

argmin
d=1

((p⊕d − p⊖d )/pstep
d ) (5)

wherep⊕d (p⊖d ) is the upper (lower) bound of dimensiond andpstep
d is its smallest feasible

range. Thus three division techniques have been tested.

a. Theequal partitioning is the easiest way to proceed. Without taking into account the
results from samples, the parameterp∗ is simply cut down right in the middle, producing
two equal sub-regions.
Instead of blindly producing two sub-regions, two other techniques aim at producing
two regions as different as possible.

b. Thepivot partition chooses the decision vector which divides weak from better re-
sponses. The selection of the pivot vector is based on vectorindices related to the prob-
ability of being the best representation of the threshold dividing theγ% of the ’best’
responses from the 1−γ% of the ’worst’ responses. Two user defined indicesγr andγs
are used.

c. Themaximization of the difference technique is based on a binary classification and
regression tree field (Breiman (1996)). The best split is taken as the maximizer of a
“goodness-of-split” function and is chosen as the one maximizing the difference be-
tween potential sub-region indicesγr .

2.3 Evaluating eligible regions

The system performance is not directly available and we therefore rely on sampled points
L(θ,ω) of the region of interest.N sampled point vectorsθi (i ∈ [1..N]) are simulatedM
times (j ∈ [1..M]) in each new pending region.N is linearly related to the region width and
M is a parameter to be chosen. The aim is to compute, based onN×M sampled performance
measures, the indices of the pending regions that are used inthe next iteration to select the
promising region.

a. As the optimization definition 2 involves theexpected value of the sampled perfor-
mance measures, we first compute the average valueĴ(θ) as an approximation ofJ(θ) =
E[L(θ,ω)].

J(θ)≈ Ĵ(θ) =
1
N

1
M

N

∑
i=1

M

∑
j=1

L(θi ,ωj). (6)

b. Theglobal standard deviation Vg can be used in the selection techniques involving two
indices.

Vg =
1
N

1
M

N

∑
i=1

M

∑
j=1

[

Ĵ(θ)−L(θi ,ωj)
]2

. (7)

c. If we consider the sampled performance measures as disturbed responses of the objec-
tive functionJ, then the idea of the third proposition is to use thestandard deviation
of the objective function without considering the standard deviation of the disturbance.
We tested two indicesVp1 andVp2. They are computed to focus on the standard devia-
tion due to the controllable input parameters (θ), excluding the standard deviation due
to the uncontrollable input parameters (ω). The aim of this paper is not to establish the
formulation of these standard deviations. Nonetheless,Vp1 is based on the hypothesis

ha
l-0

07
45

69
3,

 v
er

si
on

 1
 - 

26
 O

ct
 2

01
2



8

that the responseL(θi ,ωj) depends only on theθi andωj effects, althoughVp2 is based
on the hypothesis that the responseL(θi ,ωj) depends onθi , ωj and the residue due to
the combination ofθi with ωj .

3 Choosing algorithm options by application to irrigation management

We have presented various techniques of selection, division and evaluation of decision
hyper-rectangles. The aim of this section is to present the experimental plan which guided
our choice of the best combination of technique. First we introduce the irrigation strategy
simulator and the irrigation strategies design application. Then, we define the system to be
optimized and the experiments we ran.

3.1 MODERATO Simulator

MODERATO (Bergez et al (2001a)) is a model aimed at evaluating current irrigation strate-
gies for corn and at proposing improved strategies. It combines a dynamic and biophysical
corn crop model with a dynamic decision model. The crop modelis described in Wallach
et al (2001). The decision model consists of a set of decisionrules for different management
decisions, and especially for irrigation management decisions. The crop model and the de-
cision model interact every day. The crop model updates the state variables each day and
passes their values to the decision model together with the explanatory variables of that day.
Within that collection of variables are the indicators of the decision rules. Then, the decision
model evaluates the decision rules to decide if a managementaction is to be taken. If so,
this information is passed back to the crop model (for example, amount of water or sowing
density).

The timing of irrigation includes for example these rules:

Starting irrigation This rule determines the starting day to begin irrigation during the grow-
ing season and the water amount for the first irrigation round.

Next irrigation round This rule is invoked after a round of irrigation has been terminated. It
determines when to start the next round and the irrigation amount for rounds after the
first.

Stopping irrigation This rule is invoked at the end of an irrigation round. It has one of these
three conclusions: either (1) the previous round of irrigation was the last, or (2) another
round of irrigation is to be performed and will be the last, or(3) we will re-invoke this
rule after another round of irrigation. Granting that the next round is the last, the amount
of irrigation is given.

Many of the rules in MODERATO are based on the general form:− if (cond 1a∨
cond 1b)∧ (cond 2a∨ cond 2b) then decision; de f ine amount; − wherecond 1a and 1b
concern crop development whilecond 2a and 2b refer to water status in the soil. The first
condition in each pair (cond 1a and 2a) uses meteorological variables as indicator variables
while the second condition in each pair is based on state variables. The user can choose to
ignore one of the two conditions in each part of the premise.

3.2 Case study

The comparison between the developed options was performedon an eight-parameter strat-
egy as follows.
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The main irrigation period starts fromT1 as soon as the soil water deficit reaches
D1. An amountI1 is applied. Once an irrigation cycle ends, a new cycle startswhen
the soil water deficit reachesD2. An amountI2 is applied. For the irrigation cycle
following T3, if the soil water deficit is greater thanD3 before this irrigation cycle
starts, a last irrigation cycle is performed; otherwise theirrigation program ends. An
amountI3 is applied.

Operation Rules
Sowing Sowing is between 20 April and 30 May as soon as the cumulative rainfall during the

previous 3 days is less than 15 mm. Variety Cécilia is sown at80 000 plants/ha. Cécilia
is a late growing variety requiring 1045 accumulated thermal units (ATU) from sowing to
flowering and 1990 ATU from sowing to maturity (35% grain humidity).

Fertilization A single application of 200 kg/ha of nitrogenis made at sowing.
Harvest The crop is harvested when grain moisture content reaches 20% or accumulated thermal

units since sowing reach 2100 ATU and if the cumulative rainfall during the previous 3
days is less than 15 mm. In any case, the crop must be harvestedbefore 15 October.

Irrigation

Sowing Irrigation to facilitate plant emergence (caused either by dryness or crust created
by heavy rainfall on silty soil) is not taken into account, nor irrigation to dissolve
fertilizer.

Starting irrigation Part of the optimization process.
Next irrigation round Part of the optimization process
Delay irrigation Precipitation delays irrigation. When the cumulative rainfall over the 5

previous days is more than 10 mm, one day delay is applied for every 4 mm. The
delay cannot exceed 7 consecutive days.

Stopping irrigation Part of the optimization process

Table 2 General description of the strategy simulated.

The other cultural operations are given in table 2. The irrigation equipment used for the
study allows a 3.5 mm/day flow rate. A 180 mm limitation of available water is applied. No
flow rate restrictions are imposed during summer except those due to the equipment.

All simulations were performed using a medium clay-silt soil : 0.8m deep, with clay
accumulation at depth, locally called “Boulbènes moyennes” (fluvisol). This type of soil is
representative of a large area of the Midi-Pyrénées and has a 150 mm cumulative available
water capacity. The soil was assumed to be at field capacity atthe beginning of the simula-
tion, namely the 1st of January. Climates used are part of the observed weathers recorded at
the Toulouse-Blagnac meteorologic station within 1949 and1997. On average, July and Au-
gust receive a total of 92 mm rainfall and the cumulative potential evapotranspiration (ET0)
is 290 mm. The average evaporative moisture deficit (ET0 minus rainfall) for this two-month
period is around 200 mm. However, there is a large variation in rainfall during the two sum-
mer months as it ranges from 30 to 240 mm, underlining the unpredictable nature of rainfall
in the area. Cumulative ET0 is less variable, ranging from 235 to 372 mm. The objective
function to be maximized is the expectation of the direct margin (i.e. the gross margin mi-
nus specific costs for a given activity, here irrigation). The direct margin for irrigation can
be written as a weighted sum of multiple criteria:

L(θi ,ωj) = a(θi ,ωj).B− [C+d(θi ,ωj).E + f (θi,ωj).G] (8)

whereL(θi ,ωj) is the direct margin for climateωj and the strategyθi , a(θi ,ωj) is the grain
yield obtained under climateωj and using the strategyθi , B is the selling price for corn,
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10

C is the operational costs for corn production,d(θi ,ωj) is the amount of water used under
climateωj and using the strategyθi , E is the cost of irrigation water,f (θi,ωj) is the number
of irrigation cycles performed under climateωj and using the strategyθi andG is the cost of
carrying out a new irrigation cycle. The average selling price for maize (grain) is assumed
to be 106.71¤/Mg in the Toulouse area. Operational costs (seed, weeding,fertilizer, in-
surance) are assumed to total 327.77¤/ha. The cost of irrigation water is assumed to be
0.76¤/mm and the setting up of a new irrigation cycle is assumed to be 7.62¤.

3.3 Experiments

Simulations were run with a Bi-processor of 3 GHz each, and 2 Go of RAM with Windows
XP operating system. Optimization took about 3 hours and 40 minutes for 2 million of
simulation runs including less than 9 seconds for theP2 procedure.

We took into account 10 replications for each alternative. We particularly focused on
robustness of an alternative through the minimum, maximum and average direct margin
values of these 10 replications. The initial feasible region is defined in table 3 as the ranges
of the different parameters from the strategy described in section 3.2.

Names Meaning unit min max step
T1 Accumulated thermal unit to start the irrigation program ◦C.day 200 1250 5
D1 Soil water deficit to start the irrigation mm 20 150 3
I1 Irrigation applied at the first irrigation mm 5 50 2

D2 Soil water deficit to start a new irrigation cycle mm 20 150 3
I2 Irrigation depth applied mm 5 50 2
T3 Accumulated thermal units to stop the irrigation ◦C.day 1250 2000 5
D3 Soil water deficit to stop irrigation mm 20 150 3
I3 Irrigation applied at the last irrigation round mm 5 50 2

Table 3 The eight parameters of the irrigation strategy to be optimized. min and max show the range of each
parameter within which the optimum is sought. A step is the minimum feasible range of the parameter.

Some procedure parameters were set for all experiments. Themaximum number of sim-
ulations was set to 2 million.β- and concβ-selections include a 20% probability of randomly
choosing the promising region and the sampling follows a uniform distribution. As some of
the partitioning alternatives need indices, we called themγr andγs for the pivot partitioning,
andγr for the maximum difference partitioning. We tested all possible combinations with
γr ∈ {0.2,0.5,0.8} andγs∈ {0.2,0.5,0.8}.

To compare alternatives, we defined some criteria in order tomeasure algorithm effi-
ciency. Each time the direct margin average value increased, we stored it as well as the
number of simulation runs used to achieve it. These stored values presented a strictly in-
creasing curve in the simulation runs/direct margin criteria space. The general shape of this
curve was made up of two distinct phases: one with a large improvement in direct margin
average with a few simulation runs, and another with a tiny improvement with an infinite
number of simulation runs. Therefore, we used simulation count and direct margin average
corresponding to 95, 97.5, 99 and 99.5% of the best value eventually achieved within 2
million of simulation runs. These indices allowed information about the best performances
reached by the alternative to be kept, while focusing on the first increasing phase of interest.
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The number of runs criterion ensured that the algorithm efficiency does not depend on the
computer’s capabilities.

To recognize different techniques and their parameters, weused aXY Z code notation
described in table 4. The first item stands for selection alternative:gs for greedy-selection,
bs for β-selection orcs for concβ-selection. The second stands for partition alternative:ep
for equal-partition,pp for pivot-partition ormp for maximizedifference-partition. The last
stands for the second evaluation index:ge for global standard deviationVg, p1e for point
standard deviationVp1 or p2e for point standard deviationVp2 evaluation.

selection X division Y evaluation Z
β bs equal partition ep average and global standard deviation ge
Concβ cs pivot partition pp average and point standard deviation 1 p1e
Greedy gs maximize difference mp average and point standard deviation 2 p2e

Table 4 Triple code notation: definition of X, Y and Z.

Alternative bs/ep/ge has been used as a test reference. We first compared separately
selection, division and evaluation alternatives frombs/ep/ge to assess the impacts of single
techniques. Then, we tested a few hybrid alternatives that seemed to be the most interesting
according to previous observations.

4 Results

4.1 Observation ofP2 alternatives

4.1.1 Selection alternatives

Experimented selection alternatives areβ- (bs/ep/ge), concβ- (cs/ep/ge) and greedy- (gs/ep/ge)
selections.

Figure 4 displays the alternative averaged indices of 95, 97.5, 99 and 99.5%. Alternative
gs/ep/ge was faster and reached a slightly lower direct margin thanbs/ep/ge. Alternative
cs/ep/ge both achieved a lower direct margin and needed many more simulations to reach
the best region. Thegs/ep/ge’s deviation along the number of simulation is the smallest.

4.1.2 Division alternatives

The tested partitioning alternatives are equal- (bs/ep/ge), pivot- (bs/pp/ge) and maxdiff-
(bs/mp/ge) partitioning. We saw earlier (section 2.2) thatbs/pp/ge needs the thresholdsγr
and γs, andbs/mp/ge needs the thresholdγr . Alternativesbs/mp/ge 02 andbs/mp/ge 08
respectively stand forbs/mp/ge with γr = 0.2 and bs/mp/ge with γr = 0.8. Alternative
bs/pp/ge 08 02 stands for the alternativebs/pp/ge with γr = 0.8 andγs = 0.2. Figure 5
displays thebs/ep/geand the non dominated alternatives.

bs/mp/ge 02 was faster but reached a slightly lower direct margin thanbs/ep/ge. Both
bs/mp/ge 08 andbs/pp/ge 08 02 reached a direct margin larger thanbs/ep/gewith less runs.
As alternatives are all very close, it is difficult to rank them. Figure 5 highlights the slight
improvement due to partitioning methods, thoughbs/pp/ge 08 02 can be considered as the
best. Indeed its maximum value was at least as good as the others, while the minimum and
average values were larger.
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Fig. 4 Evolution of selection alternatives (10 replications each).
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Fig. 5 Evolution of the best partitioning alternatives (10 replications each).
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4.1.3 Evaluation alternatives

The evaluation alternatives include the expected value of the sampled performance measures
defined asscore1. score2 stands either for the global standard deviationVg (bs/ep/ge), or for
the sampling standard deviationVp1 (bs/ep/p1e), or for the sampling standard deviationVp2

(bs/ep/p2e) evaluations.
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Fig. 6 Evolution of evaluation alternatives (10 replications each).

Figure 6 shows thatbs/ep/p2eandbs/ep/p1eneeded many more simulations thanbs/ep/ge.
Nevertheless, they both reached a larger averaged direct margin, which amount has never
been reached with previous alternatives. The largest number of simulation runs (forbs/ep/p1e)
was larger than 1.5 million of simulations. This large spreadin simulation runs shows that
bs/ep/p1e reached its second phase of a small benefit for an infinite number of simulation
runs. Although the direct margin performance was the best, this large spread means that it is
difficult to forecast the required time to reach the optimal sub-region.

4.1.4 Hybrid alternatives

There are many hybrid alternatives. We decided to test a few of them, selecting those which
could be efficient trade-off between simulation runs numberand direct margin achieved.
First we hybridized the fastgs/ep/gealternative with better partition techniques (gs/pp/ge 08 02
andgs/mp/ge 02). Note that it is useless to couplegs/ep/gewith other evaluation techniques
since it does not take into account thescore2 value. Then we hybridized the alternatives
with larger direct margin achievement with faster ones (bs/pp/p1e 08 02, bs/mp/p1e 02,
bs/pp/p2e 08 02 andbs/mp/p2e 02). Eight hybrid alternatives were eventually tested.
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Fig. 7 Evolution of non dominated hybrid alternatives (10 replications each).

Figure 7 shows the hybrid alternatives that are non dominated with regard to simulation
runs and 99.5% of the final direct margin achieved. Partitioning alternatives maximizing the
difference of region indices have completely disappeared as they are always dominated by
the division technique cutting the promising region upon the pivot.

4.2 Observation of irrigation strategies

In addition to algorithms results, we observed the input variable envelopes translating two
computed irrigation alternatives. Figures 8 and 9 represent multiple axis charts of the en-
velopes enclosing the 10 optimal regions reached for the 10 replications run of thegs/ep/ge
andbs/pp/p1e alternatives. Couples of dashed lines bound the parametersof the optimal
regions that were reached for every replications.

The shape envelopes of figures 8 and 9 are very similar. The main differences involve
the T3 parameter which still allows a wide range of possibilities. Input variablesD3 (soil
water deficit to stop irrigation) andI3 (amount of water applied during last irrigation round)
have been barely broken down. On the other hand, the envelopes of input variables ofD1
(soil water deficit to start a new irrigation cycle) andI2 (amount of water applied to a new
irrigation round) are thin for every alternative.

The largest averaged direct margin reached over all replications is 547¤/ha. It results
from the alternativebs/pp/p1e where the envelope denotes the following strategy. The first
irrigation is started after observing a small water deficit,and a medium amount of water is
applied. The new irrigations are performed as soon as a smallwater deficit is observed and
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Fig. 8 Input variable envelope of the 10 optimal regions reached for the 10 replications of alternative
gs/ep/ge.
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Fig. 9 Input variable envelope of the 10 optimal regions reached for the 10 replications of alternative
bs/pp/p1e.

a large amount of water is applied. The temperature, water deficit and water amount leading
to the last irrigation are very variable.

ha
l-0

07
45

69
3,

 v
er

si
on

 1
 - 

26
 O

ct
 2

01
2



16

5 Discussion

5.1 P2 alternatives efficiency

With regard to simulation runs and 99.5% of final direct margin achieved, the concβ-
selection is completely dominated by the other alternatives. One can guess that the convex
and evolutionary nature of the pending regions set makes theβ-selection more efficient.
Partitioning alternatives with dominated results have also been removed, so that only the
alternatives includingγr = 0.8 andγs= 0.2 technique’s parameters have been kept. This
combination of indices expresses relatively high level of risk acceptance (low sampled de-
cision vector index) and that the pivot was chosen to build large ‘good’ regions and small
‘bad’ ones (high level of region index). These selected alternatives are the most efficient at
simulating the crop model MODERATO. Concerning the evaluation alternatives, the use of
sampled point standard deviations achieved larger direct margins, but needed many more
simulation runs. The cutting process does not noticeably improve theP2 procedure, we
nevertheless noticed that each of the non dominated hybrid alternatives included the pivot
partitioning.

The alternatives shown in figure 10 compete to be the best irrigation strategy designer.
Thegs/ep/geandgs/pp/gealternatives were the most robust with respect to simulation runs.
In addition, thegs/pp/ge alternative had a direct margin robustness which was at least as
good as those of the others.

 510

 515

 520

 525

 530

 535

 540

 545

 550

 40000  60000  80000  100000  120000  140000  160000  180000  200000

di
re

ct
 m

ar
gi

n 
(e

ur
os

/h
a)

nb of simulation runs

gs
/e

p/
ge

gs/pp/ge_08_02

bs/pp/ge_08_02

bs/pp/p2e_08_02
bs/pp/p1e_08_02

min, average, max of 10 replications
95%

97.5%
99%

99.5%

Fig. 10 All non dominated alternatives.

Figure 11 shows the frontier made of the 99.5% thresholds of the non dominated com-
binations. Combinations including thegreedyselection are the fastest and need less than
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50 000 of simulation runs to reach 99.5% of the optimal region. Combinations including
β-selection achieve higher direct margins, but it requires afar larger amount of simulation
runs. Considering the frontier shape, we regard thegs/pp/gealternative as an improvement
over thegs/ep/gealternative. Although the three last alternatives improvethe direct margin,
too many simulation runs are needed to do so. Thegs/pp/ge alternative is now the default
combination of techniques included in theP2 algorithm.

The best combination of techniques is not directly expendable to other stochastic opti-
mization problems. However, the conclusions drawn about the different techniques would
allow the user to set it easily, especially when making decision about cultural operations.

5.2 Optimal irrigation plans

This section deals with the irrigation plans produced with thegs/pp/gecombination, com-
pared with the irrigation plans produced with our referencecombinationbs/ep/ge.

Figure 12 shows the optimal decision space envelopes reached for two alternatives
gs/pp/ge chosen as the best, andbs/ep/ge which was used as a test reference. The main
noticeable difference still concerns theT3 parameter, and although its range is still wide,
its optimal value could be more difficult to find compared to the others. The recurrent thin-
ness of input parametersD1 andD2 point out their sensitivity, whileT3 values variation are
strongly related to the prior consumption of the limited amount of water. Nevertheless, the
gs/pp/gealternative improved both the direct margin reached and thenumber of simulation
runs. The optimal decision space was at least no larger than our reference alternative. The
agricultural case that was studied was the same as the one we used in Bergez et al (2004).
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Fig. 12 Input variable envelope of the 10 optimal regions reached for the 10 replications of alternative
gs/pp/ge08 02 (solid line) and Input variable envelope of the 10 optimal regions reached for the 10 replica-
tions of alternative bs/ep/ge (dashed line).

The direct margin average of 534¤/ha was reached within 1 600 000 simulation runs with
theP2p algorithm. The direct margin average reached with thegs/pp/ge 08 02 of theP2 al-
gorithm was 545¤/hawithin 2 000 000 simulation runs, and the direct margin of 534¤/ha
was achieved within less than 40500 simulation runs.

5.3 Conclusion

Although all the combinations are still available, we set the defaultP2 algorithm as the
combination ofgreedyselection,pivot partition and average evaluation. We reached this
conclusion by testing different combinations with an 8-parameter irrigation design problem.
These combinations included common and new techniques for the performance of the three
main steps of the hierarchical decomposition procedure: selection, division and evaluation.

The aim of this paper was to investigate hierarchical decompositionof three main tech-
niques in order to improve an earlier proposal rather than to compare it with other ap-
proaches. The optimal direct margin reached was about 10¤/hahigher than the one reached
with the earlier proposal. About a quarter as many simulation runs were needed to reach the
previously optimal direct margin. Hence the results obtained were satisfactory. We are now
working on the extension of this approach for a better consideration of uncertainty, and
of multiple objectives. In addition, more attention will bepaid to the representation of the
optimal decision space in order to facilitate its use by advisers.
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