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Abstract. Cellular automata are a model of parallel computing. It is
well known that simple cellular automata may exhibit complex behaviors
such as Turing universality [2,17]. The underlying mechanisms of these
rules are now rather well understood (see Kari’s survey [13] or Sarkar’s
survey [20]).
Less results are known about probabilistic cellular automata. The most
famous ones come from Toom [21] and Gács [10,11]. They have shown
that cellular automata are still able to perform reliable computation in
presence of random faults even in one dimension. Recently, Fatès [6] has
exhibited a family of simple one dimensional probabilistic rules which
can solve the density classification problem with arbitrary precision.
Several studies have focused on a specific probabilistic dynamics: α-
asynchronism where at each time step each cell has a probability α to be
updated. Experimental studies [4,5] followed by mathematical analysis
[1,3,8,9,18] have permitted to exhibit simple rules with interesting be-
haviors. Among these behaviors, most of these studies conjectured that
some cellular automata exhibit a polynomial/exponential phase transi-
tion on their convergence time, i.e. the time to reach a stable configu-
ration. The study of these phase transitions is crucial to understand the
behaviors which appear at low synchronicity. A first analysis [19] proved
the existence of the exponential phase in cellular automaton FLIP-IF-
NOT-ALL-EQUAL but failed to prove the existence of the polynomial
phase. In this paper, we prove the existence of a polynomial/exponential
phase transition in a cellular automaton called FLIP-IF-NOT-ALL-0.

1 Introduction

Cellular automata are made of several cells which are characterized by a state.
Time is discrete and at each iteration, the state of a cell evolves according
to the states of its neighbors. On one hand, cellular automata are used as a
model of parallel computing. Methods of programing them are rather well un-
derstood [13,20]. On the other hand, they are also a common tool to model real
life phenomena [16].

Theoretical studies of cellular automata as a computation model mainly focus
on the synchronous dynamics, i. e. at each time step all cells are updated. Only
few studies focus on other dynamics. For modeling real life phenomena, the
assumption of synchronicity may be too restrictive.

In this article, we will consider stochastic dynamics. At each time steps, only
the cells of a randomly chosen set are updated. The introduction of randomness
has different motivations. It can be used:
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– to simulate faults in a system, i.e. as a difficulty to overcome;
– as an oracle, i.e. as a tool to develop more efficient algorithms;
– in the definition of a model based on cellular automata.

Faults tolerant cellular automata are cellular automata where at each time
step, each cell has a constant probability to be faulty updated and to switch to
any states. Toom [21] and Gács [10,11] have developed rules which are able to
make reliable computation in presence of random faults. Their results interlace
two rules: a rule which is turing universal for the parallel dynamics and a rule
which detects and erases faults.

In algorithmic, it is well known that randomness can be useful to develop
efficient algorithms [12]. Recently, Fatès [6] has shown that the density clas-
sification problem can be achieved with arbitrary precision by two states one
dimensional cellular automata under probabilistic dynamics. In this problem,
the cells must all choose the overall majority state of the initial configuration.
Land and Belew [14] have shown that this problem cannot be solved under de-
terministic dynamics.

Some theoretical studies [1,3,8,9,18] have focusses on α-asynchronous cellular
automata where at each time step, each cell has a probability α to be updated.
The first theoretical analyzes [1,8,9] mainly relies on simple stochastic processes
such as random walk and coupon collector. Later studies [3] have focus on the
minority rule. The authors manage to analyze the very first and last steps of
a classical evolution of Minority from a random configuration but they are not
able to analyze the whole dynamics. They argue that even if Minority on a ran-
dom configuration seems a "simple" process, some specific initial configuration
leads to different dynamics. They conjectured that Minority can simulate some
classical stochastic process like percolation or TASEP on specific initial config-
urations. From these works, it seems that one simple cellular automaton may
simulate several stochastic processes which were independently studied by dif-
ferent communities. If these conjectures are true, then these works may shed a
new light on stochastic process simulation.

In this paper, we will prove the existence of a phase transition in 1D cellular
automaton FLIP-IF-NOT-ALL-0 depending on α. This is the first proof of
a phase transition in a probabilistic cellular automaton even if the existence
of phase transition in α-asynchronous dynamics was conjecture and analyzed
empirically [5]. Moreover, the rule 1D Minority is equivalent the 1D rule FLIP-
IF-NOT-EQUAL. A first study [19] proved the existence of one part of the
phase transition on this cellular automaton but failed to prove the other part.
Rules FLIP-IF-NOT-ALL-0 and FLIP-IF-NOT-EQUAL only differ on one
neighborhood. Only one last argument is necessary to prove the existence of a
phase transition for Minority rule.

In Gács’ 1D cellular fault tolerant cellular automaton [10], the main difficulty
was to develop a process which is able to detect faulty regions, i.e. to save
one bit of information in presence of random faults. Since cells have only a
local vision of the information, the positive rates conjecture states that it is not
possible to keep one bit of information safe from the random faults and thus that
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reliable computation were impossible. Gács provided a counter-example but the
community was unsatisfied by the size and the complexity of its rule and of the
following proof. The quest for a simple fault-tolerant cellular automaton with a
proof of reasonable size is still open. Another interest of FLIP-IF-NOT-ALL-
0 is that one phase of the transition phase leads to the emergence of a white
region and the other phase of the transition phase leads to the emergence of a
checkerboard pattern. Thus this paper is another step to a better understanding
of the emergence of homogeneous regions in 1D stochastic processes.

2 Asynchronous cellular automata

2.1 Definition

We give here a formal definition of FLIP-IF-NOT-ALL-0, also called ECA 50
(Wolfram encoding). The next part presents informally its behavior.

Definition 1 (Configuration). Consider n ∈ N, we denote by Z/nZ the set
of cells and Q = {0, 1} the set of states (0 stands for white and 1 for black
in the figures), n is the size of the configuration. The neighborhood of a cell i
consists of the cells i − 1, i and i + 1 modn. A configuration c is a function
c : Z/nZ→ Q; ci is the state of the cell i in configuration c.

We consider configurations of size n ∈ N with periodic boundary conditions
thus all computation on the position of a cell are made modulo n.

Definition 2 (FLIP-IF-NOT-ALL-0). The rule of a cellular automaton is
a function which associates a state to a neighborhood. The rule δ of FLIP-IF-
NOT-ALL-0 is defined as follows:

δ(ci−1, ci, ci+1) =

{
ci if ci−1 = ci = ci+1 = 0

1− ci otherwise

Time is discrete and in the classic deterministic synchronous dynamics all
the cells of a configuration are updated at each time step according to the tran-
sition rule of the cellular automaton (see figure 1). Here we consider a stochastic
asynchronous dynamics where only a random subset of cells is updated at each
time step.

Definition 3 (Asynchronous dynamics). Given 0 < α 6 1, we call α-
asynchronous dynamics the following process : time is discrete and ct denotes
the random variable for the configuration at time t. The configuration c0 is the
initial configuration. The configuration at time t+ 1 is the random variable de-
fined by the following process : each cell has independently a probability α to
be updated according to the rule δ (we say that the cell fires at time t) and a
probability 1 − α to remain in its current state. A cell is said active if its state
changes when fired.

3
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Figure 1 presents different space-time diagrams of ECA 50 for different values
of α. By abuse of notation δ(c) is the probability distribution obtained after
updating c one time with rule δ under asynchronous dynamics.

Definition 4 (Stable configuration). A configuration c is a stable if for all
i ∈ Z/nZ, δ(ci−1, ci, ci+1) = ci.

FLIP-IF-NOT-ALL-0 admits only one stable configuration: 0̄ = 0n where
all cells are in state 0. Since any black cell is active, by firing all the black cells
and no white cell, we have the following fact:

Fact 1 (One step convergence) If α < 1, any configuration, evolving under
FLIP-IF-NOT-ALL-0 and α-asynchronous dynamics, can reach the stable con-
figuration 0̄ in one step.

Definition 5 (Worst case convergence). We say that a random se-
quence of configurations (ct)t>0 evolving under FLIP-IF-NOT-ALL-0 and α-
asynchronous dynamics converges from an initial configuration c0 if the random
variable T = min{t : ct is stable } is finite with probability 1. We say that the
convergence occurs in polynomial (resp. exponential) time on expectation if and
only if E[T ] 6 p(n, 1/α) (resp. E[T ] > bn) for some polynomial p (resp. constant
b > 1) and for any initial configuration (for at least one initial configuration).

From the definition of stable configuration, it follows that if there is t such
that ct is a stable configuration then for all t′ > t the configuration ct

′
is the

same stable configuration. Since (ct)t>0 is a finite Markow chain and since there
is a path from any configuration to the stable configuration all white (see fact
1), any sequence of configuration converges with probability 1 when α < 1.

Theorem 1 (Main result). Consider a sequence of configurations (ct)t>0

evolving under rule FLIP-IF-NOT-ALL-0 and α-asynchronous dynamics then
if α 6 0.5 then E[T ] = O(n2α−1) and if α > 1− ε (where ε = 0.187×10−13 > 0)
then E[T ] = Ω(2n).

This is the first time that a phase transition is formally proved on a asyn-
chronous cellular automata. This result shows that simple rules exhibit complex
behavior and turn out to be hard to analyze. The following part exposes experi-
mental results on the behavior of FLIP-IF-NOT-ALL-0. Section 3 is dedicated
to the proof of the polynomial time convergence on expectation and section 4 is
dedicated to the proof of the exponential time convergence on expectation.

2.2 Observations

In this section, we present empirical result on FLIP-IF-NOT-ALL-0 and the
ideas behind theorem 1 and theorem 4. A detailed empirical study of this au-
tomata was published by Fatès [5]. We only present here the concept relevant
to the rest of the article. Fatès determined a critical value αc ≈ 0.6282. When
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α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9 synchronous dynamics

Fig. 1. FLIP-IF-NOT-ALL-0 under different dynamics. The height of the cells is
scaled according to α

α < αc then the stochastic process converges in polynomial time and when
α > αc the stochastic process converges in exponential time.

Polynomial time convergence. If α < αc, only black regions crumble and
white regions expand on the whole configuration. The last isolated black cells
manage to survive only for a little while and the dynamics quickly reaches the
stable configuration 0̄. Lot of cells are inactive during these periods. We will
prove in theorem 2 that the dynamics converges in polynomial time on expecta-
tion. This proof uses a potential function, a technique already used to analyze
asynchronous cellular automata [3,8,9,18]. The proof is here more technical. Un-
til now, this technique was ineffective to analyze FLIP-IF-NOT-ALL-EQUAL
when α 6 α′c. The analysis of FLIP-IF-NOT-ALL-0 is easier and we able are
to conclude. The difference between the two automata will be discussed in the
open question of section 5.

The idea of the result presented here is the following: consider a bi-infinite
configuration with one semi-infinite white region on the left and one semi-infinite
black region on the right. The border of the configuration corresponds to the
position of the first black cell. Consider the limit case α = 0.5: with probability 1

2
the border move 1 cell to left, with probability 1

4 the border move to the right
by at least 1 cell, with probability 1

8 the border move to the right by at least
2 cells, . . . , with probability 1

2i the border moves to the right by at least i − 1
cells. Thus, on expectation the movement of the border is 0 and it behaves as a
non-biased random walk. For finite configurations, this means that the size of a
white configuration behaves as a non-biased random walk in the worst case and
thus reaches a size of n in quadratic time. The next section formalizes this idea
and proves the convergence of the dynamics in polynomial time on expectation
for α 6 0.5.

Exponential time convergence. If α > αc then white and black regions
crumble and a checkerboard pattern invades the space-time diagram. Almost
all the cells are active and flip their states at each time step. We will prove in
theorem 4 that the dynamics converges in exponential time on expectation by
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using a coupling with oriented percolation. This method is similar to what have
been done in [19] to analyze FLIP-IF-NOT-ALL-EQUAL.

3 Polynomial convergence time when α 6 0.5

In this section, we prove that the convergence time is polynomial on expectation
when α 6 0.5. Thus from now on, we assume that α 6 0.5. We will define a func-
tion F which associates to each configuration c a potential F (c) ∈ {0, . . . , 2n+2}
such that:

– the expected variation of potential is negative at each time step and
– stable configuration 0̄ is the only configuration of zero potential.

We will conclude by using the following lemma which is folklore (a proof can
be found in [7] ). Consider ε > 0, an integer m > 0 and a sequence (Xt)t>0 of
random variables with values in set {0, . . . ,m} and a suitable filtration (F t)t∈N:

Lemma 1. Suppose that :

– if 0 < Xt < m then E[Xt+1 −Xt|F t] 6 0 and Pr{|Xt+1 −Xt| > 1|F t} > ε;
– if Xt = m then E[Xt+1 −Xt|F t] 6 −ε.

Let T = min{t ∈ N : Xt = 0} and x0 = E[X0]. Then:

E[T ] 6
x0(2m+ 1− x0)

2ε

Now, we formalize the observations made in section 2.2. Consider a configu-
ration c, a white region of c is a maximal set of consecutive cells which are all
in the state 0. The value W (c) is defined as the size of the largest white region
of c: W (c) = max{|W | : W is a white region of c}. We can now introduce the
following potential function:

Definition 6 (Potential function). We consider the function F : QZ/nZ → N
defined as follows:

F (c) =

{
0 if c = 0̄

2n+ 2−W (c) otherwise

Note that for all configuration c, F (c) ∈ {0, . . . , 2n + 2}. Moreover, 0̄ is the
only configuration of potential 0 and the configuration of potential 2n + 2 has
all its cells in state 1. We denote by E[∆(F (c))] = E[F (δ(c)) − F (c)], i.e. the
variation of potential on expectation of c after one update of FLIP-IF-NOT-
ALL-0 under α-asynchronous dynamics. We introduce p0̄(c) = Pr{δ(c) = 0̄}
the probability that the dynamics converges in one step and for each cell i, we
introduce p0

i (c) = Pr{δ(c)i = 0} the probability that the cell is in state 0 at the
next time step. The variation of potential on expectation can be expressed as
follows:

E[∆(F (c))] = −E[∆(W (c))]− (n+ 2)p0̄(c).

6
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Lemma 2. Consider a configuration c and a cell i ∈ Z/nZ, if α 6 0.5 then:

p0
i (c) =

{
1 if cell i is inactive in c

> α otherwise

Proof. An inactive cell is in state 0 and will stay in state 0 with probability 1.
An active cell in state 1 will switch to state 0 with probability α. An active cell
in state 0 will stay in state 0 with probability 1−α. Since 0 < α 6 0.5, α 6 1−α.
The probability that an active cell will be in state 0 at the next time step is at
least α.

Fact 2 Consider a configuration c, if α > 0.5, then p0̄(c) > αn−W (c)+2.

Our aim is to apply lemma 1 on the potential function F . We start by ana-
lyzing some special configurations c where W (c) 6 1.

Lemma 3. Consider a configuration c such that W (c) 6 1, then E[∆(F (c))] 6
−α(1− α)2.

Proof. If W (c) = 0 then all cells are in state 1 and F (c) is maximum. Firing any
cell leads to the creation of a white region of site at least 1 and thus E[∆(F (c))] 6
−α.

If W (c) = 1 then consider a cell i of c such that ci = 0. We have ci−1 =
ci+1 = 1. If W (δ(c)) = 0 then cells i− 1 and i+ 1 are not fired while cell i fires,
this event occurs with probability α2(1−α). If at least one of cells i− 1 or i+ 1
fires while cell i is inactive then W (δ(c)) > 2, this event occurs with probability
(1− (1− α)2)(1− α). Thus,

E[∆(F (c))] 6 α2(1− α)− (1− (1− α)2)(1− α)

E[∆(F (c))] 6 −2α(1− α)2.

Now, the difficulty lies in showing that E[∆(F (c))] 6 0 for all non stable
configurations c of potential F (c) 6 2n.

Lemma 4. Consider a configuration c such that 2 6 W (c) 6 n − 1 then
E[∆(F (c))] 6 0. Moreover, Pr{|∆(F (c))| > 1} > α(1− α)2.

Proof. Since a cellular automaton is shift invariant, we will now consider that
c0 = 0 and ∀i ∈ {n−W (c) + 1, . . . , n− 1}, ci = 0. Cells 0 and n−W (c) + 1 are
white active cells and cells of {n−W (c) + 2, . . . , n− 1} are white inactive cells.
We consider the random variableM for the white region of δ(c) containing cell 0
if δ(c)0 = 0, cell n−1 if δ(c)n−1 = 0 and maximum for the inclusion. If δ(c)0 = 1
and δ(c)n−1 = 1 then M = ∅ (this case may only occurs when W (c) = 2). For
i ∈ {0, . . . , n− 1}, cell i belongs to M if and only if:

– case A: n−W (c) + 2 < i 6 n− 1 or

7
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– case B1: ∀j ∈ {0, . . . , i}, δ(c)j = 0 or
– case B2: ∀j ∈ {i, . . . , n−W (c) + 1}, δ(c)j = 0.

For j ∈ {1, 2} we also call Bj(i) the event: case Bi is true for cell j (and thus
j belongs to M).

E[|M |] = E

 ∑
06i6n−1

1i∈M

 =
∑

06i6n−1

E[1i∈M ] =
∑

06i6n−1

Pr(i ∈M).

= W (c)− 2 +
∑

06i6n−W (c)+1

Pr(i ∈M)

= W (c)− 2 +
∑

06i6n−W (c)+1

[Pr(B1(i)) + Pr(B2(i))− Pr(B1(i) ∩B2(i))].

Since c0 = 0 and by lemma 2, we have Pr(B1(i)) > (1− α)αi. Then,

∑
06i6n−W (c)+1

Pr(B1(i)) >
∑

06i6n−W (c)+1

(1− α)αi

> 1− αn−W (c)+2

Similarly, we have Pr(B2) > 1−αn−W (c)+2. Note that the event B1(i)∩B2(i)
implies that δ(c) = 0̄. Then, Pr(B1(i) ∩B2(i)) = p0̄(c). We have:

E[|M |] >W (c)− 2αn−W (c)+2 − (n−W (c) + 2)p0̄(c)

Then,

E[∆(F (c))] 6W (c)− E[|M |]− (n+ 2)p0̄(c)

6 2αn−W (c)+2 + (n−W (c) + 2)p0̄(c)− (n+ 2)p0̄(c)

6 2αn−W (c)+2 −W (c)p0̄(c)

6 2αn−W (c)+2 − 2p0̄(c)

6 0.

Note that if cells 0 and n−W (c) + 1 do not fire and cell 1 fires then |M | >
W (c)+1. This event occurs with probability α(1−α)2 and thus Pr{|∆(F (c))| >
1} > α(1− α)2.

8
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Theorem 2. If α 6 0.5 then the expected convergence time of FLIP-IF-NOT-
ALL-0 on any initial configuration of size n is O(n2α−1).

Proof. Using lemma 1, lemma 3 and 4, we obtain that if α 6 0.5, the stochas-
tic process reaches a configuration of potential 0 after O(n2α−1) iterations on
expectation. Note that the factor (1 − α)2 is negligible since α 6 0.5. The only
configuration of potential 0 is 0̄.

4 Proving an upper bound

In this section, we will demonstrate that FLIP-IF-NOT-ALL-0 convergences
on exponential time on expectation when α is close enough to 1. To achieve
this goal we will use a coupling with oriented percolation. This coupling will be
done such that if the open cluster of the percolation is large enough then the
dynamics of the automaton convergences in exponential time on expectation.
Since we will use percolation on a non-standard topology, we start by adapting
here the classical results from percolation theory for this topology. We pursue
by the construction of the coupling.

4.1 Percolation

Consider a probability p, an integer n and the infinite randomly labeled oriented
graph L(p, n) = (V,E) (see figure 2) where V = {(i, j) ∈ N × {0, . . . , n} :
i + j is odd} is called the set of sites and E the set of bonds. For all sites
(i, j) ∈ V , i is the height of the site and j is the width of the site. The height and
width of a bond is the height and width of its origin. For all (i, j) ∈ V , there are
oriented bonds between site (i, j) and sites (i+ 1, j − 1) (if j 6= 0), (i+ 1, j + 1)
(if j 6= n), (i−1, j−1) (if j > 0 and i > 0) and (i−1, j+1) (if j 6= n and i > 0).
Bonds from a site of height i to a site of height i+ 1 have a probability p to be
labeled open and a probability 1−p to be labeled closed. These probabilities are
independent and identically distributed. Bonds from a site of height i to a site
of height i− 1 are labeled closed.

An open path of a randomly labeled graph is a path where all edges are open.
We denote by C the open cluster of L(p, n): C contains all sites such that there
exists an open path from a site of height 0 to this site.

In the next section we will use this percolation grid to prove the existence of
the exponential convergence time phase in FLIP-IF-NOT-ALL-0. To achieve
this goal, we will only need theorem 3. The following definitions are only intro-
duced to prove this theorem and will not be used subsequently. Our proof relies
on a classic method to obtain upper bounds for oriented percolation. Note that
this proof is very similar to the one used in [15] but for the clarity of the paper
we prefer to give here the whole adaptation of this proof.

The dual graph Ld(p, n) = (V d, Ed) (see figure 2) is a randomly labeled graph
where V d = {(i, j) ∈ N× {0, . . . , n} : i+ j is even} and for all (i, j) ∈ V d, there
are bonds between site (i, j) and sites (i+ 1, j− 1) (if j 6= 0) and (i+ 1, j+ 1) (if

9
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width

height

labeled open labeled open with probability p

height

width

primal dual

labeled closed

Fig. 2. A percolation graph with its dual graph.

j 6= n). For all (i, j) ∈ V d, there are oriented bonds between site (i, j) and sites
(i+ 1, j − 1) (if j 6= 0), (i+ 1, j + 1) (if j 6= n), (i− 1, j − 1) (if j > 0 and i > 0)
and (i− 1, j + 1) (if j 6= n and i > 0). Bonds from a site of width i to a site of
width i+ 1 have a probability p to be labeled open and a probability 1− p to be
labeled closed. These probabilities are independent and identically distributed.
Bonds from a site of width i to a site of width i− 1 are labeled open. We denote
by Cd the open cluster of Ld(p, n): Cd contains all sites such that there exists
an open path from a site of width 0 to this site.

By superposing L(p, n) and Ld(p, n), we can note that Ld is obtained by
rotating by π

2 clockwise the bonds of L(p, n) in their center, i.e. we consider the
bijection E → Ed where ∀i, j ∈ V :

– bond from site (i,j) to (i+1,j+1) is associated to bond from (i+1,j) to (i,j+1);
– bond from site (i+1,j) to (i,j+1) is associated to bond from (i+1,j+1) to

(i,j);
– bond from site (i+1,j+1) to (i,j) is associated to bond from (i,j+1) to (i+1,j);
– bond from site (i,j+1) to (i+1,j) is associated to bond from (i,j) to (i+1,j+1);

It is possible to design a coupling between L(p, n) and Ld(p, n) such that a bond
of L(p, n) is open if and only if the corresponding bond of Ld(p, n) is closed.
Since all the edges from a site of width j to a site of width j − 1 are open in the
dual graph, we have the following fact:

10

ha
l-0

07
33

11
9,

 v
er

si
on

 1
 - 

22
 O

ct
 2

01
2



Fact 3 If site (i, j) belongs to Cd then for all (k, l) ∈ V d such that i − j + l 6
k 6 i+ j + l, site (k, l) belongs to Cd.

Lemma 5. Let h be the minimal height of a site of width n of Cd. Then C
contains at least one site of height h− 1.

Proof. For all t ∈ {0, . . . , h−1}, we denote by rt the site of V d with the smallest
width among sites of height t which does not belong to Cd. By fact 3, the
difference of width between site rt an rt+1 is 1 or −1. We consider sites lt of
L(p, n) such that lt is of height t and the width of lt is equal to the width of rt
minus 1. This path is an open path of L(p, n) from a site of height 0 to a site of
height h− 1.

Lemma 6. If p > 162−1
162 , there exists ε > 0 such that the probability that Cd

contains a site (i, n) with i 6 2n + 1 is less than 1− ε.

Proof. Consider a site i of width 0 and a site j of width n, we denote by p(i, j)
the probability that there is an open path from site i to site j in Ld(p, n). The
length of a path from i to j is at least n− 1. Consider L > n− 1 then since the
degree of a vertex of Ld is less than 4 there is less than 3L path of length L from
site i to site j. Moreover, for each of these path, at least half of its links are from
a site of width i to a site of width i+ 1. Thus,

p(i, j) 6
∞∑

L=n−1

3L(1− p)L
2 6

(3
√

(1− p))n

1− 3
√

(1− p)
.

Consider Ld = {(i, 0) ∈ V d : i 6 2n−n+2} and Rd = {(i, n) ∈ V d : i 6 2n+1)}.
Since the cardinality of Ld ×Rd is less than 4n, the probability that there is an

open path from a site of Ld to a site of Rd is less than (12
√

(1−p))n

1−3
√

(1−p)
. When

p > 162−1
162 , there exists ε > 0 such that this probability is less than 1− ε. From

fact 3, Cd does not contain a site (i, n) such that i 6 2n.

Theorem 3. If p > 162−1
162 then there exists ε > 0 such that C contains a site of

height 2n with probability ε.

Proof. By lemma 6, there exists ε > 0 such that the probability that Cd contains
a site of width n and height less than 2n + 1 is at least ε when p > 162−1

162 . By
lemma 5, this event means that C contains a site of height 2n.

Note that the bound of 162−1
162 could be improved by more refined tools from

percolation theory. Nevertheless, these tools will only improve the final result of
theorem 5 by a negligible amount.

4.2 Coupling

Consider a random sequence of configurations (ct)t>0 evolving under FLIP-
IF-NOT-ALL-0 and α-asynchronous dynamics. The size of the configuration
is n. Consider a percolation grid L(p, n). Consider the following mapping (see
figure 3):
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0

1

2

3

4

5

6

7

8

9

0

1

2
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4

Fig. 3. the mapping from sites to cells.

Definition 7 (Mapping). We define g : V → {0, n}N as the injection which
associates the percolation site (i, j) to the cell j of configuration c2i.

Our aim is to design a coupling such that cells of g(C) are active. The coupling
will be defined recursively according to time and height. We denote by Ct the
sites of height t which are in the open cluster C.

Definition 8 (Correspondence criterion). We say that a space-time dia-
gram (ct)t>0 and a labeled directed graph L(p) satisfy the correspondence crite-
rion at step t if and only if the cells of g(Ct) have at least one of their neighbors
in a different state. We say that they satisfy the correspondence criterion if and
only if they satisfy the correspondence criterion for all t > 0.

Note that, satisfying the correspondence criterion implies that the cells
of g(C) are all active. The coupling will be define such if the correspondence
criterion is true at time t, it remains true at time t + 1. To achieve this goal
efficiently, we will consider only local criteria.

Definition 9 (Candidate). A site is a candidate of height t+ 1 if and only if
at least one of its predecessors is in Ct. We denote by Ĉt+1 the set of candidates
of height of t+ 1.

Definition 10 (Constrained cells). A cell cti is constrained at time t if and
only if ct+2

i ∈ g(V ) and g−1(ct+2
i ) is in Ĉt+1.

We have to find a way such that constrained cells possess a neighbor in a
different state than themselves after two iterations of FLIP-IF-NOT-ALL-0.
We will have to consider different patterns. For the rest of the paper, we will use

the following kind of notation to represent the patterns. Here, designs
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a set of two consecutive cells i and i + 1 such that ci = 0, ci+1 = 1 and the
arrowed cell i+ 1 is constrained.

Definition 11 (block). A block is a set of cells which are in the neighborhood

, , , , , , , , ,

, or .

Lemma 7. For any configuration, it is possible to compute a set of blocks such
that any constrained cell of the configuration is in exactly one block.

Proof. To prove that any constrained cell can belong to a block, we enumerate
all the possible neighborhoods of the cell (see figure 4).

the cell is not constrained

Fig. 4. Proof that any constrained cell can be assigned in a block.

Now, consider a set B of blocks such that each constrained cell appears in
at least one block of B. We show how to find a set B′ of blocks such that
redundancies can be eliminated, i. e. each cell appears in exactly one block of
B′. If a constrained cell belongs to two different blocks of B, we modify the two
blocks like this:

– if a constrained cell belongs to block and another block then remove

block . Apply the same method to blocks , or .

– if the white constrained cell of a block is the same white constrained

cell of a block , then these two blocks can be replaced by block

.
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– if the black constrained cell of a block is the same black constrained

cell of a block , then this two blocks can be replaced by block

.

– if the white constrained cell of a block is also the left white con-

strained cell of a block , then remove block .

– if the white constrained cell of a block is also the right white con-

strained cell of a block , then the pattern can be

decomposed as .

– if the black constrained cell of a block is also the left black con-

strained cell of a block , then the pattern can

be decomposed as .

– if the white constrained cell of a block is also the white constrained

cell of a block , then remove block .

– the analysis of block is symmetric to the analysis of block .

– if the white constrained cell of a block is the same white constrained

cell of a block , then these two blocks can be replaced by block

.

– if the black constrained cell of a block is the same black constrained

cell of a block , then this two blocks can be replaced by block

.

– if the black constrained cell of a block is also the left black con-

strained cell of a block , then remove block .

– if the black constrained cell of a block is also the right black con-

strained cell of a block , then the pattern can be

decomposed as .

– if the white constrained cell of a block is also the left white con-

strained cell of a block , then the pattern can

be decomposed as .

14

ha
l-0

07
33

11
9,

 v
er

si
on

 1
 - 

22
 O

ct
 2

01
2



– if the white constrained cell of a block is also the right white con-

strained cell of a block , then remove block .

– the analysis of block is symmetric to the analysis of block .

– if the white constrained cell of a block is also the left white con-

strained cell of a block , then the pattern can

be decomposed as .

– if the white constrained cell of a block is also the right white con-

strained cell of a block , then the pattern can

be decomposed as .

– if the black constrained cell of a block is also the left black con-

strained cell of a block , then the pattern can

be decomposed as .

– if the black constrained cell of a block is also the right black con-

strained cell of a block , then the pattern can

be decomposed as .
– there are no other possible redundancies between blocks.

Note that these operations either remove a block or replace a block by smaller
ones. Thus, the process ends and all redundancies are removed.

Lemma 8. For any block, there is a probability at least α12 that all the con-
strained cell of the block possess a neighbor in a different state than themselves
after two iterations of FLIP-IF-NOT-ALL-0.

Proof. Figure 5 shows that for any block, all the constrained cell of the block
can satisfy the correspondence criterion by firing at most 12 cells of the block
during the next two steps.

Fig. 5. How to validate the correspondence criterion for any block. The cells drawn at
time t and t+ 1 are either inactive or fired.

With the previous lemma, we can achieve our coupling.
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Theorem 4. If α > 12
√

1− (1− p)6 then we can define a coupling such that the
correspondence criterion is true for all t ∈ N.

Proof. To prove this result, we show that if α > 12
√

1− (1− p)6 then there is a
coupling such that the correspondence criterion is true for all t > 0. Consider
n ∈ N and the initial configuration c0 where c0i = 1 if and only if i = 0 mod 2. The
correspondence criterion is true at time 0. We suppose that the correspondence
criterion is true at time t. We explain how to build a coupling such that this
criterion stays true at time t+ 1. Using lemma 7, it is possible to find a set B of
blocks such that each constrained cell appears exactly in one block of B. Each
cell which is not in a set of B fires with probability α independently from the
other cells. Each bond which does not end to a candidate at time t+ 2 is open
with probability p independently from the other bonds. Now consider a block
of B, we consider a random variable X uniformly distributed between 0 and 1
and independent from any other random variable of the coupling. According to
lemma 8, there is a probability at least α12 that all the constrained cell of a
block possess a neighbor in a different state than themselves after two iterations
of FLIP-IF-NOT-ALL-0. Since α > 12

√
1− (1− p)6, and a block contains at

most three constrained cells, it is possible to define a coupling using the random
variable X (see [19]) such that:

– each cell fires with probability α independently from other cell;
– each bond is open with probability p independently from other bond;
– if 0 6 X 6 1 − (1 − p)6 then the cells of the block fire such that all the

constrained cell of a block possesses a neighbor in a different state than
themselves after two iterations of FLIP-IF-NOT-ALL-0;

– if 1− (1− p)6 < X 6 1 then all the bonds are closed.

Theorem 5. Consider a sequence of configurations (ct)t>0 evolving under rule
FLIP-IF-NOT-ALL-0 and α-asynchronous dynamics where c0 contains at least
one black cell and one white cell, if α > 12

√
1− (1− ( 162−1

162 )2)6 then E[T ] =

Ω(2n).

Proof. Consider that α > 12

√
1− (1− 162−1

162 )6 then its possible to define the

coupling between FLIP-IF-NO-ALL-0 and L(p, n) with p > 162−1
162 . According

to theorem 4, there exists an initial configuration such that the correspondence
criterion is true for all t > 0. According to lemma 3, there exists ε > 0 such
that there is a site of height 2n in the open cluster with probability at least
ε. According to the coupling definition, the probability that at least one cell is
active in c2

n

is greater than ε.

5 Future Works

To conclude, we presented here the first formal proof of a phase transition in
simple stochastic cellular automata. We were not able to determine the exact
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value of αc but this question is still open for oriented percolation as well. The
proof presented here cannot be directly extended for proving polynomial time
convergence in expectation for 0.5 6 α 6 αc because lemma 2 became false when
α > 0.5.

First results on the analysis of phase transition in α-asynchronous cellular
automata were presented in [19]. This study was made on FLIP-IF-NOT-ALL-
EQUAL. The behavior of this automata seems more interesting than the one of
FLIP-IF-NOT-ALL-0. Unfortunately, its analysis is harder because there are
two stable configurations for FLIP-IF-NOT-ALL-EQUAL: 0̄ and 1̄. Lemma 2
does not apply: black cells can be inactive. Thus, the proof presented cannot be
extended for this automata and its analysis remains open.
Acknowledgements: Thanks to Nicolas Schabanel for the simulations of
FLIP-IF-NOT-ALL-0 and his useful comments.
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