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Differential operators on supercircle:

conformally equivariant quantization and symbol calculus

H. Gargoubi ‡ N. Mellouli § V. Ovsienko ¶

Abstract

We consider the supercircle S1|1 equipped with the standard contact structure. The
conformal Lie superalgebra K(1) acts on S1|1 as the Lie superalgebra of contact vector
fields; it contains the Möbius superalgebra osp(1|2). We study the space of linear differential
operators on weighted densities as a module over osp(1|2). We introduce the canonical
isomorphism between this space and the corresponding space of symbols and find interesting
resonant cases where such an isomorphism does not exist.

1 Introduction

Conformally and projectively equivariant symbol calculus and quantization (see, e.g., [18, 6]) is
the canonical way to define a “total symbol” of a differential operator on a manifold equipped
with a G-structure (e.g., projective or conformal structure). In the case of supermanifolds, the
only information available at the moment is for the supercircle S1|1 with a contact structure,
see [4].

The Lie superalgebra, K(1) of contact vector fields on S1|1 is often called a superconformal
algebra, cf. [14]. This algebra and its central extension are the simplest super-generalizations of
the Witt and Virasoro algebras, respectively. The Lie superalgebra osp(1|2) plays on S1|1 the
same crucial role that sl(2) plays on S1.

The main object of our study is the space of linear differential operators acting on weighted
densities. The space Fλ of weighted densities with weight λ ∈ C (or λ-densities for short) is
a module over K(1). Therefore, the space Dλ,µ of linear differential operators from Fλ to Fµ

is also a K(1)-module. Each module Dλ,µ has a natural filtration by the order of differential
operators; the graded module grDλ,µ is called the space of symbols. We restrict the K(1)-module
structures to a particular subalgebra osp(1|2) and look for osp(1|2)-isomorphisms

σ : Dλ,µ → grDλ,µ, Q : grDλ,µ → Dλ,µ,

where Q = σ−1. These isomorphisms are called the osp(1|2)-equivariant symbol map and quan-
tization map, respectively.

For almost all values (λ, µ), we prove the existence and uniqueness (up to normalization) of
the osp(1|2)-equivariant symbol map σ and calculate its explicit formula. We also calculate its
inverse Q = σ−1 generalizing the quantization map from [4].
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We consider particular values of the weights that we call resonant which satisfy

µ− λ =
1

2
, 1,

3

2
, 2, . . . (1.1)

We prove that for these values there is no osp(1|2)-isomorphism between the space of linear
differential operators and the corresponding space of symbols, except for the special values:

λ =
1 −m

4
, µ =

1 +m

4
, (1.2)

where m is odd. We calculate the cohomological obstructions to existence of such an isomor-
phism.

The K(1)-modules Dλ,µ, where (λ, µ) as in (1.2), are of particular interest. These modules
are characterized by the existence of osp(1|2)-invariants. Let us mention that in the classical case
of S1 the corresponding modules are closely related to the Virasoro and Adler-Gelfand-Dickey
algebras, see, e.g., [24].

Our main tool is the finer filtration on the space of differential operators Dλ,µ:

D0
λ,µ ⊂ D

1
2

λ,µ ⊂ D1
λ,µ ⊂ D

3
2

λ,µ ⊂ · · · ⊂ D
ℓ− 1

2

λ,µ ⊂ Dℓ
λ,µ ⊂ · · · (1.3)

We introduce the notion of differential operators of semi-integer order. In particular, the space
VectC(S1|1) of all vector fields (2.2) is, as K(1)-module, a direct sum of two submodules: K(1)
itself and the space of tangent vector fields. The finer filtration is stable with respect to the
K(1)-action.

It worth noticing that the results of this paper remain true in the case of pseudodifferential
operators, as considered in [4], but we will not dwell on it.

2 Geometry of the supercircle

The supercircle S1|1 is the simplest supermanifold of dimension 1|1 generalizing S1. In order to
fix notation, let us give here the basic definitions of geometric objects on S1|1; for more details,
see [2, 19, 21, 15].

We define the supercircle S1|1 in terms of its superalgebra of functions, denoted by C∞
C

(S1|1)
and consisting of elements of the form

f(x, ξ) = f0(x) + ξ f1(x) (2.1)

where x is an arbitrary parameter on S1 and ξ is an (formal Grassmann) coordinate such that
ξ2 = 0. The parity function p is defined by p(f(x)) = 0 and p(ξ) = 1.

2.1 Vector fields and differential forms

A vector field on S1|1 is a superderivation of C∞
C

(S1|1). Every vector field can be expressed in
coordinates in terms of partial derivatives:

X = f
∂

∂x
+ g

∂

∂ξ
, (2.2)

where f, g ∈ C∞
C

(S1|1). The space of vector fields is a Lie superalgebra denoted by VectC(S1|1).
Let Ω1(S1|1) be the rank 1|1 right C∞

C
(S1|1)-module with basis dx and dξ; we interpret it as the

right dual over C∞
C

(S1|1) to the left C∞
C

(S1|1)-module VectC(S1|1), by setting 〈∂yi
, dyj〉 = δij for

y = (x, ξ). The space Ω1(S1|1) is a left module over VectC(S1|1), the action being given by the
Lie derivative:

〈X,LY α〉 := 〈[X,Y ], α〉.
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2.2 Lie superalgebra of contact vector fields

The standard contact structure1 on S1|1 is defined as a codimension 1 non-integrable distribution
〈D〉 on S1|1, i.e., a subbundle in TS1|1 generated by the odd vector field

D =
∂

∂ξ
− ξ

∂

∂x
. (2.3)

This contact structure can be equivalently defined as the kernel of the differential 1-form

α = dx+ ξ dξ. (2.4)

A vector field X on S1|1 is said to be contact if it preserves the contact distribution:

[X,D] = ψXD,

where ψX ∈ C∞
C

(S1|1) is a function depending on X. The space of contact vector fields is a Lie
superalgebra denoted by K(1). The following statement is well-known.

Lemma 2.1. Every contact vector field can be expressed, for any f ∈ C∞
C

(S1|1), as2

Xf = −f D
2
+

1

2
D(f)D, where D =

∂

∂ξ
+ ξ

∂

∂x
. (2.5)

The vector field (2.5) is said to be the contact vector field with contact Hamiltonian f . One
checks that

LXf
α = f ′ α, [Xf ,D] = −

1

2
f ′D. (2.6)

The contact bracket is defined by [Xf ,Xg] = X{f,g}. The space C∞
C

(S1|1) is thus equipped
with a Lie superalgebra structure isomorphic to K(1). The explicit formula can be easily calcu-
lated:

{f, g} = fg′ − f ′g + (−1)p(f)(p(g)+1) 1

2
D(f)D(g). (2.7)

2.3 Projective/conformal symmetries: osp(1|2)-action

In the case of S1, the notions of projective and conformal structures coincide and are defined
by the action of sl(2). In the adapted (local) coordinate x on S1 this action is spanned by three
vector fields:

sl(2) = Span

(
∂

∂x
, x

∂

∂x
, x2 ∂

∂x

)
(2.8)

corresponding to the fraction-linear transformations

x 7→
ax+ b

cx+ d
, ad− bc = 1.

A projective structure on S1 is given by an atlas with fraction-linear coordinate transformations
(in other words, by an atlas such that the sl(2)-action (2.8) is well-defined). Classification of
projective structures on S1 is equivalent to classification of coadjoint orbits of the Virasoro
algebra (see [16], [24]).

1This structure is famous in mathematical physics, it is also known as the “SUSY-structure”.
2For interpretation of the fields D and D, see [26].
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A projective/conformal structure on S1|1 is defined as a (local) action of the orthosymplectic
Lie superalgebra osp(1|2) generated by D and xD:

osp(1|2)0 = Span

(
X1 =

∂

∂x
, Xx = x

∂

∂x
+

1

2
ξ
∂

∂ξ
, Xx2 = x2 ∂

∂x
+ xξ

∂

∂ξ

)
,

osp(1|2)1 = Span (Xξ = D, Xξx = xD) .

(2.9)

Remark 2.2. The osp(1|2)-action (2.9) is the infinitesimal version of the contact fractional-
linear transformations

(x, ξ) 7→

(
ax+ b+ γξ

cx+ d+ δξ
,
αx+ β + eξ

cx+ d+ δξ

)
, (2.10)

where ad− bc− αβ = 1, e2 + 2γδ = 1, αe = aδ − cγ and βe = bδ − dγ (cf. [4]).

As in the S1 case, these contact fraction-linear transformations preserve the action (2.9) so
that atlases compatible with the projective structure are precisely those atlases for which the
action (2.9) is well defined. For a classification of projective/conformal structures on S1|1, also
equivalent to classification of the orbits in the coadjoint representations of the Neveu-Schwarz
and Ramond superalgebras, see [23].

Remark 2.3. Eq. (2.6) implies that the (super)centralizer of D is spanned by Xξ = D and
X1 = D2.

3 Modules of weighted densities

We introduce a 1-parameter family of modules over the Lie superalgebra K(1). As vector spaces
all these modules are isomorphic to C∞

C
(S1|1), but not as K(1)-modules.

For every contact vector field Xf , define a 1-parameter family of first-order differential op-
erators on C∞

C
(S1|1):

Lλ
Xf

= Xf + λf ′, λ ∈ C. (3.1)

One easily checks the the map Xf 7→ Lλ
Xf

is a homomorphism of Lie superalgebras, i.e.,

[Lλ
Xf
, Lλ

Xg
] = Lλ

[Xf ,Xg], for every λ. One thus obtains a 1-parameter family of K(1)-modules on

C∞
C

(S1|1) that we denote Fλ and call the space of densities of weight λ (or λ-densities for short).

The space of 1-forms proportional to α is the space of sections of the line bundle 〈D〉
⊥
⊂ T ∗

C
S1|1

over S1|1, i.e., the line bundle of covectors orthogonal to the contact distribution. A λ-density

is a section of the line bundle
(
〈D〉

⊥
)⊗λ

. It is then natural to express every λ-density in terms

of the contact form α as
φ = f αλ, where f ∈ C∞(S1|1).

Example 3.1. (a) The module F0 is nothing but the space of functions C∞(S1|1).
(b) The module F1 is the space of 1-forms proportional to α.
(c) A more interesting example is provided by the Lie superalgebra K(1) ∼= F−1 viewed as a

module over itself, see below.

As K(1)-module, the space of volume forms on S1|1 is isomorphic (up to parity, perhaps) to
F 1

2
. Therefore, Berezin integral ([2, 19]) B : F 1

2
→ C can be given, for any f = f0(x) + ξ f1(x),

by the formula

B(fα
1
2 ) :=

∫

S1

f1(x) dx.
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So the product of densities composed with B yields a bilinear K(1)-invariant form:

〈·, ·〉 : Fλ ⊗Fµ → C, λ+ µ =
1

2
. (3.2)

It turns out that the adjoint K(1)-module is isomorphic to F−1. In other words, a contact
Hamiltonian is a density of weight −1 rather than a function:

{f, g} = L−1
Xf
g. (3.3)

This statement can be reformulated as follows.

Corollary 3.2. For a contact vector field Xf given by (2.5), the expression

σ(Xf ) := f α−1 (3.4)

is a well defined −1-density. The expression (3.4) is K(1)-invariant and independent of the
choice of the contact form α.

3.1 Poisson algebra of weighted densities

The contact bracket (2.7) extends to densities of arbitrary weight: { , } : Fλ ⊗ Fµ → Fλ+µ+1

and defines a structure of Poisson Lie superalgebra. Explicitly ([20])

{f, g} = λfg′ − µf ′g + (−1)p(f)(p(g)+1) 1

2
D(f)D(g). (3.5)

The following statement can be checked directly (cf. Grozman’s list of invariant operators [13]).

Proposition 3.3. The operation (3.5) is K(1)-invariant and satisfies the Jacobi and Leibniz
identities makes the space of weighted densities on S1|1 a Poisson superalgebra.

3.2 Splitting of vector fields

Proposition 3.4. There is an isomorphism of K(1)-modules

Vect(S1|1) ∼= F− 1
2
⊕F−1. (3.6)

Proof. The submodule F−1 ⊂ VectC(S1|1) is the subalgebra K(1) itself (see Corollary 3.2); the
submodule F− 1

2
⊂ VectC(S1|1), consists of the vector fields tangent to the contact distribution:

X = gD, where g is an arbitrary function.

Note that an analog of Proposition 3.4 holds for any contact (super)manifold (see [22]).

4 Differential operators on weighted densities

For differential operators on supermanifolds, see [3, 21, 4, 1].
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4.1 The modules Dλ,µ: definition

The classical Peetre theorem [25] implies that the following two definitions are equivalent. They
reflect two different aspects of the notion: geometric and algebraic.

1) A linear map A : Fλ → Fµ is called a differential operator if it is local, that is, if it
preserves the supports of the arguments: SuppA(φ) ⊂ Suppφ, where the support of a λ-density
is a subset of S1 given by the union of the supports of the even and the odd parts.

2) A linear map A : Fλ → Fµ is a differential operator if there exists an integer k such that
[· · · [A, f1], · · · , fk+1] = 0 for any functions f1, . . . , fk+1. The minimal such k is called the order
of A.

We denote Dλ,µ the space of linear differential operators from Fλ to Fµ and Dk
λ,µ the space

of linear differential operators of order k. One has a filtration

D0
λ,µ ⊂ D1

λ,µ ⊂ · · · ⊂ Dk
λ,µ ⊂ · · ·

Example 4.1. The space of zeroth-order operators is D0
λ,µ

∼= Fµ−λ; it consists of the operators
of multiplication by (µ − λ)-densities. The space of first-order operators on densities of fixed
weight λ = µ is D1

λ,λ
∼= VectC(S1|1) ⊕ C∞

C
(S1|1).

The space Dλ,µ is naturally a module over K(1); the action being given by the commutator
with Lie derivative:

Lλ,µ
Xf

(A) := Lµ
Xf

◦ A−A ◦ Lλ
Xf
. (4.1)

The above filtration is obviously K(1)-invariant.

Proposition 4.2. (i) Every differential operator A ∈ Dλ,µ can be expressed in the form:

A(f αλ) =

ℓ∑

i=0

ai(x, ξ)D
i
(f)αµ, (4.2)

where the coefficients ai(x, ξ) are arbitrary functions and ℓ ∈ N.
(ii) If A ∈ Dk

λ,µ, then ℓ = 2k.

Proof. Part (i). Every DO on S1 is a (finite) expression A =
∑
i≥0

ai(x)
(

∂
∂x

)i
, see [25]. It follows

that a differential operator on S1|1 can be expressed as a 2 × 2-matrix of differential operators
on S1, or, equivalently,

A =
∑

i≥0

ãi(x, ξ)

(
∂

∂x

)i

+
∑

i≥0

b̃i(x, ξ)

(
∂

∂x

)i ∂

∂ξ
.

Since ∂
∂x

= −D
2
, every differential operator A is a polynomial expression in D.

Part (ii) is straightforward.

Remark 4.3. (a) There is another way to express a differential operator in local coordinates:

A(f αλ) =
∑

i≥0

bi(x, ξ)D
i (f)αµ. (4.3)

where the coefficients bi are related to ai via

b2i = (−1)i(a2i − 2ξ a2i−1), b2i+1 = (−1)ia2i+1. (4.4)

Formula (4.4) follows from the expression D = D − 2ξ D2.

(b) Clearly, b(x, ξ)Di ∈ D
[ i+1

2 ]
λ,µ , where [ℓ] is the integral part of a real number ℓ.
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The finer filtration (1.3) on the space Dλ,µ (clearly stable under the K(1)-action) is given by

the spaces D
ℓ
2

λ,µ of differential operators (4.2).

4.2 Conjugation of differential operators

There exists a K(1)-invariant conjugation map ∗ : Dλ,µ → D 1
2
−µ, 1

2
−λ defined by

〈Aφ,ψ〉 = (−1)p(A)p(φ) 〈φ,A∗ψ〉 (4.5)

for any A ∈ Dλ,µ and φ ∈ Fλ, ψ ∈ F 1
2
−µ, where 〈·, ·〉 is the bilinear form (3.2).

Clearly, ∗ is a K(1)-isomorphism Dℓ
λ,µ

∼= Dℓ
1
2
−µ, 1

2
−λ

for every ℓ ∈ 1
2 N. In the particular case

λ + µ = 1
2 , the map ∗ is an involution. The module Dℓ

λ, 1
2
−λ

splits into a direct sum of the

submodules of symmetric and skew-symmetric operators.
The explicit formula of the conjugation map is easy to calculate:

∗ : D
k
7→ (−1)[

k+1
2 ]D

k
. (4.6)

4.3 The principal symbol map

The highest order coefficient in (4.2) has the following geometric meaning.

Proposition 4.4. For every ℓ ∈ 1
2 N, we have

Dℓ
λ,µ/D

ℓ− 1
2

λ,µ
∼= Fµ−λ−ℓ. (4.7)

Proof. For a differential operator A ∈ Dℓ
λ,µ given by (4.2), one easily checks that the expression

σpr(A) := aℓ(x, ξ)α
µ−λ−ℓ (4.8)

is a well-defined (µ− λ− ℓ)-density.

The K(1)-invariant projection

σpr : Dℓ
λ,µ → Fµ−λ−ℓ (4.9)

will be called the principal symbol map.

4.4 Space of symbols of differential operators

Consider the graded K(1)-module grDλ,µ associated with the filtration (1.3). Proposition 4.4
implies that this K(1)-module is a direct sum of density modules:

grDλ,µ =
∞⊕

i=0

Fµ−λ− i
2

.

Note that this module depends only on the shift, µ − λ, of the weights and not on µ and
λ independently. We call this K(1)-module the space of symbols of differential operators and
denote it Sµ−λ. The space of ℓ-th order symbols is

Sℓ
µ−λ :=

2ℓ⊕

i=0

Fµ−λ− i
2

, where ℓ ∈
1

2
N. (4.10)
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5 Non-trivial cohomology classes of Lie superalgebra osp(1|2)

Given a Lie (super)algebra and its module, what is the corresponding cohomology ring? We give
here some partial information aboutH0(osp(1|2);Dλ,µ) (the space of invariants) andH1(osp(1|2);Dλ,µ).
More precisely, we exhibit non-trivial cocyles and conjecture that these cocyles generate the re-
spective cohomology spaces.

Proposition 5.1. For every k = 1, 3, 5 . . ., the differential operator

D
k

: F 1−k
4

→ F 1+k
4

(5.1)

is osp(1|2)-invariant.

The operators (5.1) were found in [11, 12], as analogs of the Bol operators on S1, (see,
e.g., [24]). One can prove that Proposition 5.1 provides the complete list of osp(1|2)-invariant
operators on weighted densities, but we will not need this.

One more special property of the modules Dλ,µ with (λ, µ) given by (1.2) is as follows.

Theorem 5.2. For every k = 1, 3, 5 . . ., the linear map γk : osp(1|2) → D 1−k
4

, 1+k
4

, defined by

γk(Xf ) = D3(f)D
k−1

+
k − 1

2
D4(f)D

k−2
, (5.2)

where f is the contact Hamiltonian of an element Xf ∈ osp(1|2), is a non-trivial 1-cocycle.

Proof. To prove that γk is a 1-cocycle, consider a map γλ
k : osp(1|2) → D

λ,λ+ k
2

defined by the

same formula (5.2) for arbitrary λ. One checks that

L
λ+ k

2

Xf
◦D

k
− (−1)p(f)D

k
◦ Lλ

Xf
=
(
λ+ k−1

4

)
γk(Xf ).

Hence, γλ
k = 4

4λ+k−1 δ D
k
, so it satisfies the 1-cocycle condition if λ 6= 1−k

4 . By continuity, this

is also true for λ = 1−k
4 .

The 1-cocycle γλ
k is a coboundary for any λ 6= 1−k

4 . Let us prove that in the case λ = 1−k
4 ,

this cocycle is indeed non-trivial.
We will need the explicit formula for γk in terms of the basis of osp(1|2): it vanishes on all

elements Xf of osp(1|2) except f = x2 or xξ, for which

γk(Xx2) = 2ξ D
k−1

+ k−1
2 D

k−2
,

γk(Xxξ) = D
k−1

.
(5.3)

Assume that there exists an operator A ∈ D 1−k
4

, 1+k
4

such that γk is equal to δ A, where

(δ A) (Xf ) = L
1+k
4

Xf
◦ A− (−1)p(f) A ◦ L

1−k
4

Xf
.

The operator A is of the form A = amD
m

+ · · ·+ a0; its principal symbol is a density of degree
µ−λ− m

2 = k−m
2 . If m > k, then, the principal symbol of (δ A) (Xf ) is not identically zero since

there is no osp(1|2)-invariant density (except the constant function). Therefore, m ≤ k and

A = ak D
k

+ · · · + a0, where ak = const. According to Proposition 5.1, the term D
k

commutes

with the action of osp(1|2), so it remains to consider A = ak−1D
k−1

+ · · · + a0 with ak−1 6≡ 0.

8



The principal symbol of A is a 1
2 -density ak−1 α

1
2 . By assumption, the principal symbol of the

operator is

σpr(γk(Xf )) = L
1
2

Xf

(
ak−1 α

1
2

)

Finally, the relation γk(Xf ) = 0 implies that ak−1 is constant contradicting (5.3).

Remark 5.3. 1) The cocycle γk is odd (since k in (5.2) is odd).
2) One checks that

γk(Xf )∗ = (−1)
k−1

2 γk(Xf ) for each Xf ∈ osp(1|2).

Computation of the cohomology of osp(1|2) with coefficients in Dλ,µ is an interesting open
problem. We formulate a conjecture on the structure of the first cohomology space.

Conjecture 5.4. One has H1(osp(1|2);Dλ,µ) = C
0|1 if and only if (λ, µ) = (1−k

4 , 1+k
4 ), with

odd k and spanned by the cocycle γk. Otherwise, this cohomology space is trivial.

In the case of S1 and the Lie algebra sl(2) a similar result was obtained in [17].

6 Equivariant quantization and symbol maps

We restrict the K(1)-action on Dℓ
λ,µ to the subalgebra osp(1|2) and look for an osp(1|2)-isomorphism

between Dℓ
λ,µ and Sℓ

µ−λ providing a “total symbol” of differential operators. We prove existence
and uniqueness (up to normalization) of such an isomorphism for generic (λ, µ) and investigate
the resonant case.

6.1 The main theorem

A map σ : Dλ,µ → Sµ−λ is called a symbol map if it is bijective and for every ℓ ∈ 1
2 N the

following diagram is commutative:

Dℓ
λ,µ

σ
−−−→ Sℓ

µ−λ

σpr

y
y

Fµ−λ−ℓ
Id

−−−→ Fµ−λ−ℓ

(6.1)

where the right arrow is the projection. In other words, the highest-order term of σ coincides
with the principal symbol map. The inverse map, Q = σ−1, is called the quantization map.

Recall that we call (λ, µ) non-resonant if µ− λ is not as in (1.1). The following statement
is the main result of this paper; the proof will be given in the next section.

Theorem 6.1. (i) If µ−λ is non-resonant, then Dλ,µ
∼= Sµ−λ as osp(1|2)-modules, the isomor-

phism being given by the unique osp(1|2)-invariant symbol map

σλ,µ(A) =

k∑

n=0

(−1)[
n+1

2 ]




[
k
2

]
[

2n+1−(−1)n+k

4

]





[
k−1
2

]
+ 2λ

[
2n+1+(−1)n+k

4

]



(
2(µ− λ) + n− k − 1

[
n+1

2

]
) Dn(a)αµ−λ+ n−k

2 (6.2)

9



where A = a(x, ξ)D
k
∈ D

k
2

λ,µ.
(ii) In the resonant case the osp(1|2)-modules Dλ,µ and Sµ−λ are not isomorphic, except if

(λ, µ) are given by (1.2).

Note that the binomial coefficients in (6.2) are defined by
(
ν
q

)
= ν(ν−1)···(ν−q+1)

q! . This ex-
pression makes sense for arbitrary ν ∈ C.

Remark 6.2. The map σλ,µ is defined with the help of local coordinates (x, ξ). Nevertheless,
this map is independent with respect to the fractional-linear coordinate transformations (2.10).
In particular, if one fixes a projective structure on S1|1, the map σλ,µ is globally defined. This
follows from the osp(1|2)-equivariance.

Let us now give the explicit formula for the quantization map.

Proposition 6.3. The map Qλ,µ = σ−1
λ,µ associates to a tensor density ϕ = f αµ−λ− k

2 the
following differential operator from Fλ to Fµ:

Qλ,µ(ϕ) =
k∑

n=0




[
k
2

]
[

2n+1−(−1)n+k

4

]





[
k−1
2

]
+ 2λ

[
2n+1+(−1)n+k

4

]



(
2(µ− λ) − k +

[
n−1

2

]
[

n+1
2

]
) Dn(f)D

k−n
. (6.3)

Remark 6.4. In [4], the osp(1|2)-quantization map was written down in the particular case λ =
µ = 0. The authors use the form (4.3) of a differential operator. One can rewrite formula (6.3)
using the same notations:

Qλ,µ(f αµ−λ− k
2 ) =

∑

n≥0

( [
k
2

]
[

n+1
2

]
)( [

k−1
2

]
+ 2λ

[
n
2

]
)

(
k + 2(λ− µ)
[

n+1
2

]
) Dn(f)Dk−n,

where the upper bound for summation is 2
[

k+1
2

]
. In the particular case λ = µ = 0, this formula

coincides with formula (7.5) of [4].

6.2 Proof of Theorem 6.1

The proof of Theorem 6.1 consists of three parts. First, we show that the symbol map (6.2) is,
indeed, osp(1|2)-equivariant. We also prove the existence for the special values (1.2). Then we
prove the uniqueness of the symbol map (6.2). Finally, we show that, for the resonant values of
µ− λ, there is no isomorphism between Dλ,µ and Sµ−λ if λ and µ are not given by (1.2).

A. Existence and explicit formula. Consider symbol maps given by differential operators
of the form

σ(A) =
k∑

n=0

βk
n(x, ξ)Dn(a)αµ−λ+ n−k

2 , (6.4)

where A = a(x, ξ)D
k
, and βk

n(x, ξ) ∈ C∞
C

(S1|1) are arbitrary functions, and calculate the con-
dition of osp(1|2)-equivariance. Clearly, it suffices to impose invariance with respect to D and
xD and the following is straightforward.

10



Lemma 6.5. (i) A symbol map (6.4) commutes with the action of D if and only if the coefficients
βk

n(x, ξ) are constants (i.e., do not depend on x, ξ and on the parity of A).
(ii) A symbol map (6.4) commutes with the action of xD if and only if the following system

is satisfied:
pβ2s−1

2m−1 = mβ2s
2m,

sβ2s−1
2m = (2(λ− µ) −m+ 2s)β2s

2m+1,

(2λ + s)β2s
2m−1 = mβ2s+1

2m ,

(2λ+ s)β2s
2m = (2(λ− µ) −m+ 2s+ 1)β2s+1

2m+1,

(6.5)

where 1 ≤ s ≤
[

k
2

]
and 0 ≤ m ≤ s.

If µ− λ is non-resonant, then it is easy to see that the solution of the system (6.5) with the
initial condition βk

0 = 1 (which is equivalent to the fact that σ preserves the principal symbol)
is unique and given by (6.2).

If µ− λ is resonant and given by (1.2), then the system (6.5) can also be easily solved. The
solution is no longer unique since the system is split into separate independent parts. Note
that in this case, the explicit solution can still be obtained from formula (6.2) if one chooses an
arbitrary resolution of 0/0-singularities.

B. Uniqueness. Consider the non-resonant case. The main ingredient of our proof of
the uniqueness of an osp(1|2)-equivariant symbol map is the locality property and Definition
1 of differential operators, see Section 4.1. This idea is borrowed from [18]. Since any sl(2)-
equivariant map

T : Fν1
(S1) → Fν2

(S1), (6.6)

with ν1 ≥ ν2, is local (see Theorem 5.1 from [18]), so is the symbol map. Indeed, given two
osp(1|2)-equivariant symbol maps σ1 and σ2, the map

σ−1
2 ◦ σ1 : Sµ−λ → Sµ−λ

is osp(1|2)-equivariant. Decomposition (4.10) shows that σ−1
2 ◦ σ1 is a sum of maps (6.6).

Therefore, σ−1
2 ◦ σ1 is a differential operator. It follows that the general form of a symbol map

σ commuting with the action of osp(1|2) is given by formula (6.4). However, we already proved
in part A that such a symbol map is unique and given by (6.2).

C. Cohomological obstructions. Assume now that the shift of the weight is resonant,
µ− λ = m

2 , but (λ, µ) are not as in (1.2). We will prove that there is no osp(1|2)-isomorphism
between Dλ,µ and Sµ−λ in this case. Indeed, recall ([7], Section 1.4.5) that any exact sequence
of g-modules

0 −−−→ V
i

−−−→ W −−−→ U −−−→ 0,

defines an element in H1(g; Hom(U, V )): for any section τ : U →W , we define a 1-cocycle on g

by
cτ (X) (u) = i−1((ρX ◦ τ − (−1)p(τ)p(ρX ) τ ◦ ρX) (u)),

where u ∈ U and ρX is the action of X ∈ g; the cohomology class [cτ ] of cτ is independent of
the choice of τ . The sequence is split if and only if [cτ ] = 0.

The exact sequence of osp(1|2)-modules

0 −−−→ D
m−1

2

λ,µ

i
−−−→ D

m
2

λ,µ

σpr
−−−→ F0 −−−→ 0, (6.7)
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where i is the inclusion, defines an element of H1(osp(1|2);Hom(F0,D
m−1

2

λ,µ )); the principal sym-

bol map σpr : D
m−1

2

λ,µ → F 1
2

defines c̄ ∈ H1(osp(1|2);Hom(F0,F 1
2
)). Set: τ : a 7→ aD

m
. The

following lemma is a straightforward computation.

Lemma 6.6. If m is odd, then c̄ =
(
λ+ m−1

4

)
γ1; if m is even, then c̄ = m

2 γ1.

If c̄ 6= 0, then the sequence (6.7) is not split. The module D
m
2

λ,µ is then non-isomorphic to the
corresponding graded module of symbols. Theorem 6.1 is proved.

Proof of Proposition 6.3 is similar to that of Theorem 6.1, part (i).

6.3 Discussion

It is quite clear that the K(1)-modules Dℓ
λ,µ and Sℓ

µ−λ are not isomorphic for ℓ > 2 and there is
no K(1)-invariant symbol map. For instance, one can check that the unique osp(1|2)-invariant
symbol map from Theorem 6.1 does not commute with any other element of K(1), implying the
above statement in the non-resonant case. However, we do not give here a complete proof. Note
that a similar result holds in the case of S1, see [8, 10] and the multi-dimensional case [18]. This
problem is related to the first cohomology space H1(K(1);Dℓ

λ,µ) (cf. [1] for preliminary results
on this subject).

We believe that the K(1)-modules Dℓ
λ,µ deserve further study. We formulate here the prob-

lem of classification of these modules (see [8, 10] for the case of S1), as well as existence of
the exceptional weights (λ, µ) in the sense of [5]. It would also be interesting to study the
corresponding automorphism groups (see [9]).
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Boston, Boston, MA, 1997.

[5] Conley C., Bounded subquotients of pseudodifferential operator modules, Comm. Math.
Phys. 257 (2005), no. 3, 641–657.

[6] Duval C., Lecomte P., Ovsienko V., Conformally equivariant quantization: existence and
uniqueness, Ann. Inst. Fourier bf 49:6 (1999) 1999–2029.

12



[7] Fuks D.B., Cohomology of infinite-dimensional Lie algebras. Consultants Bureau, New York,
1986.
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