
Bounded Communication Reachability
Analysis of Process Rewrite Systems with

Ordered Parallelism

Mihaela Sighireanu

LIAFA, University of Paris 7, 2 place Jussieu, 75251 Paris cedex 5, France
sighireanu@liafa.jussieu.fr

Tayssir Touili

LIAFA, University of Paris 7, 2 place Jussieu, 75251 Paris cedex 5, France
touili@liafa.jussieu.fr

Abstract

We define a new model called O-PRS that extends the Process Rewrite Systems for-
malism with a new associative operator, “�”, that allows to model parallel composition
while keeping the order between parallel processes. Indeed, sometimes, it is important to
remember the order between the parallel processes. The reachability problem of O-PRS be-
ing undecidable, we develop tree automata techniques allowing to build polynomial finite
representations of (1) the exact reachable configurations in O-PRS modulo various equiv-
alences that omit the associativity of “�”, and (2) underapproximations of the reachable
configurations if the associativity of “�” is considered. We show that these underapprox-
imations are exact if the number of communications between ordered parallel processes
is bounded. We implemented our algorithms in a tool that was used for the analysis of a
concurrent lexer server.

Key words: Multithreaded programs with procedure calls,
synchronisation, process algebra, program analysis, verification.

1 Introduction

Analysis of concurrent software represents a major challenge in the model-checking
community. Indeed, concurrent programs include various complex features such as
(1) the manipulation of data ranging over unbounded domains, (2) the presence of
recursive procedure calls, which can lead to an unbounded number of calls, (3) the
dynamic creation of parallel processes, and (4) the existence of synchronization
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statements. Ramalingam [Ram00] has shown that checking whether a given con-
trol point is reachable is undecidable, even if the program includes only recursive
procedures and synchronisation statements. Therefore, to be able to analyse such
programs, we need either to restrict ourselves to decidable subclasses, or to use
approximative techniques.

During the last few years, several authors have addressed this issue. In particu-
lar, Process Rewrite Systems (PRS for short) [May98] have been successfully used
in [BT03,BT05] to model and analyse such programs. A PRS is a finite set of rules
of the form t → t ′ where t and t ′ are terms built up from the idle process (“0”), a
finite set of process variables (X ), sequential composition (“·”), and asynchronous
parallel composition (“||”). The semantics of PRSs considers terms modulo a struc-
tural equivalence ' which expresses the fact that 0 is a neutral element of “·” and
“||”, that “·” is associative, and that “||” is associative and commutative.

To model a program in this framework, process variables are used to represent
control points in the program, rules of the form X → X1 ·X2 represent sequential
recursive calls, whereas rules of the form X → X1||X2 model dynamic creation of
parallel processes. Moreover, rules of the form X1 ·X2 → X and X1||X2 → X allow
to model some sort of communication between sequential and parallel processes,
respectively. Therefore, due to the commutativity of the parallel composition “||”,
PRS can only model programs where the order between the concurrent processes is
not important. However, sometimes, it is important to keep the order between the
parallel processes. This holds for example if the communication is done between
processes that are neighbors. This is the case for example of the concurrent lexer
server described in Section 5.

To overcome this restriction, we consider a new model, called O-PRS, that
extends the PRS model with a new parallel operator � that is associative but not
commutative, and hence it preserves the order between parallel processes. Note
that O-PRS involves the two parallel operators “||” and “�” since a given program
may involve the two kinds of communications: the ordered (�) and the unordered
(||) one. Note also that � is different from the sequential composition “·” since this
latter has a prefix rewriting strategy, whereas � does not.

Unfortunately, while reachability between terms is decidable for PRS [May98],
it becomes undecidable for O-PRS due to the associativity of � [GD89]. Despite
this undecidability, we consider in this paper the reachability problem between
two (infinite) sets of terms. Since process terms can be seen as trees, we consider
representations of sets of terms based on (bottom-up) tree automata. To sidestep
the undecidability result, we proceed as follows:

(i) First, we follow the approach used in [BT03] and perform the exact reacha-
bility analysis of O-PRS modulo restricted equivalences that omit the associa-
tivity of � (the cause of undecidability). Indeed, as discussed in [BT03], the
reachability analysis modulo all the equivalences can be shown in many cases
to be reducible to computing representatives of the reachability set modulo
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some stronger equivalence.

(ii) In case the associativity of � cannot be avoided, we compute representatives
of underapproximations of the reachability sets by allowing the ordered pro-
cesses to communicate only a fixed number of times k. These approximations
enable the discovery of bugs in the system. Then, increasing k allows to com-
pute better underapproximations. Moreover, if for k and k + 1 the computed
underapproximations are the same, then we know that we have computed
an exact representative of the reachability set. Note that the underapprox-
imations we compute are exact if the ordered processes can only perform a
bounded number of communications. This is the case of our case study, which
is a real example.

All the constructions that we give are polynomial. We implemented our algo-
rithms in a prototype called PRESS. PRESS has been applied to several academic
examples and to the interesting example called the concurrent lexer server [And91].

Related work. The results in this paper generalize those given in [LS98,EP00] for
the PA case, and in [BT03] for PRS, where tree automata are computed to repre-
sent representatives of the reachability sets modulo different equivalences between
terms.

Models based on communication via message passing have been considered
in [BET03a,BET03b,BET05,Tou05,CCK+06]. However, all these models do not
consider ordered parallel processes. In [BMOT05], a model called CDPN has been
introduced. This model allows a “restricted ordered” communication where a pro-
cess can only communicate with his children (the processes that he created). Our
model allows arbitrary ordered communication between parallel processes.

The idea of performing reachability analysis while bounding the number of
communications is known as bounded context switch reachability, and has been in-
troduced in [QR05], and considered later in [BESS05]. However, in [QR05,BESS05]
the parallel processes are not ordered.

Communication between ordered processes has been extensively studied in
the context of parametrized systems verification using Regular Model Checking
[ABJN99,BJNT00,BMT01,AJNd03]. These works do not consider dynamic cre-
ation of processes.

2 Preliminaries

2.1 Terms and tree automata

An alphabet Σ is ranked if it is endowed with a mapping rank : Σ → N. For k ≥ 0,
Σk is the set of elements of rank k. Let X be a fixed denumerable set of variables
{x1,x2, . . .}. The set TΣ[X ] of terms over Σ and X is the smallest set that satisfies:
Σ0 ∪X ⊆ TΣ[X ], and if k ≥ 1, f ∈ Σk and t1, . . . , tk ∈ TΣ[X ], then f (t1, . . . , tk) is in
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TΣ[X ]. TΣ stands for TΣ[ /0]. Terms in TΣ are called ground terms. A term in TΣ[X ] is
linear if each variable occurs at most once. A context C is a linear term of TΣ[X ].
Let t1, . . . , tn be terms of TΣ, then C[t1, . . . , tn] denotes the term obtained by replacing
in the context C the occurrence of the variable xi by the term ti, for each 1 ≤ i ≤ n.

Definition 2.1 ([CDG+97]) A tree automaton is a tuple A = (Q,Σ,F,δ) where Q
is a set of states, Σ is a ranked alphabet, F ⊆ Q is a set of final states, and δ is a
set of rules of the form (1) f (q1, . . . ,qn) → q, or (2) a → q, or (3) q → q′, where
a ∈ Σ0, n ≥ 0, f ∈ Σn, and q1, . . . ,qn,q,q′ ∈ Q. If Q is finite, A is called a finite tree
automaton.

Let →δ be the move relation of A defined as follows: Given t and t′ two terms
of TΣ∪Q, then t →δ t ′ iff there exist a context C ∈ TΣ∪Q[X ], and (1) n ground terms
t1, . . . , tn ∈ TΣ, and a rule f (q1, . . . ,qn)→ q in δ, such that t =C[ f

(

q1(t1), . . . ,qn(tn)
)

],
and t ′ = C[q

(

f (t1, . . . , tn)
)

], or (2) a rule a → q in δ, such that t = C[a], and t ′ =
C[q(a)], or (3) a rule q → q′ in δ, such that t = C[q(u)], and t ′ = C[q′(u)]. Let
∗
→δ be the reflexive-transitive closure of →δ. A term t is accepted by a state
q ∈ Q iff t ∗−→δ q(t). In this case, we say that t is annotated with q. Let Lq be
the set of terms accepted by q. The language accepted by the automaton A is
L(A) =

S

{Lq | q ∈ F}. A tree language is regular if it is accepted by a finite tree
automaton.

The class of regular tree languages is closed under union, intersection, and com-
plementation. Moreover, the emptiness problem of these automata can be solved in
linear time.

3 Process Rewrite Systems with Ordered Parllelism

3.1 Definition

Let Var = {X ,Y, . . .} be a set of process variables, and Tp be the set of process
terms t defined by the following syntax, where X is an arbitrary constant from Var:

t ::= 0 | X | t · t | t||t | t � t

Intuitively, 0 is the null process and “.” denotes sequential composition, “||” denotes
asynchronous parallel composition, and “�” denotes the ordered parallel composi-
tion. We use both prefix and infix notations to represent process terms.

Definition 3.1 A Process Rewrite System with Ordered Parallelism (O-PRS for
short) is a finite set of rules of the form t1 → t2, where t1, t2 ∈ Tp. A PRS [May98]
is an O-PRS without the “�” operator. A O-PAD (resp. PAD) is a O-PRS (resp.
PRS) where all the rules have no parallel composition “||” in the left hand sides of
the rules.
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A O-PRS R induces a transition relation →R over Tp defined by the following in-
ference rules:

t1 → t2 ∈ R
t1 →R t2

;
t1 →R t ′1

t1||t2 →R t ′1||t2
;

t1 →R t ′1
t1 � t2 →R t ′1 � t2

;
t1 →R t ′1

t1 · t2 →R t ′1 · t2
;

t2 →R t ′2
t1||t2 →R t1||t ′2

;

t2 →R t ′2
t1 � t2 →R t1 � t ′2

;
t1 ∼0 0 , t2 →R t ′2

t1 · t2 →R t1 · t ′2
where ∼0 is an equivalence between process terms that identifies the terminated
processes. It expresses the neutrality of the null process “0” w.r.t. “||”, “�”, and
“.”:

A1: t ·0 ∼0 0 · t ∼0 t||0 ∼0 0||t ∼0 t ∼0 t �0 ∼0 0� t

We consider the structural equivalence ∼ generated by the axioms A1 and the
following axioms:

A2: (t · t ′) · t ′′ ∼ t · (t ′ · t ′′) : associativity of “.”,

A3: t||t ′ ∼ t ′||t : commutativity of “||”,

A4: (t||t ′)||t ′′ ∼ t||(t ′||t ′′) : associativity of “||”,

A5: (t � t ′)� t ′′ ∼ t � (t ′� t ′′) : associativity of “�”.

We denote by ∼s the equivalence induced by the axioms A1 and A2, by ∼� the
equivalence induced by A5, by ∼�,s the equivalence induced by the axioms A1,
A2, and A5, and by ' the equivalence induced by the axioms A1, A2, A3, and
A4. For each equivalence ≡, we denote by [t]≡ the equivalence class modulo ≡
of the process term t, i.e., [t]≡ = {t ′ ∈ Tp | t ≡ t ′}. This definition is extended to
sets of terms straightforwardly. A set of terms L is ≡-compatible if [L]≡ = L. A set
of terms L′ is a ≡-representative of L if [L′]≡ = L. Each equivalence ≡ induces a
transition relation ⇒≡,R defined as follows:

∀t, t ′ ∈ Tp, t ⇒≡,R t ′ iff ∃u,u′ ∈ Tp such that t ≡ u,u →R u′, and u′ ≡ t ′

Let
∗
⇒≡,R be the reflexive transitive closure of ⇒≡,R. Let Post∗R,≡(t) = {t ′ ∈ Tp |

t
∗
⇒≡,R t ′}. This definition is extended to sets of terms in the standard way. We

omit the subscript ≡ when it corresponds to the identity (=).
A O-PRS R is in normal form if R = R′∪R� where R′ is a PRS and R� is a set

of rules of the form t1 → t2 where t1 and t2 are either 0, X , or X �Y . Notice that
the systems R′ and R� are not independent in the sense that they can share process
constants.

It can be shown, by adapting the proof of a very close fact in [May98], that for
every O-PRS R over a set of process constants Var, it is possible to associate a O-
PRS R′ in normal form over a new set of process constants Var′ (which extends Var
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by some auxiliary process constants), and there exist two ground term substitutions
S1 and S2 such that Post∗R = S2 ◦Post∗R′ ◦ S1. Therefore, we assume wlog in the
remainder of the paper that O-PRS are always in normal form.

3.2 Reachability analysis problem

An O-PRS process term can be seen as a tree over the alphabet Σ = Σ0∪Σ2, where
Σ0 = {0}∪Var and Σ2 = {., ||,�}. A set of terms is regular if it can be represented
by a finite tree automaton. The ≡-reachability problem consists in, given two regu-
lar sets of terms L1 and L2, deciding whether Post∗R,≡(L1)∩L2 6= /0. Unfortunately,
because of the associativity of the � operator, it follows from [GD89] that:

Theorem 3.1 The ≡-reachability problem is undecidable for O-PRS if ≡∈ {∼�

,∼�,s,∼}. This holds even if L1 and L2 are single terms. 1

Therefore, the basic problems we consider in this paper is to compute, given
a regular set L of terms, representations of the sets (resp. of underapproximations
of the sets) Post∗R,≡(L) if ≡∈ {=,∼0,∼s,'} (resp. if ≡∈ {∼�,∼�,s,∼}). More
precisely, since these sets are in general not regular due to the associativity of “·”
and “�”, and to the associativity-commutativity of “‖”, we will compute represen-
tatives of them. Indeed:

Lemma 3.1 Let L1,L2 be two sets of terms, and let L′
1 be a ≡-representative of L1.

If L2 is ≡-compatible, then L′
1 ∩L2 6= /0 iff L1 ∩L2 6= /0.

Therefore, computing regular≡-representatives of (approximations of) the Post∗R,≡
images of regular sets allows to solve reachability problems.

4 Reachability Analysis of O-PRS

4.1 Reachability modulo term equality, ∼0, ∼s, and '

It has been shown in [BT03] that if R is a PRS and L a regular set of PRS terms.
Then:

• Post∗R(L) and Post∗R,∼0
(L) are regular and effectively computable.

• A regular ∼s-representative of Post∗R,∼s
(L) can be effectively computed. This

gives a '-representative of Post∗R,'(L) if R is a PAD since in this case, a ∼s-
representative of Post∗R,∼s

(L) is also a '-representative of Post∗R,'(L) [BT03,Tou03].

Since in absence of the associativity of � and of the associativity/commutativity
of ||, these two operators are similar, the constructions given in [BT03] can straight-
forwardly be extended to O-PRSs (simply by treating the new operator � as “||”).
Therefore, we get the following result:

1 This is not the case for PRS even if “·” is associative thanks to its prefix-rewriting semantics.
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Theorem 4.1 Let R be a O-PRS, L be a regular set of process terms, and A be
a finite tree automaton that recognizes L. Then, we can effectively compute fi-
nite tree automata that recognize Post∗R(L), Post∗R,∼0

(L), and a ∼s-representative of
Post∗R,∼s

(L). Moreover, if R is a O-PAD, then we can effectively compute a finite
tree automaton that recognizes a '-representative of Post∗R,'(L).

4.2 Reachability modulo ∼�,∼�,s, and ∼

As mentioned in Theorem 3.1, reachability is undecidable modulo ∼�, ∼�,s, and
∼. Therefore, we propose in this section to compute ≡-representatives of under-
approximations of the reachability sets Post∗R,≡(L) for ≡∈ {∼�,∼�,s,∼}. The sets
that we compute are underapproximations because we will allow to each process to
communicate only a bounded number of times with his neighbors using the rules
X �Y → t. These underapproximations enable the discovery of bugs in the system.

Let us start with ∼�. The main difficulty in reasoning modulo this equivalence
comes from the fact that the rules of the form X �Y → t are not applied locally
anymore. Indeed, so far such a rule is applied to a term u only if u has X �Y as an
explicit subterm. This is no longer the case when we consider terms modulo ∼�.
Indeed, this rule should be applied for instance to the terms X �

(

Y � (Z �T )
)

and
X �

(

(Y � Z)� T
)

since they are ∼�-equivalent to (X �Y ) � (Z � T ). One can
argue that the same problem occurs with the rules of the form X ·Y → t when we
consider the equivalence ∼s. This is true, but the case of the operator � is much
more complicated due to the fact that the operator “·” follows a prefix-rewriting
strategy, whereas � does not. To be able to handle this kind of rules of the form
X �Y → t, since due to the undecidability result it is impossible to compute a
representative of the whole reachability set, we will compute a representative of
the set of terms that are reachable from L by applying the rules of the previous
kind an arbitrary number of times in different positions of the terms of L, while
ensuring that at each leaf, only one rewriting occurs. Intuitively, since rules of
the form X �Y → t model communication between ordered processes, this means
that we will compute representatives of the sets of configurations that are reachable
by allowing every process to communicate only once with his neighbors. We first
show how we solve the problem when the system R contains only rules of the form
above, and then, we show how to handle the general case.

4.2.1 The case where R has only rules of the form X �Y → t
We suppose in this subsection that R contains only rules of the form X �Y → t.
We suppose w.l.o.g. that all the rules of R are of the form X �Y → Z � T , where
T is either a variable in Var, or the null process 0 (we write the rules of the form
X �Y → Z as X �Y → Z �0).

Let L be a regular set of terms. We show in what follows how to compute a
finite-state automaton that recognizes a representative of Post�R,∼�

(L) defined as
the set of terms that are reachable from L by applying the rules of R an arbitrary
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number of times in different positions of the terms of L, and such that at each leaf,
only one rewriting occurs. To do so, let us introduce the notion of �-context:

Definition 4.1 Let x,y ∈ X , a �-context is a 2-variable context C[x,y] such that
there exist 2 single-variable contexts C1 and C2 such that: (1) C[x,y] = �(C1[x],C2[y]),
(2) x is the rightmost leaf of C1, and y is the leftmost leaf of C2, and (3) all the an-
cestors of the variables x and y in C1 and C2, respectively, are labeled by “�”.

Then, modulo ∼�, a rule X �Y → Z � T can be applied to any term of the
form C[X ,Y ] for an �-context C, to yield a term that is ∼�-equivalent to C[Z,T ].
We define the relation ΞR that performs this transformation as follows: For every
rule X �Y → Z � T in R, and every �-context C,

(

C[X ,Y ],C[Z,T ]
)

∈ ΞR. This
transformation is depicted on Figure 1, where the bold lines represent nodes labeled
by “�”. It can be shown that Ξ R(L) is a ∼�-representative of PostR,∼�

(L).

X Y

C2C1

�

�
�

Z T

C2C1

�

�
�

ΞR

Fig. 1. Application of the rule X �Y → Z �T modulo ∼�

Let t be a term. We define Ξ�

R (t) as the set of terms obtained by applying ΞR

an arbitrary number of times to t, while ensuring that each leaf is rewritten at most
once. This definition is extended to sets of terms in the obvious manner. We prove
in what follows that for any regular language L, Ξ�

R (L) is effectively regular.

Ξ�

R (L) is effectively regular.
Let R1, . . . ,Rn be the different rules of R. Let A = (Q,Σ,F,δ) be a tree automa-

ton that recognizes L. We define the automaton A′ = (Q′
,Σ,F ′

,δ′) as follows:

• Q′ = Q∪{(q,Ri),(q, R̄i),(q,RiR̄ j) | q ∈ Q,Ri,R j ∈ R}.
• F ′ = F .
• δ′ contains δ and the following rules:

(α1) If Ri = X �Y → Z �T is a rule of R, then:
(a) if Y ∗−→δ q(Y ), then T → (q,Ri) ∈ δ′;
(b) if X ∗−→δ q(X), then Z → (q, R̄i) ∈ δ′.

(α2) If �(q1,q2) → q ∈ δ, then for every Ri,R j,Rk ∈ R, we have:
(a) �

(

(q1,Ri),q2
)

→ (q,Ri) ∈ δ′,
(b) �

(

q1,(q2, R̄i
)

→ (q, R̄i) ∈ δ′,
(c) �

(

(q1, R̄i),(q2,Ri)
)

→ q ∈ δ′,
(d) �

(

(q1,Ri),(q2, R̄ j)
)

→ (q,RiR̄ j) ∈ δ′,
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(e) �
(

(q1,RiR̄ j),(q2,R jR̄k)
)

→ (q,RiR̄k) ∈ δ′,
( f ) �

(

(q1,RiR̄ j),(q2,R j)
)

→ (q,Ri) ∈ δ′,
(g) �

(

(q1, R̄ j),(q2,R jR̄k)
)

→ (q, R̄k) ∈ δ′.

The intuition behind the construction above is the following: If we consider the
rewriting step depicted in Figure 1, the automaton A ′ needs to recognize the term
on the right side as a successor of the term on the left side. To do so, it has to guess
that in the place of the Z was an X , that in the place of the T there was a Y , and that
these two positions were rewritten using a rule of the form Ri = X �Y → Z �T . To
do so, the automaton annotates the Z by state (q1, R̄i) if X ∗−→δ q1(X) (rule α1b), and
the T by state (q2,Ri) if Y ∗−→δ q2(Y ) (rule α1a). These guesses have then to reach
the root of the term where they have to be validated. The role of the rules (α2) is to
propagate the guesses upward the terms until they are validated. Validation is done
using the rules c,e, f , and g. States of the form (q,RiR̄ j) memorize two guesses. We
do not need to memorize more because the rules are applied to adjacent subterms.
So, at the end, we get that:

Lemma 4.1 t ∗−→δ′ q(t) iff t ∈ Ξ�

R (Lq).

The proof of this lemma follows the lines of the proofs given in [BT03]. It
follows that:

Theorem 4.2 Let L be a regular set of process terms, and A = (Q,Σ,F,δ) be a
finite tree automaton that recognizes L. Then, Ξ�

R (L) is recognized by the finite tree
automaton A ′.

Example.
Let us illustrate the construction above with an example. Let t be the term

depicted on the left side of Figure 2 (the nodes are labeled with �, we do not depict
them for the sake of representation). Let R = {R1,R2} where R1 = Y �Z → A�B
and R2 = T �W → C � D. t is recognized by the automaton having the states
Q = {q1, . . . ,q9}, F = {q9}, and the rules δ = {X → q1,Y → q2,Z → q3,T →
q4,W → q8,�(q1,q2) → q5,�(q3,q4) → q6,�(q5,q6) → q7,�(q7,q8) → q9}.

Then, the term on the right side of the figure will be recognized by the automa-
ton A ′ constructed from A as follows:

• X is annotated with q1, since δ ⊆ δ′;
• A is annotated with (q2, R̄1), and C with (q4, R̄2) using α1b;
• B is annotated with (q3,R1), and D with (q8,R2) using α1a;
• node n5 is annotated with (q5, R̄1) using α2b;
• node n6 is annotated with (q6,R1R̄2) using α2d;
• node n7 is annotated with (q7, R̄2) using α2g;
• Finally, node n9 is annotated with q9 using α2c.
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X Y Z T

W

X A B C

D

ΞR

n1 n2 n3 n4

n8

n5 n6

n7

n9

Names of the nodes

Fig. 2. An example

Since the root of the term is annotated by q9 ∈ F , this means that the computed
automaton recognizes this term as a successor of t.

Remark 4.1 Observe that the fact that each leaf can be rewritten only once is
crucial for our construction to work. Indeed, if we omit this condition, then the
automaton would need an infinite number of states to perform the guesses, since at
each leaf, an arbitrary number of rewritings (and therefore of guesses) can occur.

4.2.2 Reachability analysis of arbitrary O-PRS
Let R = R′ ∪R� be a O-PRS, where R′ is a PRS and R� has rules involving only
the operator �. Let R1

� be the rules of R� of the form X → t, and R2
� be the rules of

R� of the form X �Y → t. Then, we can compute a representative of an underap-
proximation of Post∗R,∼�

(L) where the ordered processes communicate a bounded

number of times k. To do so, it suffices to compute

(

Ξ�

R2
�

(

Post∗R,=(L)
)

)k

by ap-

plying the construction underlying Theorem 4.1 followed by the Ξ�

R2
�

construction

k times. Obviously, the obtained set is an underapproximation of Post∗R,∼�
(L). Fur-

ther, when increasing k, we can compute better underapproximations. Moreover, if
for k and k+1 the computed underapproximations are the same, then we know that
we have computed an exact representative of Post∗R,∼�

(L).
The same principle can be applied to compute underapproximations of ∼�,s-

representatives of Post∗R,∼�,s
(L). To do so, it suffices to apply the construction of

Theorem 4.1 that produces ∼s-representatives of Post∗R,∼s
(L) instead of Post∗R,=(L).

This gives us ∼-representatives of underapproximations of Post∗R,∼(L) in the case
of O-PADs.
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5 A case study and experiments

We implemented our algorithms in a prototype called PRESS[ST]. PRESS has been
applied to several academic examples and to the interesting example called the
concurrent lexer server [And91].

5.1 The concurrent lexer server

We consider a multi-threaded server whose service is to do lexical analysis of texts
it receives from clients. Each time that a client request arrives, i.e., a connection of
the client to the server is successful, the server creates a thread that does the lexical
analysis work and communicates the result to the client.

The main specificity of this example is that the lexical analysis is done in a
concurrent manner, as suggested in [And91]. The advantage of concurrency is that
it improves the complexity of the analysis.

Let us specify the work done by the lexical analyzer. We suppose that the input
language of texts sent by clients is a simple language of arithmetical expressions,
i.e., the input texts tin are sequences of blanks, letters, digits, and arithmetical oper-
ators (e.g., +,−,∗). The output of the analyzer should be an array of length equal to
the length of tin, each entry of the result being either BL (for blank), ID (identifier),
NUM (for number) or OP (for arithmetical operator). Identifiers are C-like identifiers,
i.e., they begin with a letter and may contain letters or digits. Numbers are strings
built from digits only.

The implementation of the specification above is concurrent inside each thread
launched by the server. A thread starts a number of sub-threads equal to the length
of the input text. The sub-thread i computes the output for the i-th entry of the
input text. If the ith position of tin is a blank, a letter or an operator, then the
corresponding sub-thread terminates returning respectively BL, ID, OP. Otherwise,
i.e., if it is a digit, the corresponding sub-thread has to wait for the result of its left
neighbor. If this latter computed BL, NUM, or OP, then the sub-thread returns NUM;
otherwise it returns ID.

5.2 The model

We give in this subsection the O-PRS model of the server example described above.
Note that to be able to model this server of concurrent lexers, we need all the
operators “·”, “||”, and “�”. Indeed, the two first operators model the server, and
“�” is needed to model the concurrency between the sub-threads. Indeed, the
order between these sub-threads is important since each sub-thread corresponds
to a position in the input arithmetical expression. Sub-threads work in parallel,
but they maintain their ordering. Hence, the parallel operator || cannot be used here
since it is commutative. Note also that in this example, at most two communications
are done between sub-tasks. Therefore, our algorithms compute representatives of
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the exact reachability sets.
The JAVA code below corresponds to a concurrent server that launches a new

thread that does the lexical analysis for each new client request. The number of
launched threads is unbounded.

public void server() {
Socket socket;
while(true) {

try{
socket=serverSocket.accept();

} catch (Exception e){
System.err(e);
continue;

}
Thread t=new Thread(runLexerService(socket));
t.start();

}
}

The entry point of the server is represented by the process variable X . The
server is waiting for connections. If a request for connection arrives (process vari-
able Y ), it may be successful (process variable T ) or erroneous (process variable
F). For successful connections, the server launches a thread in parallel (process
variable L) and waits for another connection. In case of failures, the server simply
loops to wait for another connection.

The above server can be modeled by the following rules:

X → Y . X server waits for a request for a connection

Y → T successful request, Y returns true

Y → F failure request, Y returns false

T . X → X‖L new thread is launched if successful connection

F → 0 request ignored if failure

The O-PRS model of each thread of the server (process variable L) is given
below. The thread starts in parallel a number of sub-threads (process variable P).
The order in which these sub-threads are created is important since each sub-thread
corresponds to a position in the input arithmetical expression. Sub-threads work in
parallel, but they maintain their ordering. Hence, we need to use the new operator
� to model the parallelism between these subthreads, since it preserves the order.

Each process P reads its input. If the character read is an operator, a blank or a
letter, it returns directly the result (process variables OP, BL, ID). Otherwise, it had
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read a digit and it has to wait for the result of its left brother: if it is an operator, a
blank or a number, then it returns NUM, if not, it returns identifier. The “�” operator
allows to model communications between neighbor sub-tasks. It is important to
remark that at most two communications are done between sub-tasks. Therefore,
our algorithms compute representatives of the exact reachability sets. Note also
that to model this example, we needed all the operators of O-PRS (“·”, “||”, and
“�”).

L → BL�loop start to create sub-threads

loop → loop�P create sub-threads

loop → P end of sub-thread creation

P → OP sub-thread reads and returns an operator

P → BL sub-thread reads and returns a blank

P → ID sub-thread reads a letter and returns identifier

P → dig sub-thread reads a digit

OP�dig → OP�NUM digit sub-thread begins a number

BL�dig → BL�NUM

NUM�dig → NUM�NUM digit sub-thread belongs to a number

ID�dig → ID�ID digit sub-thread belongs to an identifier

5.3 The analysis

Our aim is to check that the lexical analysis is correct, i.e., that the lexer does not
output terms having ID � NUM as subterms. The set of such terms can be repre-
sented by a finite tree automaton, and we need to check whether the intersection
of the reachability set with these bad configurations is empty. To perform this, we
applied our algorithms and we found that the intersection is indeed empty, which
means that the program is correct. Indeed, our algorithms compute representatives
of the exact reachability sets in this case since (1) the obtained model is a O-PAD,
and (2) at most two communications are done between the ordered parallel pro-
cesses.

6 Implementation and experiments

We implemented our algorithms in a tool called PRESS [ST]. The input of the tool
is a O-PRS model, a tree automaton describing the set of initial process terms, and
a list of tree automata describing the target reachability process terms.

We used the TIMBUK [Gen] library for the manipulation of tree automata. TIM-
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Table 1
Experimental results for concurent lexer server.

CLexer Server

Size of Post∗ 300 st./1167 trans. 644 st./2398 trans.

Size of min Post∗ 28 st./424 trans 44 st./889 trans

Nb. of iterations 5 5

Execution time 10’51” 15’32”

BUK is written in OCAML and provides all the functions we needed for tree au-
tomata.

PRESS has been applied to several academic examples and to the concurrent
lexer server described previously. For this last example, we considered two models:

• Server: full specification of the server of concurrent lexers with initial configu-
ration X (process name corresponding to the entry point of the server), and

• CLexer: one thread specification with the initial configuration L.

The experimental results obtained are given on table 6. They have been ob-
tained on a bi-processor Pentium with 4 Go of memory running on Linux. The
execution time includes the computation of the set of reachable configurations, the
minimization of this set, and its intersection with the target sets. However, in both
cases, more than 90% of the execution time is taken by the reachability computa-
tion.
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