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Abstract

Motivated by chemical applications, we revisit and extend afamily of positive definite kernels
for graphs based on the detection of common subtrees, initially proposed by Ramon and Gärtner
(2003). We propose new kernels with a parameter to control the complexity of the subtrees used
as features to represent the graphs. This parameter allows to smoothly interpolate between classical
graph kernels based on the count of common walks, on the one hand, and kernels that emphasize
the detection of large common subtrees, on the other hand. Wealso propose two modular extensions
to this formulation. The first extension increases the number of subtrees that define the feature
space, and the second one removes noisy features from the graph representations. We validate
experimentally these new kernels on binary classification tasks consisting in discriminating toxic
and non-toxic molecules with support vector machines.

1 Introduction

There is an increasing need for algorithms to analyze and classify graph data, motivated in particular
by various applications in chemoinformatics and bioinformatics. An prominent example in chemoin-
formatics, which motivates this work, is the generic problem of predicting various properties of small
molecules, such as toxicological effects, given theirmolecular graph, that is, the graph representing the
covalent bonds between atoms (Leach and Gillet, 2003). Classification of graphs is often associated with
the problem of graph mining, which consists in detecting interesting patterns occurring in the graphs, and
using them as features to build predictive models (King et al., 1996; Inokuchi et al., 2003; Helma et al.,
2004; Deshpande et al., 2005). As an alternative to this approach, kernel methods associated with graph
kernels have recently emerged as a promising approach for classification of graph data. Kernel methods
such as support vector machines (SVM) operate implicitly ina possibly high-dimensional Hilbert space
of features, in the sense that no explicit computation of theimage of the input data in the feature space
is required. Instead, only the inner product between the images of any two input data points, called the
kernel, is required (Schölkopf and Smola, 2002; Shawe-Taylor andCristianini, 2004). Applying kernel
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methods to graph data therefore requires the definition of a kernel between graphs, thereafter simply
referred to asgraph kernel. Choosing a graph kernel implicitly amounts to defining a setof features to
represent the graphs and an inner product in the space of features.

Graph kernels were pioneered by Kashima et al. (2004) and Gärtner et al. (2003), who showed how to
map graphs to an infinite-dimensional feature space indexedby linear subgraphs, and compute an inner
product in that space. The resulting graph kernels compare two graphs through their common walks,
weighted by a function of their lengths (Gärtner et al., 2003) or by their probability under a random walk
model on the graphs (Kashima et al., 2004). While this representation might appear restrictive, these
kernels led to promising empirical results, often comparing to state-of-the-art approaches in the fields of
chemoinformatics (Mahé et al., 2005; Ralaivola et al., 2005) and bioinformatics (Borgwardt et al., 2005;
Karklin et al., 2005).

Nevertheless, Ramon and Gärtner (2003) highlighted the limited expressiveness of graph kernels
based on linear features, showing in particular that many different graphs can be mapped to the same
point in the corresponding feature space. Figure 1 illustrates this issue on a simple example. On the other
hand, they also showed that computing a perfect graph kernel, that is, a kernel mapping non-isomorphic
graphs to distinct points in the feature space, is NP-hard. This suggests that the expressiveness of
graph kernels must be traded for their computational complexity. As a first step towards a refinement
of the feature space used in walk-based graph kernels, Ramonand Gärtner (2003) introduced a kernel
function comparing graphs on the basis of their common subtrees. This representation looks promising
in particular in chemoinformatics, because physicochemical properties of atoms are known to be related
to their topological environment that could be well captured by subtrees. However, the relationship
between the new subtree-based kernel and previous walk-based kernels was not analyzed in details, and
the relevance of the new kernel was not tested empirically.

Our motivation in this paper is to study in detail, both theoretically and empirically, the relevance of
subtree features for graph kernels, and in particular to assess the benefits they bring compared to walk-
based graph kernels. For that purpose we first revisit the formulation introduced by Ramon and Gärtner
(2003) and propose two new kernels with an explicit description of their feature spaces and correspond-
ing inner products. We introduce a parameter in the formulations that allows to gradually increase the
complexity of the subtrees used as features to represent thegraphs, the notion of complexity depending
on the formulation. By decreasing the parameter we recover classical walk-based kernels, and by in-
creasing it, we can empirically observe in detail the effectof increasing the number and the complexity
of the tree features used to represent the graphs. Both formulations can be efficiently computed by dy-
namic programming, in the spirit of the kernel proposed by Ramon and Gärtner (2003). When the size
of allowed subtrees is increased, however, we observe that the practical use of this kernel is limited by
the explosion in the number of subtrees occurring in the graphs. In a second step, we therefore introduce
two extensions to the initial formulation of the kernels that allow, on the one hand, to extend and gen-
eralize their associated feature space, and on the other hand, to remove noisy features that correspond
to unwanted subtrees. The different kernels are compared experimentally on two binary classification
tasks consisting in discriminating toxic from non-toxic molecules with a SVM.

Although our main motivations are in chemical applications, we adopt the general framework of
graph kernels in this paper, because the kernels introducedmay find different applications in domains
where data have a natural graph structure, such as bioinformatics, natural language processing or image
processing. We assume that the reader is familiar with kernel functions and SVMs, and refer him to
Schölkopf and Smola (2002); Shawe-Taylor and Cristianini(2004) and references therein for a back-
ground on the subject. The remaining of the paper is organized as follows. Notations and definitions
related to graphs and trees are introduced in Section 2, followed in Section 3 by the definition of a gen-
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eral class of kernels based on the detection of common subtrees. The next section (Section 4) revisits
the framework introduced in Ramon and Gärtner (2003), fromwhich two particular graph kernels are
derived and further extended in Section 5. The kernels are validated experimentally in Section 6, and we
give concluding remarks in Section 7.

Figure 1: Two graphs having the same walk content, namely• : ×5 ; •→• : ×4 and•→•→• : ×2, and
consequently mapped to the same point of the feature space corresponding a kernel based on the count
of walks (Gärtner et al., 2003).

2 Notations and Definitions

In this section we introduce notations and general definitions related to graphs and trees.

2.1 Labeled Directed Graphs

A labeled graphG = (VG, EG) is defined by a finite set ofverticesVG, a set ofedgesEG ⊂ VG × VG,
and a labeling functionl : VG ∪ EG → A which assigns alabel l(x) taken from an alphabetA to any
vertex or edgex. We let|VG| be the number of vertices ofG, |EG| be its number of edges, and we assume
below that a set of labelsA common to all graphs has been fixed. Indirectedgraphs, edges are oriented
and to each vertexu ∈ VG corresponds a set ofincoming neighborsδ−(u) = {v ∈ VG : (v, u) ∈ EG}
andoutgoing neighborsδ+(u) = {v ∈ VG : (u, v) ∈ EG}. We letd−(u) = |δ−(u)| be thein-degree
of the vertexu, andd+(u) = |δ+(u)| be itsout-degree. A walk of lengthn in the graphG = (VG, EG)
is a succession ofn + 1 vertices(v0, . . . , vn) ∈ Vn+1

G , such that(vi, vi+1) ∈ EG for i = 0, . . . , n − 1.
A path is a walk(v0, . . . , vn) with the additional condition thati 6= j ⇐⇒ vi 6= vj . Finally, a graph
is said to beconnectedif there is a walk between any pair of vertices when the orientation of edges is
dropped.

For applications in chemistry considered below, we associate a labeled directed graphG = (VG, EG)
to the planar structure of a molecule. To do so, we let the set of verticesVG correspond to the set of atoms
of the molecule, the set of edgesEG to its covalent bonds, and label these graph elements according to
an alphabetA consisting of the different types of atoms and bonds. Note that since graphs are directed, a
pair of edges of opposite direction is introduced for each covalent bond of the molecule. Figure 2 shows
a chemical compound seen as a labeled directed graph.

2.2 Trees

A tree t is a directed connected acyclic graph in which all vertices have in-degree one, except one that
has in-degree zero. The node with in-degree zero is known as the root r(t) of the tree. Nodes with
out-degree zero are known asleaf nodes, others are calledinternal nodes. Trees are naturally oriented,
edges being directed from the root to the leaves. The outgoing neighbors of an internal node are known
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Figure 2: A chemical compound seen as a labeled graph

as itschildren, and the unique incoming neighbor of a node (apart from the root) is known as itsparent.
If two nodes have the same parent, their are said to besiblings. Thesize|t| of the treet is its number
of nodes:|t| = |Vt|. Thedepthof a node corresponds to the number of edges connecting it to the root
plus one1, and the depth of the tree is the maximum depth of its nodes. Finally, we introduce a couple
of definitions that will be useful in the following.

Definition 1 (Balanced tree). A perfectly depth-balanced treeof orderh is a tree where the depth of
each leaf node ish. Perfectly depth-balanced trees are also calledbalanced treesbelow.

Definition 2 (Branching cardinality). We define thebranching cardinalityof the treet, noted branch(t),
as its number of leaf nodes minus one. More formally, for the treet = (Vt, Et) with Vt = (v1, . . . , v|t|),
branch(t) is given by;

branch(t) =

|t|
∑

i=1

1(d+(vi) = 0) − 1,

where1(.) is a binary function equal to one if its argument is true, and zero otherwise.

This terminology stems from the observation that this quantity also corresponds to the sum, over the
non-leaf nodes of the tree, of their numbers of children minus one. It therefore measures how many extra
branchings there are compared to a linear tree, which has branching cardinality 0. These definitions are
illustrated in Figure 3.

Figure 3: Left: a treet1 of depth 5 with|t1| = 9 and branch(t1) = 3. Right: a balanced treet2 of order
3 with |t2| = 8 and branch(t2) = 4. Top nodes are root nodes, bottom nodes are leaf nodes.

The remaining of the paper introduces kernel functions between labeled directed graphs based on
the detection in the graphs of patterns corresponding to labeled trees. To lighten notations, we simply
refer below to labeled directed graphs and labeled trees as graphs and trees.

1Note that the depth of the root node is one.
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3 The Tree-Pattern Graph Kernel

This section introduces a general class of graph kernel based on the detection, in the graphs, of patterns
corresponding to particular tree structures. We start by defining precisely this notion of tree-pattern.

Definition 3 (Tree-pattern). Let a graphG = (VG, EG) and a treet = (Vt, Et), withVt = (n1, . . . , n|t|).

A |t|-uple of vertices(v1, . . . , v|t|) ∈ V
|t|
G is a tree-patternof G with respect tot, which we denote by

(v1, . . . , v|t|) = pattern(t), if and only if the following holds:










∀i ∈ [1, |t|], l(vi) = l(ni) ,

∀(ni, nj) ∈ Et, (vi, vj) ∈ EG ∧ l
(

(vi, vj)
)

= l
(

(ni, nj)
)

,

∀(ni, nj), (ni, nk) ∈ Et, j 6= k ⇐⇒ vj 6= vk .

In other words a tree-pattern is a combination of graph vertices that can be arranged in a particular
tree structure, according to the labels and the connectivity properties of the graph. Note from this
definition that vertices of the graph are allowed to appear several times in a tree-pattern, under the
condition that siblings nodes of the corresponding tree areassociated to distinct vertices of the graphs.
We now introduce a functional to count occurrences of these patterns.

Definition 4 (Tree-pattern counting function). A tree-pattern counting functionreturning the number
of times a tree-pattern occurs in a graph is defined for the tree t and the graphG = (VG, EG), VG =
(v1, . . . , v|VG|), as

ψt(G) =
∣

∣

{

(α1, . . . , α|t|) ∈ [1, |VG|]
|t| : (vα1 , . . . , vα|t|

) = pattern(t)
}∣

∣.

A restriction ofψt to patterns rooted in a specified vertexv is given by

ψ
(v)
t (G) =

∣

∣

{

(α1, . . . , α|t|) ∈ [1, |VG|]
|t| : (vα1 , . . . , vα|t|

) = pattern(t) ∧ vα1 = v
}∣

∣.

With this new definition at hand we can define a general graph kernel based on the detection of
common tree-patterns in the graphs.

Definition 5 (Tree-pattern graph kernel). The tree-pattern graph kernelK is given for the graphsG1

andG2 by
K(G1, G2) =

∑

t∈T

w(t)ψt(G1)ψt(G2),

whereT is a set of trees,w : T → R is a tree weighting functional andψt is the tree-pattern counting
function of Definition 4.

The kernel of Definition 5 is obviously positive definite since it can be written as a standard dot-
productK(G1, G2) = 〈φ(G1), φ(G2)〉, whereφ(G) is the mapping that maps any graphG to the
feature space indexed by the trees of the setT asφ(G) =

(√

w(t)ψt(G)
)

t∈T
. Figure 4 illustrates this

mapping.

4 Examples of tree-pattern graph kernels

In a recent work, Ramon and Gärtner (2003) proposed a particular tree-pattern graph kernel fitting the
general Definition 5. In this section, we propose two different kernels with explicit feature spaces and
inner products, discuss their practical computation, and highlight their differences with the kernel of
Ramon and Gärtner (2003).
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Figure 4: A molecular compoundG (left) and its feature space representationφ(G) (right). Note that the
red and green trees are balanced. Note moreover that the green tree consists of a set of linearly connected
atoms, which is known asmolecular fragmentin chemoinformatics. Note finally that the sameC atom
appears in the 3rd and 5th positions in the tree-pattern corresponding to the green tree.

4.1 Kernels Definition

According to Definition 5, two key elements enter in the definition of a tree-pattern graph kernel. Firstly,
the set of treesT indexing the feature space the graphs are mapped to must be chosen. The kernels we
consider in this section are based on the same feature space:the space indexed by the set of balanced
trees of orderh introduced in Definition 1, labeled according to the graphs labeling alphabetA. We will
refer to this set asBh in the following. Second, the tree weighting functionw must be defined. A natural
way to define such a functional is to take into account the structure of the trees, and accordingly, we
propose to relate the weight of a tree to its size or its branching cardinality. In particular we propose to
consider the following kernels:

Definition 6 (Size-based balanced tree-pattern kernel).For the pair of graphsG1 andG2, thesize-
based balanced tree-pattern kernel of orderh is defined as

Kh
Size(G1, G2) =

∑

t∈Bh

λ|t|−hψt(G1)ψt(G2). (1)

Definition 7 (Branching-based balanced tree-pattern kernel). For the pair of graphsG1 andG2, the
branching-based balanced tree-pattern kernel of orderh is defined as

Kh
Branch(G1, G2) =

∑

t∈Bh

λbranch(t)ψt(G1)ψt(G2). (2)

Note that the depth of a tree is a lower bound on its size, attained for a tree consisting of a linear
chain of vertices. For such a tree, at depthh, we have|t| − h = branch(t) = 0, and we see that the cor-
responding tree-patterns are given a unit weight in the kernels of Definitions 6 and 7. The complexity of
a tree naturally increases with its size and branching cardinality, and theλ parameter entering the kernel
Definitions 6 and 7 has the effect of favoring tree-patterns depending on their degree of complexity. A
value ofλ greater than one favors the influence of tree-patterns of increasing complexity over the trivial
linear tree-patterns, while they are penalized by a value ofλ smaller than one. We can note, however,
that while the size of a tree increases with its branching cardinality, the converse is not true. For any tree
t of depthh, we therefore always have|t| − h ≥ branch(t), and the tree weighting is more important in
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the size-based than in the branching-based kernel. In the case of balanced trees, this difference is par-
ticularly marked when the nodes with large out-degree are close to the root node. This is due to the fact
that every leaf must be at depthh, and while the size of the tree necessarily increases by at leasth − 1
along each path starting from the root, the branching cardinality does not2. The main difference in the
feature space representations of the graphs is therefore induced by this particular type of tree-patterns,
that can be interpreted as collections of regular subtree patterns merged in the root node. This suggests
for instance that, forλ < 1, the branching-based formulation of the kernel may to some extent tolerate
large, yet regular patterns, that would be strongly penalized in the size-based formulation. Figure 5
illustrates these tree weightings based on the size and branching cardinality.

λ  /  λ00 λ  /  λ34λ  /  λ12λ  /  λ11 λ  /  λ22 λ  /  λ24

Figure 5: A set of balanced trees of order 3, together with their size-based (left) and branching-based
(right) λ weighting.

Whenλ tends to zero, the complexity of the patterns is so penalizedthat only tree-patterns consisting
of linear chains of graph vertices have non-vanishing weights, and the kernels of Definitions 6 and 7 boil
down to a kernel based on the detection of common walks (Gärtner et al., 2003). More formally, if we
define the set of walks of lengthn of the graphG as

Wn(G) = {(v0, . . . , vn) ∈ Vn+1
G : (vi, vi+1) ∈ EG, 0 ≤ i ≤ n− 1},

and define for the graphsG1 andG2 the following walk-count kernel:

Kn
Walk(G1, G2) =

∑

w1∈
Wn(G1)

∑

w2∈
Wn(G2)

1(l(w1) = l(w2)), (3)

where1(l(w1) = l(w2)) is one if all pairs of corresponding edges and vertices are identically labeled in
the walksw1 andw2, and zero otherwise, one easily gets that:

lim
λ→0

Kh
Size(G1, G2) = lim

λ→0
Kh

Branch(G1, G2) = Kh−1
Walk(G1, G2).

Increasing the value ofλ relaxes the penalization on complex subtree features, and can therefore be
interpreted as introducing tree-patterns of increasing complexity in the walk-based kernel of Equation 3.

It should be noted finally that the parametersh andλ are directly related to the nature of the features
representing the graphs and to their relative importance. Optimal values of the parameters are therefore
likely to be dependent on the problem and data considered, and can hardly be chosen a priori. As an
example, because of the variety of chemical compounds, the graphs considered in a chemical application
can have a great structural diversity. This suggests that these parameters should be estimated from the
data using, for example, cross-validation techniques.

2At the extreme, we have|t| = 1 + (h − 1) × d
+(r(t)) Vs branch(t) = d

+(r(t)) − 1.
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4.2 Kernels Computation

We now propose two factorization schemes to compute the kernels of Definitions 6 and 7. These fac-
torizations are inspired by the dynamic programming (DP) algorithm proposed by Ramon and Gärtner
(2003) to compute a slightly different graph kernel, discussed in the next subsection. The factorization
relies on the following definition:

Definition 8 (Neighborhood matching set).Theneighborhood matching setM(u, v) of two graph
verticesu andv is defined as

M(u, v) =
{

R ⊆ δ+(u) × δ+(v) |
(

∀(a, b), (c, d) ∈ R : a 6= c ∧ b 6= d
)

∧
(

∀(a, b) ∈ R : l(a) = l(b) ∧ l((u, a)) = l((v, b))
)}

.

EachR ∈ M(u, v) consists of one or several pair(s) of neighbors ofu andv that are identically
labeled and connected tou andv by edges of the same label. It follows from Definition 1 that such
an elementR corresponds to a pair of balanced tree-patterns of order 2 rooted inu andv, found in the
graph(s)u andv belong to. Moreover, providedu andv have the same label, these patterns correspond
to the same balanced tree. We can state the following propositions, whose proofs are post-poned in
Appendix A:

Proposition 1 (Size-based kernel computation).The orderh size-based tree-pattern kernelKh
Size of

Definition 6 between two graphsG1 andG2 can be computed as:

Kh
Size(G1, G2) =

1

λh

∑

u∈VG1

∑

v∈VG2

kh(u, v), (4)

wherekn, n = 1, . . . , h is defined recursively by










k1(u, v) = λ1(l(u) = l(v)) ,

kn(u, v) = λ1(l(u) = l(v))
∑

R∈M(u,v)

∏

(u′,v′)∈R

kn−1(u
′, v′), n = 2, . . . , h.

Proposition 2 (Branching-based kernel computation).The orderh branching-based tree-pattern ker-
nelKh

Branch of Definition 7 between two graphsG1 andG2 can be computed as:

Kh
Branch(G1, G2) =

∑

u∈VG1

∑

v∈VG2

kh(u, v), (5)

wherekn, n = 1, . . . , h is defined recursively by










k1(u, v) = 1(l(u) = l(v)) ,

kn(u, v) = 1(l(u) = l(v))
∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

λkn−1(u
′, v′), n = 2, . . . , h.

Not surprisingly, Propositions 1 and 2 show that the kernelsKh
SizeandKh

Branchof Definitions 6 and 7
have the same complexity. More precisely, for the pair of graphsG1 andG2, it follows from (4) and (5)
that this complexity is equal to the product of the sizes ofG1 andG2, times the complexity of evaluating
the functionalkh. In both cases, for the pair of graph verticesu andv, evaluatingkh(u, v) amounts to
summing, over all possible matching of neighborsR ∈ M(u, v), a quantity expressed as a product of
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|R| functionalskh−1. The size ofM(u, v), |M(u, v)|, is maximal if all the neighbors ofu andv, as
well as the edges that connect them tou andv, are identically labeled. In that case we have

|M(u, v)| =

min(d+(u),d+(v))
∑

k=1

Ak
d+(u)A

k
d+(v),

wherek ranges over the cardinality|R| of the set of matching neighbors. If we letd be an upper bond
on the out-degree of the vertices of the graphs considered, it follows that|M(u, v)| ≤

∑d
k=1(A

k
d)2 and

we can derive the following worst case complexity

O(Kh
Size(G1, G2)) = O(Kh

Branch(G1, G2)) = |VG1 | × |VG2 | × (

d
∑

k=1

k(Ak
d)

2)h−1.

In the case of chemical compounds, we haved = 4. The factor
∑d

k=1 k(A
k
d)

2 equals 4336, and the
complexity looks prohibitive. However this is only a worst-case complexity which is strongly reduced
in practice because (i) the out-degree of the vertices is often smaller than 43, and (ii) the size ofM(u, v)
is reduced by the fact that vertices and edges can have distinct labels.

4.3 Relation to previous work

At this point, it is worth reminding the kernel formulation introduced by Ramon and Gärtner (2003) in
order to highlight the differences with the kernels proposed in Definitions 6 and 7. In the context of
graphs with labeled vertices and edges4, at orderh, the kernel introduced in Ramon and Gärtner (2003),
that we denote byKh

Ramon, is formulated as follows:

Kh
Ramon(G1, G2) =

∑

u∈VG1

∑

v∈VG2

kh(u, v),

wherekn is defined by










k1(u, v) = 1(l(u) = l(v))

kn(u, v) = 1(l(u) = l(v)) λuλv

∑

R∈M(u,v)

∏

(u′,v′)∈R

kn−1(u
′, v′), n = 2, . . . , h.

It is clear that this kernel and the kernels of Definitions 6 and 7 have the same feature space. The main
difference lies in the fact that in this formulation, a parameterλv is introduced for each vertexv of each
graph. It can be checked that under this parametrization, each tree-pattern is weighted by the product of
the parametersλv associated to its internal nodes. In the special case where these parameters are taken
equal to a single parameterλ, each pattern is therefore weighted byλ raised to the power of its number
of internal nodes. While this bears some similarity with thesize-based weighting proposed in the kernel
of Definition 6, we note for instance that the three leftmost trees of Figure 5 are identically weighted,
namely by a factorλ2. Moreover, the convergence to the walk-based kernel of Equation 3 observed
whenλ tends to zero for the kernels of Definition 6 and 7 does not holdwith this formulation.

3For example, in the two datasets considered in our experiments in section 6, the average out-degree of the vertices is nearly
2 (2.14 for the first dataset, and 2.06 for the second one).

4The original formulation considered graphs with labeled vertices only, and the definition of the neighborhood matching
set is refined in this paper in order to handle labeled edges.
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5 Extensions

The kernels introduced in the previous section arise directly from the adaptation of the algorithm pro-
posed in Ramon and Gärtner (2003). In this section we introduce two extensions to this initial formula-
tion. First, we extend the branching-based kernel of Definition 7 to a feature space indexed by a larger,
and more general, set of trees. Second, we propose to eliminate a set of noisy tree-patterns from the
feature space.

5.1 Considering all trees

The DP algorithms of Section 4.2 recursively extend the tree-patterns under construction until they reach
a specified depth. Because they are based on the notion of neighborhood matching sets introduced in
Definition 8, these algorithms add at least one child to everyleaf node of the patterns under extension
at each step of the recursive process. When they reach the specified depth, the patterns are therefore
balanced, and the choice of the feature space associated to the kernels of Definitions 6 and 7 was actually
dictated by their computation.

Rather than focusing on features of a particular size, standard representations of molecules involve
structural features of different sizes. A prominent example is that of molecular fingerprints (Ralaivola
et al., 2005) that typically represent a molecule by its exhaustive list of fragments of length up to 8,
where a fragment is defined as a linear succession of connected atoms (see Figure 4). In this section, we
note that a slight modification of the DP algorithm of Proposition 2 generalizes the kernel of Definition
7 to a feature space indexed by the set of general trees up to a given depth, instead of the set of balanced-
trees of the corresponding order. More precisely, if we letTh be the set of trees of depth up toh, and if
we define theuntil-N extensionof the branching-based kernel of Definition 7 as

Kuntil-h
Branch(G1, G2) =

∑

t∈Th

λbranch(t)ψt(G1)ψt(G2), (6)

we can state the following proposition, whose proof is postponed in Appendix B.

Proposition 3 (Until-N kernel computation). Theuntil-N extensionKuntil-h
Branch of the branching-based

kernel of orderh of Definition 7 is given for the graphsG1 andG2 by

Kuntil-h
Branch(G1, G2) =

∑

u∈VG1

∑

v∈VG2

kh(u, v),

wherekn, n = 1, . . . , h is defined recursively by














k1(u, v) = 1(l(u) = l(v)) ,

kn(u, v) = 1(l(u) = l(v))



1 +
∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

λkn−1(u
′, v′)



 , n = 2, . . . , h.

The computation given in Proposition 3 follows that of Proposition 2, and this until-N extension
comes at no extra cost. The feature space corresponding to this extended kernel has nevertheless a
much larger dimensionality than that of the original branching-based kernel. Actually, because the set
of treesTh includes the set of balanced treesBh as a special case, the feature space associated to the
branching-based kernel is a sub-space of the feature space associated to its until-N extension. Figure 6
illustrate the different mappings. The behavior of this kernel with respect toλ follows that of the original
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Figure 6: A graphG, and the set of balanced trees of order 3 (left) and general trees of depth up to
3 (right) for which a tree-pattern rooted in the dashed vertex is found inG, together with their kernel
weightingλbranch(t).

branching-based kernel. In particular, whenλ tends to zero, the set of tree-patterns with non-vanishing
weights reduces to linear chain of vertices and the kernel boils down to a kernel based on the detection
of common walks of length up toh− 1. More formally, one can easily check that, in this case:

lim
λ→0

Kuntil-h
Branch(G1, G2) =

h−1
∑

n=0

Kn
Walk(G1, G2),

whereKn
Walk is the kernel based on the detection of common walks of lengthn, defined in Section 4.1,

Equation 3.
Finally, we note that this extension is not directly applicable to the size-based kernel of Definition 6

because of a slight difference in the computations of Propositions 1 and 2. Indeed, note from Proposition
1 that in order to get theλ|t|−h weighting of the treet proposed in Definition 6, the size-based kernel
is initially computed from patterns weighted by their sizes, and is subsequently normalized by a factor
λ−h. As a result, while the above extension would still have the effect of extending the feature space to
the space indexed by trees ofTh, this λ−h normalization would affect every tree-pattern regardlessof
their size, and the pattern weighting proposed in Definition6 would be lost.

5.2 Removing tottering tree-patterns

The DP algorithms of Sections 4.2 and 5.1 enumerate balancedtree-patterns of orderh through the
recursive extension of balanced tree-patterns of order 2 defined by neighborhood matching sets of pairs
of vertices. According to Definition 8, the whole sets of neighbors of a pair of vertices enter in the
definition of their neighborhood matching sets. As a result,it can be the case in a tree-pattern that a
vertex appears simultaneously as the parent and a child of a second vertex. This phenomenon is the tree
counterpart of a phenomenon observed in the context of walk-based graph kernels, where a random walk
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under extension could return to a visited vertex just after leaving it. This behavior was calledtottering in
Mahé et al. (2005), and following this terminology, we refer to a tree-pattern in which a vertex appears
simultaneously as the parent and a child of a second vertex asa tottering tree-pattern. Figure 7 illustrates
the tottering phenomenon.

C

C C

C

C C

C C

C

C

C C

C C

C

C C

C C

C C CC C C

Figure 7: Left: tottering (red) and no-tottering (blue) walks. Right: tottering (red) and no-tottering(blue)
tree-patterns.

In many cases these tree-patterns are likely to be uninformative features. In particular they are not
proper subgraphs of the initial graphs. Even worse, the ratio of the number of tottering tree-patterns
over the number of non-tottering tree-patterns quickly increases with the depthh of the trees, suggesting
that informative patterns corresponding to deep trees might be hidden by the profusion of tottering tree-
patterns. In order to tackle this issue we now adapt an idea ofMahé et al. (2005) to filter out these
spurious tottering tree-patterns in the kernels presentedin Sections 3 and 4. Tottering can be prevented
by adding constraints in the tree-pattern counting function, according to the following definition.

Definition 9 (No-tottering tree-pattern counting function). From the tree-pattern counting function
of Definition 4, ano-tottering tree-pattern counting functioncan be defined for the treet = (Vt, Et), with
Vt = (n1, . . . , n|t|), and the graphG = (VG, EG), withVG = (v1, . . . , v|VG|), as

ψNT
t (G) =

∣

∣

{

(α1, . . . , α|t|) ∈ [1, |VG|]
|t| : (vα1 , . . . , vα|t|

) = pattern(t)

∧ (ni, nj), (nj , nk) ∈ Et ⇐⇒ αi 6= αk

}∣

∣.

Following Definition 5, a graph kernel based on no-totteringtree-patterns can be defined from this
no-tottering tree-pattern counting function.

Definition 10 (No-tottering tree-pattern kernel). A graph kernelKNT based on no-tottering tree-
patterns is given for the graphsG1 andG2 by

KNT (G1, G2) =
∑

t∈T

w(t)ψNT
t (G1)ψ

NT
t (G2), (7)

whereT is a set of trees,w : T → R is a tree weighting functional andψNT
t is the no-tottering

tree-pattern counting function of Definition 9.

This latter definition therefore extends the tree-pattern kernel of Definition 5 to the no-tottering case.
However, due to the additional constraints on the set of acceptable patterns, the DP framework based on
neighborhood matching set described in Sections 4.2 and 5.1does not hold any longer. In Mahé et al.
(2005), the following graph transformation was introducedin order to filter tottering walks.
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Definition 11 (Graph transformation). For a graphG = (VG, EG), we let its transformed graph
G′ = (VG′ , EG′) be defined by:

• VG′ = VG ∪ EG,

• EG′ = {(v, (v, t)) |v ∈ VG, (v, t) ∈ EG} ∪ {((u, v) , (v, t)) | (u, v) , (v, t) ∈ EG, u 6= t},

and labeled as follows:

• for a nodev′ ∈ VG′ the label is eitherl(v′) = l(v′) if v′ ∈ VG, or l(v′) = l(v) if v′ = (u, v) ∈ EG,

• for an edgee′ = (v′1, v
′
2) between two verticesv′1 ∈ VG ∪ EG and v′2 ∈ EG, the label is simply

given byl(e′) = l(v′2).

This graph transformation is illustrated in Figure 8 for thegraph corresponding to the chemical
compound of Figure 2. Based on this graph transformation, Mahé et al. (2005) proved that there is a
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Figure 8: The graph transformation. I) The original molecule. II) The corresponding graphG =
(VG, EG). III) The transformed graph. IV) The labels on the transformed graph. Note that different
widths stand for different edges labels, and gray nodes are the nodes belonging toVG.

bijection between the set of no-tottering walks of a graph and the set of walks of its transformed graph
that start on a vertex corresponding to a vertex of the original graph. In a similar way, we show below
that there is a bijection between the set of no-tottering tree-patterns found in a graph and the set of tree-
patterns found in its transformed graph rooted in a vertex corresponding to a vertex of the original graph.
This is summarized in the following proposition, which proof is postponed in Appendix C.

Proposition 4. If we letG′
1 (resp. G′

2) be the transformed graph ofG1 (resp. G2), the no-tottering
tree-pattern kernel of Definition 10 is given by

KNT (G1, G2) =
∑

t∈T

w(t)ψNT
t (G1)ψ

NT
t (G2)

=
∑

t∈T

w(t)ψ
{VG1

}
t (G′

1)ψ
{VG2

}
t (G′

2),

where, ifG′ is the transformed graph ofG given by Definition 11,VG ⊂ VG′ is the set of vertices ofG′

corresponding to the vertices ofG, andψ{v1,...,vn}
t (G) =

n
∑

i=1

ψ
(vi)
t (G).
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This proposition shows that we can compute no-tottering extensions of the kernels of Definitions 6
and 7, and of the until-N kernel extension of Equation 6, using the graph transformation of Definition 11
and the original DP algorithms of Sections 4.2 and 5.1. However, this operation comes at the expense of
an increase in the cost of computing the kernel. More precisely, by definition of the graph transformation,
we have|VG′ | = |VG| + |EG|. Moreover, as noticed by Mahé et al. (2005), the maximum out-degree of
the vertices of the transformed graph is equal to that of the original graph. As a result, the worst case
complexity of evaluating the functionalkh(u, v) of Propositions 1, 2 and 3 is the same ifu andv belong
to VG′

1
andVG′

2
, orVG1 andVG2 . It follows that for the graphsG1 andG2 we have

O
(

KNT (G1, G2)
)

=
(|VG1 | + |EG1 |)(|VG2 | + |EG2 |)

|VG1||VG2 |
O

(

K(G1, G2)
)

,

whereK is one of the kernels given in Equations 1, 2 and 6, andKNT is its no-tottering extension of
Definition 10.

6 Experiments

We now turn to the experimental section. The problem we consider is a binary classification task con-
sisting in discriminating toxic from non-toxic molecules.Our main goal is to assess the relevance of
tree-patterns graph kernels over their walk-based counterparts for this type of chemical applications. To
do so, recall from section 4.1 that in the proposed kernels, the influence of the tree-patterns is controlled
by the parameterλ. Whenλ tends to zero, the kernels converge to kernels based on the count of com-
mon walks in the graphs (Gärtner et al., 2003). For increasing λ, tree-patterns of increasing complexity
are taken into account with increasing weight in the kernels. One can therefore study the relevance of
tree-patterns by studying how the performance of the kernels evolves withλ > 0, and checking whether
it improves over their walk-based counterpart obtained forλ = 0.

The first step towards this goal is to evaluate the kernels of Definitions 6 and 7, and therefore the
original formulation presented in Ramon and Gärtner (2003). In a second step, we want to validate the
extensions to these kernels proposed in sections 5.1 and 5.2. On the one hand we will compare the results
obtained with the until-N extension of the branching-basedkernel (6) to its initial formulation (2), and
on the other hand we will compare the results obtained with the no-tottering extensions (7) of the size-
based, branching-based, and until-N branching-based kernels to their original formulations. Because our
interest here is to get insights about the behavior of the different kernels, we report experimental results
for varying values of the parameters entering their definition, namely the orderh of the patterns, and the
pattern weighting parameterλ. In real-world applications one should of course design a procedure to
select the best parameters from the date.

The classification experiments described below were carried out with a support vector machine based
on the different kernels tested. Each kernel was implemented in C++ within the open-source ChemCpp
toolbox, and we used the open-source Python machine learning package PyML5 to perform SVM clas-
sification. The SVM prediction is obtained by taking the signof a score function. However, by varying
this zero decision threshold, it is possible to compute the evolution of the true positive rate versus the
false positive rate in a curve known as the Receiver Operating Characteristic (ROC) curve. The area un-
der this curve, known as AUC for Area Under the ROC Curve, is often considered to be a safer indicator
of the quality of a classifier than its accuracy (Fawcett, 2003), being 1 for an ideal classifier, and 0.5 for
a random classifier. The results presented below are averaged AUC values obtained for 10 repetitions of

5Available athttp://pyml.sourceforge.net
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a 5-fold cross-validation process. Within each cross-validation fold, the”C” soft-margin parameter of
the SVM was optimized over a grid ranging from10−3 to 103, using an internal cross-validation method
implemented in PyML.

We considered two public datasets of chemical compounds in our experiments. Both gather results
of mutagenicity assays, and while the first one (King et al., 1996) is a standard benchmark for evaluating
chemical compounds classification, the second one (Helma etal., 2004) was introduced more recently.
The first dataset contains 188 chemical compounds tested formutagenicity onSalmonella typhimurium.
The molecules of this dataset belong to the family of aromatic and hetero-aromatic nitro compounds,
and they are split into two classes: 125 positive examples with high mutagenic activity (positive levels
of log mutagenicity), and 63 negative examples with no or lowmutagenic activity. The second database
considered consists of 684 compounds classified as mutagensor non-mutagens according to a test known
as theSalmonella/microsome assay. This dataset is well balanced with 341 mutagens compounds for
343 non-mutagens ones. Note that although the biological property to be predicted is the same, the
two datasets are fundamentally different. While King et al.(1996) focused on a particular family of
molecules, this dataset involves a set of very diverse chemical compounds, qualified asnoncongeneric
in the original paper. To predict mutagenicity, the model therefore needs to solve different tasks : in the
first case it has to detect subtle differences between homogeneous structures, while in the second case it
must seek regular patterns within a set of structurally different molecules.

6.1 First Dataset

Tree-patterns Vs walk-patterns:
Figure 9 shows the results obtained for the size-based (left) and branching-based (right) kernels of Defi-
nitions 6 and 7. Each curve represents the evolution, for0 ≤ λ ≤ 1, of the AUC obtained from patterns
of a given orderh taken between 2 and 10.

Because the corresponding AUC values start by increasing with λ, we can note from Figure 9 (left)
that the introduction of tree-patterns is beneficial to the size-based kernel for patterns of order greater
than two. In the case of the branching-based kernel, Figure 9(right) suggests that this is only true for
patterns of order greater than 2 and smaller than 6, but Figure 10 shows that, based on smaller values
of λ, this is still the case for patterns up to order 7. Taken together, Figures 9 and 10 show that the
optimal AUC values obtained with the size- and branching-based kernels for patterns of order 2 to 7
are globally similar. Interestingly however, the correspondingλ values are systematically smaller in the
case of the branching-based kernel. This is due to the fact that, as noted in section 4.1, the size-based
penalization is stronger than the branching-based penalization. As a result, optimalλ values observed
using the size-based kernel are shifted towards zero using the branching-based kernel.

We can also note from Figures 9 and 10 that optimal values ofλ tend to decrease for increasing
h. This is probably due to the fact that the number of tree-patterns increases exponentially withh,
and, as a result, the kernels need to limit their individual influence. Actually, we observe that higher
order patterns, withh > 7, can only be considered for sufficiently small values ofλ. For example,
we note that the size-based kernel computation does not converge if we consider patterns of order 10
andλ greater than 0.15. In the case of branching-based kernel, due to the weaker pattern penalization,
this phenomenon is even emphasized, and in that case,10−4 is the largest value acceptable forλ. This
difference in the way to penalize the patterns probably explains the fact that while a slight improvement
over the walk-based kernel can be observed in the case of the size-based kernel whenh is greater than 7
(Figure 9, left), the performance systematically decreases with the branching-based kernel (Figure 10).

Additionally, we note that because the size- and branching-based penalization of balanced trees of
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order 2 is the same, the results obtained forh = 2 are identical with the two kernels. Surprisingly
however, no improvement over the walk-based baseline is observed, which suggests that in this case, the
tree-patterns do not bring additional information to that contained in the walk features, that consist here
of simple pairs of connected atoms.

In conclusion, these experiments demonstrate the improvement of the tree-patterns graph kernels
over their walk-based counterparts. The impact of the tree-patterns is particularly marked for patterns
of order 3 and 4, where the two kernels improve by more than 3% the AUC of the corresponding walk-
based kernel. For patterns of increasing order, this figure gradually decreases, and for patterns of order
greater than 7, it drops to 1 % in the case of the size-based kernel, while no more improvement is ob-
served with the branching-based kernel. In both cases, optimal results are obtained for patterns of order
4, with AUC values of 95.3% and 95.0%. Finally, it is worth noting the combinatorial explosion in the
number of patterns for large orders, which in practice limits the acceptable values ofλ to small values.
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Figure 9: First dataset. Evolution of the AUC with respect toλ at different ordersh. Left: size-based
kernel (1) ; Right: branching-based kernel (2).

Until-N extension:
Figure 11 presents the results of the until-N extension (6) of the branching-based kernel (2). The figure
on the left-hand side, showing the evolution of the AUC for2 ≤ h ≤ 10 and0 ≤ λ ≤ 1, corresponds to
that on the right-hand side of Figure 9. The figure on the right-hand side plots these AUC values versus
corresponding values obtained using the original kernel (2).

We can first notice strong similarities between the curve in the left-hand side and its original kernel
counterpart. This is confirmed in the right-hand curve whereall the points lie near the diagonal line that
represents the equivalence between the two kernels. The fact that the differences between the two kernel
formulations are barely noticeable is quite surprising since their associated feature spaces are intuitively
quite different. In section 5.1, we mentioned that the feature space associated to the branching-based
kernel is actually a subspace of the feature space associated to its until-N extension. As a result, Figure
11 suggests that the extra features related to the until-N extension do not bear additional information into
the kernel. This hypothesis seems to be confirmed by the fact that the differences between corresponding
walk-based kernels, observed forλ = 0, are not significant neither. This might be explained by the
fact that the dimensions of the corresponding feature spaceare probably strongly correlated due to the
relation of inclusion existing between trees and walks patterns of ordersn, and those of ordern + 1.
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Figure 10: First dataset, branching-based kernel (2) . Evolution of the AUC at different ordersh for
small values ofλ.

Another possible explanation for the lack of improvement ofthe until-N extension lies of course in the
difficulty of learning in high dimension, suggesting that discriminating patterns of a given order are lost
within the flood of patterns of greater orders taken into account by this until-N extension.
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Figure 11: First dataset, until-N extension. Left: evolution of the AUC with respect toλ at different
ordersh, for the until-N extension (6) of the branching-based kernel (2). Right: AUC values Vs original
AUC values.

No-tottering extension:
Figures 12, 13 and 14 respectively show the results of the no-tottering extension (7) of the size-based (1),
branching-based (2), and until-N branching-based kernels(6). The curves on the left-hand side show the
evolution of AUC for2 ≤ h ≤ 10 and0 ≤ λ ≤ 1, and the curves on the right-hand side plot these AUC
values versus corresponding values obtained using the original kernels.

If we compare the results of the no-tottering extensions of the size-based and branching-based ker-
nels (Figures 12 and 13), we can first note that the the introduction of tree-patterns is now systematically
beneficial forh > 2 in both cases. Moreover, we note that the kernel computations remain feasible for
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h = 10 andλ = 1, which means that the no-tottering extension limits the combinatorial explosion we
observed with the original formulation. While optimal results were obtained forh = 4 using the original
kernels, we observe that here, in both cases, the performance gradually increases fromh = 3 to an opti-
mum value obtained forh = 8. At a given order, we note that the optimal AUC values obtained with the
two kernels are similar, and that the correspondingλ value is smaller in the case of the branching-based
kernel, which is consistent with the observations made in the previous section. Optimal AUC values are
close to 96.5% and improve over the values around 95% observed with the initial formulation. Impor-
tantly, we note that these optimal values are obtained usingparametrizations of the kernels that lead to a
combinatorial explosion in their initial formulation. Finally, from the fact that almost all points lie above
the diagonal in the right-hand curves, we can draw the conclusion that the no-tottering extension has
almost consistently a positive influence on the classification in both cases. It is worth noting however
that, even though the introduction of no-tottering tree-patterns was shown to be beneficial, part of the
overall improvement over their tottering counterparts is due to the no-tottering extension itself, since
no-tottering walk-based kernels, observed forλ = 0, already improve significantly over their tottering
counterparts, especially for high order patterns.

We now turn to Figure 14 and the no-tottering extension (7) ofthe until-N branching-based kernel
(6). We can first notice that conclusions similar to those related to the no-tottering extension of the
branching-based kernel can be drawn: an improvement over the corresponding walk-based kernel is
systematically observed for tree-patterns of order greater than 2, the kernel behaves more nicely (no
combinatorial explosion), and the no-tottering extensionconsistently improves over the initial until-N
branching-based kernel (right-hand curve). Interestingly however, we note that optimal results obtained
for 4 ≤ h ≤ 10 tend to converge to an optimal value around 95.5% (between 95.3 and 95.9%) for a
λ value around 0.05. While this global optimum is not as good asthe overall optimal result obtained
with the no-tottering branch-based kernel (Figure 13), it still remains competitive (95.5% Vs 96.5%).
This observation contrasts with the the results obtained with the until-N extension in the tottering case,
where patterns of a given order seemed to be lost in the amountof patterns of greater orders taken into
account by the kernel. This is due to the fact the the no-tottering extension limits the number of patterns
to be detected, and suggests that patterns of different orders can now be considered simultaneously in the
kernel. This fact therefore suggests that in the no-tottering case, the until-N extension can help solving
the problem of pattern order selection by taking a maximal pattern order large enough (here,h > 4).

6.2 Second Dataset

In this section, we apply the same analysis to the second dataset.

Tree-patterns Vs walk-patterns:
Figure 15 shows the results obtained with the original size-based (1) and branching-based (2) kernels.
Several observations are consistent with those we drew withthe fist dataset. First, the introduction
of tree-patterns has in both cases a positive influence on theclassification, and is particularly marked
for patterns of limited order (up to a relative improvement of 12% for h = 2, and 4.5% forh = 3).
Moreover, optimal values of theλ parameter are smaller in the case of the branching-based kernel, they
decrease for increasingh, and quickly lead to a combinatorial explosion for high-order patterns. Finally,
we note that, in both cases, optimal AUC values are around 84%, and are obtained for patterns of order
3 and 4, which is similar to the optimal order observed for thefirst dataset. However, we can note the
interesting difference that here, tree-patterns of order 2improve dramatically the results over their walk
counterparts, which suggests that different molecular features are to be detected in both datasets.
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Figure 12: First dataset. Left: evolution of the AUC with respect toλ at different ordersh for the no-
tottering extension (7) of the size-based kernel (1). Right: no-tottering AUC values Vs original AUC
values.
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Figure 13: First dataset. Left: evolution of the AUC with respect toλ at different ordersh for the no-
tottering extension (7) of the branching-based kernel (2).Right: no-tottering AUC values Vs original
AUC values.
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Figure 14: First dataset. Left: evolution of the AUC with respect toλ at different ordersh for the no-
tottering extension (7) of the until-N branching-based kernel (6). Right: no-tottering AUC values Vs
original AUC values.
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Figure 15: Second dataset. Evolution of the AUC with respecttoλ at different ordersh. Left: size-based
kernel (1) ; Right: branching-based kernel (2).

Until-N extension:
Figure 16 shows the results obtained with the until-N extension (6) of the branching-based kernel (2).
Here again, observations are consistent with the first dataset. In particular, we can note that the results
obtained with and without the until-N extension are very similar, and this fact is even more pronounced
here. This second evidence confirms that the until-N extension is of little use in the original formulation
of the kernel, most probably because patterns of a given order are drowned within the amount of patterns
of greater orders.

No-tottering extension:
Figure 17, 18 and 19 respectively present the results of the no-tottering extension (7) of the size-based
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Figure 16: Second dataset, until-N extension. Left: evolution of the AUC with respect toλ at different
ordersh for the until-N extension (6) of the branching-based kernel(2). Right: AUC values Vs original
AUC values.

(1), branching-based (2), and until-N branching-based (6)kernels.
Several observations are consistent with the first dataset.We can likewise note that with the no-

tottering extension, the introduction of tree-patterns issystematically beneficial in both kernels. More-
over, at a given order, optimal results observed with the twokernels are similar, and the corresponding
λ value is smaller with the branching-based kernel. Finally,the no-tottering extension limits the combi-
natorial explosion of the kernels computation.

There is however a striking difference because results are optimal here for patterns of order 3, pat-
terns of order 2 rank second, and the results gradually decrease for orders greater than 3. This behavior
is exactly opposite to the one we observed with the first dataset, where results gradually increased with
the order of the patterns and were optimal for patterns of order 8. This therefore tends to confirm that
distinct features are to be detected within the two datasets, and can be explained by the fact that the
compounds are structurally similar in the first dataset, anddifferent (ornoncongeneric) in the second
one. Indeed, while the kernel needs to detect subtle differences between the compounds of the first
dataset, it must identify regular patterns within the second one, and it is not surprising that discriminat-
ing patterns are shorter in this case. This observation supports the intuition that the choice of the order
of the patterns should to be related to (or learned from) the dataset itself, as suggested in section 4.1.
Finally, we note that the best AUC value is around 84 % (corresponding to a relative improvement of
7% over the corresponding walk-based kernel), and is therefore similar to that obtained with the original
formulation of the kernel. Nevertheless, we observe from the curves on the right-hand side that contrary
to the first dataset, the no-tottering extension has a limited overall impact. This is due to the surprising
fact that here, the no-tottering extension does not seem to be beneficial by itself, since we can note that it
systematically degrades the performance of the corresponding walk-based kernels, obtained forλ = 0.
As a result, even though the introduction of tree-patterns is beneficial in both cases, better performances
can be obtained here if we consider tottering tree-patterns. Once again this behavior is opposite to that
of the first dataset. This might be explained as well by the fact that, contrary to the first dataset, the
molecules considered here are structurally different, andas a result, tottering can help finding common
features between these noncongeneric compounds.

Concerning the no-tottering extension (7) of the until-N branching-based kernel (6), results presented
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in Figure 19 are not clear. Indeed, in that case, the introduction of the tree-patterns only improves
the results for patterns of limited order, and for patterns of order greater than 4, results systematically
decrease. We can however note the interesting point that optimal results obtained for patterns of order
5 to 10 converge to a global optimal value between 85 and 86 %. This therefore tends to confirm that
in the no-tottering case, the until-N extension can help solving the problem of pattern order selection by
considering a maximal pattern order large enough (here,h > 4). Nevertheless, the striking difference
with the results obtained with the first dataset is that in this case, whenh > 4, the introduction of tree-
patterns could not further improve the results obtained by the until-N walk-based kernel, that constitute
the overall best performance we could observe for this dataset.
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Figure 17: Second dataset. Left: evolution of the AUC with respect toλ at different ordersh for the
no-tottering extension (7) of the size-based kernel (1). Right: no-tottering AUC values Vs original
values.
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Figure 18: Second dataset. Left: evolution of the AUC with respect toλ at different ordersh for the
no-tottering extension (7) of the branching-based kernel (2). Right: no-tottering AUC values Vs original
values.
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Figure 19: Second dataset. Left: evolution of the AUC with respect toλ at different ordersh for the
no-tottering extension (7) of the until-N branching-basedkernel (6). Right: no-tottering AUC values Vs
original values.

7 Discussion

This paper introduces a family of graph kernels based on the detection of common tree patterns in the
graphs. In a first step, we revisited an initial formulation presented in Ramon and Gärtner (2003), from
which we derived two kernels with explicit feature spaces and inner products. A parameterλ enters their
definition and makes it possible to control the complexity ofthe features characterizing the graphs. At
the extreme, admissible tree-patterns consist of linear chains of graph vertices, and the kernels resume
to a classical graph kernel based on the detection of common walks (Gärtner et al., 2003). Walk-based
graph kernels are therefore generalized to a wider class of kernels defined by features of increasing levels
of complexity. In a second step we introduced two modular extensions to this initial formulation. On
the one hand, the set of trees initially indexing the featurespace is enriched by the set of their subtrees
with an until-N extension, leading to a wider and more general feature space. On the other hand, a
no-totteringextension prevents spurious tree-patterns to be detected,based on the notion of ”tottering”
initially introduced in the context of walk-based graph kernels (Mahé et al., 2005).

In the context of chemical applications, experiments on twotoxicity datasets demonstrate that the
tree-pattern graph kernels under their initial formulation improve over their walk-based counterpart.
However, while a significant improvement could be observed for relatively small patterns, experiments
revealed the difficulty to handle high order patterns. This is due to the fact that the number of tree-
patterns detected in the graphs increases exponentially with their depth, which leads to a combinatorial
explosion of the kernels computation for large patterns. For this reason, the until-N extension showed to
be useless in this context: patterns of a given order are drowned within the flood of patterns of greater
order, and the two kernel formulations turned out to be equivalent. With the elimination of artificial
tree-patterns, the no-tottering extension limits this combinatorial explosion, and patterns of higher order
can be considered in the kernel. This was in particular beneficial to the first dataset where optimal results
were obtained with high-order no-tottering patterns. Nevertheless, we notice that this extension is not
always beneficial, and that in some cases, artificial common patterns due to the tottering phenomenon
can help detecting molecular similarity. This is in particular the case for the second dataset, and can be
explained by the fact that, in opposition to the first dataset, it consists of structurally different compounds.
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The combination of the two extensions led to mixed results. For the first dataset, we observe that the
introduction of tree-patterns in this context could now improve over their walk-based counterparts for
any maximum pattern order. This suggests that the limitation of the combinatorial explosion offered
by the no-tottering extension makes it possible to combine patterns of different order in the kernel.
However, albeit close, optimal results with the until-N extension could not come up with the optimal
results that were obtained with no-tottering patterns of a given order. This suggests that very precise
patterns were to be detected, and that their discriminativepower is reduced by the addition of other, less
predictive, patterns. For the second dataset, the combination of the two extensions led to optimal results.
In that case however, the introduction of tree-patterns wasnot always beneficial and these optimal results
were obtained by until-N, no-tottering walk-kernels. Finally, we can note that, when the maximum order
of the patterns considered is large enough, results obtained with the until-N extension and no-tottering
patterns tend to converge to a global optimum which is close,or equal to, to the overall best performance
observed in both datasets.

Among the possible extensions to our work, we note that it might be relevant in the context of
chemical applications to incorporate chemical knowledge in the graph representation of the molecules.
For instance, it is well known that physico-chemical properties of atoms are related to their position
in the molecule, and as a first step in this direction, an enrichment of atom labels by their Morgan
indices led to promising results in the context of walk-based kernels (Mahé et al., 2005). However, this
particular approach is likely to have a lesser impact in thiscontext, because the information encoded
by the Morgan indices is at some extend already incorporatedin the tree-patterns. Alternatively, we
note that the kernel implementation could easily be extended in order to introduce a flexible matching
between tree-patterns based on measures of similarity between pairs of vertices and edges, following
for instance the construction of the marginalized kernel between labeled graphs (Kashima et al., 2004).
Such an extension would induce an increase in the cost of computing the kernel, but is likely to make
sense for chemical applications, where atoms of different types can exhibit similar properties.

A Proof of Propositions 1 and 2

In Propositions 1 and 2, we want to prove that for the graphsG1 andG2

∑

t∈Bh

w(t)ψt(G1)ψt(G2) = α(h)
∑

u∈VG1

∑

v∈VG2

kh(u, v), (8)

where in Proposition 1,α(h) = λ−h andw(t) = λ|t|−h, while in Proposition 2,α(h) = 1 andw(t) =
λbranch(t).

From Definition 4 we haveψt(G) =
∑

u∈VG

ψ
(u)
t (G). As a result,

∑

t∈Bh

w(t)ψt(G1)ψt(G2) =
∑

u∈VG1

∑

v∈VG2

(

∑

t∈Bh

w(t)ψ
(u)
t (G1)ψ

(v)
t (G2)

)

,

and in order to prove (8) we just need to prove

∑

t∈Bh

w(t)ψ
(u)
t (G1)ψ

(v)
t (G2) = α(h)kh(u, v). (9)
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A.1 Proof of Proposition 1

In order to prove Proposition 1, it follows from (9) that we just need to prove that

1

λh
kh(u, v) =

∑

t∈Bh

λ|t|−hψ
(u)
t (G1)ψ

(v)
t (G2) ,

or equivalently:
kh(u, v) =

∑

t∈Bh

λ|t|ψ
(u)
t (G1)ψ

(v)
t (G2) , (10)

wherekh is defined recursively byk1(u, v) = λ1(l(u) = l(v)) and forh > 1:

kh(u, v) = λ1(l(u) = l(v))
∑

R∈M(u,v)

∏

(u′,v′)∈R

kh−1(u
′, v′) . (11)

We prove (10) by induction onh. The caseh = 1 is rather trivial. Indeed, a tree of depth one is just
a single node, andψ(u)

t (G1) is therefore equal to1 if l(u) = l(r(t)), 0 otherwise. It follows that

∑

t∈B1

λ|t|ψ
(u)
t (G1)ψ

(v)
t (G2) =

∑

t∈B1

λ1(l(r(t)) = l(u))1(l(r(t)) = l(v))

= λ1(l(u) = l(v)),

which corresponds tok1(u, v).
Let us now assume that (10) is true at orderh − 1, and let us prove that it is then also true at order

h > 1. Combining the recursive definition ofkh (11) with the induction hypothesis (10) at levelh − 1
we first obtain:

kh(u, v) = λ1(l(u) = l(v))
∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

t′∈Bh−1

λ|t
′|ψ

(u′)
t′ (G1)ψ

(v′)
t′ (G2) . (12)

Second, for any graphG, let us denote byP(u)
n (G) the set of balanced tree-patterns of ordern rooted in

u ∈ VG, and for any tree-patternp ∈ P
(u)
n (G) let t(p) ∈ Bn denote the corresponding tree. With these

notations we can rewrite, for anyn ≥ 1 and(u, v) ∈ G1 ×G2:

∑

t∈Bn

λ|t|ψ
(u)
t (G1)ψ

(v)
t (G2) =

∑

p1∈P
(u)
n (G1)

∑

p2∈P
(v)
n (G2)

λ|t(p1)|
1(t(p1) = t(p2)). (13)

Indeed both sides of this equation count the number of pairs of similar tree-patterns rooted inu andv.
Plugging (13) into (12) we get:

kh(u, v) = λ1(l(u) = l(v))
∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

p1∈P
(u′)
h−1(G1)

∑

p2∈P
(v′)
h−1(G2)

λ|t(p1)|
1(t(p1) = t(p2)) . (14)

Now we use the fact that any tree-patternp of orderh can be uniquely decomposed into a tree-pattern
p′ of order2 and a set of tree-patterns of orderh − 1 rooted at the leaves ofp′. We note that matching
two tree-patterns is equivalent to matching the tree-patterns in their decomposition, and that the sets of
leaves of tree-patterns of order 2 rooted respectively inu andv matching each other are exactly given
by M(u, v). In other words, (14) performs a summation over pairs of matching tree-patterns of depth
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h, rooted respectively inu andv: the corresponding pairs of patterns of order 2 are implicitly matched
by the summation overM(u, v) and the condition1(l(u) = l(v)), and the subsequent pairs of patterns
(p1, p2) of orderh− 1 are matched by the product of conditions1(t(p1) = t(p2)).

The tree-patternp1 in G1 of such a matching pair of tree-patterns of orderh rooted in(u, v) de-
composes as a pattern of depth 2 rooted inu with leaves in someR ∈ M(u, v), and a set of patterns
p1(u

′) of depthh − 1 rooted in the leavesu′ ∈ R. By (14), to each such matching pair is associ-
ated the weightλ ×

∏

(u′,v′)∈R λ
|t(p1(u′))|, which is exactly equal toλ|t(p1)| since we obviously have

|t(p1)| = 1 +
∑

(u′,v′)∈R |t(p1(u
′))|. As a result, (14) can be rewritten as:

kh(u, v) =
∑

p1∈P
(u)
h

(G1)

∑

p2∈P
(v)
h

(G2)

λ|t(p1)|1(t(p1) = t(p2)),

which combined with (13) proves (10).

A.2 Proof of Proposition 2

The proof of Proposition 2 is a straightforward variant of the proof of Proposition 1. By (9) we need to
show that

kh(u, v) =
∑

t∈Bh

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2) , (15)

wherekh is defined recursively byk1(u, v) = 1(l(u) = l(v)) and forh > 1:

kh(u, v) =
1(l(u) = l(v))

λ

∑

R∈M(u,v)

∏

(u′,v′)∈R

λkh−1(u
′, v′) . (16)

We proceed again by induction overh to prove (15). The caseh = 1 is easily done by checking, using
an argument similar to that of the previous proof, that (15) is one if l(u) and l(v) are identical, zero
otherwise, which corresponds to the definition ofk1(u, v). If we assume that (15) is true at the level
h− 1, we can plug it in (16) to obtain:

kh(u, v) =
1(l(u) = l(v))

λ

∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

t′∈Bh−1

λ1+branch(t′)ψ
(u′)
t′ (G1)ψ

(v′)
t′ (G2) . (17)

We can then follow exactly the same line of proof as in the previous section and obtain the following
equations

∑

t∈Bn

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2) =

∑

p1∈P
(u)
n (G1)

∑

p2∈P
(v)
n (G2)

λbranch(t(p1))
1(t(p1) = t(p2)) , (18)

and

kh(u, v) =
1(l(u) = l(v))

λ

∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

p1∈P
(u′)
h−1(G1)

∑

p2∈P
(v′)
h−1(G2)

λ1+branch(t(p1))
1(t(p1) = t(p2)) ,

(19)
that correspond respectively to (13) and (14). The only difference with the previous proof is in the
exponent ofλ to form the weight of a matching pair of tree-patterns. By analogy with the previous proof,
we consider the tree-patternp1 in G1 of a pair of matching tree-patterns of depthh rooted in(u, v), that
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decomposes as a pattern of depth 2 rooted inu with leaves in someR ∈ M(u, v), and a set of patterns
p1(u

′) of depthh− 1 rooted in the leavesu′ ∈ R. By (19), to each such matching pair is associated the
weight 1

λ

∏

(u′,v′)∈R λ
1+branch(t(p1(u′))) = λ

−1+
∑

(u′,v′)∈R 1+branch(t(p1(u′))). We observe that the number
of leaves of a treet, that we note leaves(t), is equal to1+branch(t). The weight associated to the above
pair of matching tree-patterns can therefore be written asλ

−1+
∑

(u′,v′)∈R leaves(t(p1(u′))). Finally, because
the number of leaves of the tree-patternp1 is equal to the sum of the leaves of the patternsp1(u

′), it
follows that this expression is equal toλ−1+leaves(t(p1)) = λbranch(t(p1)). As a result, we can write (19) as

kh(u, v) =
∑

p1∈P
(u)
h

(G1)

∑

p2∈P
(v)
h

(G2)

λbranch(t(p1))
1(t(p1) = t(p2)),

which, combined with (18), concludes the proof.

B Proof of Proposition 3

The proof presented in this section is very similar to the proofs of Propositions 1 and 2. Based on the
observations made in the beginning of Appendix A, it followsfrom (9) that in order to prove Proposition
3, we just need to prove that

kh(u, v) =
∑

t∈Th

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2) , (20)

wherekh is defined recursively byk1(u, v) = 1(l(u) = l(v)) and forh > 1

kh(u, v) = 1(l(u) = l(v))
(

1 +
∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

λkh−1(u
′, v′)

)

. (21)

We proceed again by induction overh to prove (20). The caseh = 1 directly follows from the proof of
Proposition 2. If we assume that (20) is true at the levelh− 1, we can plug it in (21) to obtain:

kh(u, v) = 1(l(u) = l(v))
(

1 +
∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

∑

t′∈Th−1

λ1+branch(t′)ψ
(u′)
t′ (G1)ψ

(v′)
t′ (G2)

)

. (22)

By analogy with the construction of the previous proof, for any graphG, let us denote byP(u)
n (G) the

set of tree-patterns of depth 1 ton rooted inu ∈ VG, and for any tree-patternp ∈ P
(u)
n (G) let t(p) ∈ Tn

denote the corresponding tree. Note thatP
(u)
n (G) corresponds here to general tree-patterns of depth 1

to n, in opposition to the balanced-tree patterns of ordern involved in the previous proofs. With these
notations we obtain similarly, for anyn ≥ 1 and(u, v) ∈ G1 ×G2:

∑

t∈Tn

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2) =

∑

p1∈P
(u)
n (G1)

∑

p2∈P
(v)
n (G2)

λbranch(t(p1))
1(t(p1) = t(p2)), (23)

and, plugging (23) into (22), we get:

kh(u, v) =1(l(u) = l(v))

×
(

1 +
∑

R∈M(u,v)

1

λ

∏

(u′,v′)∈R

∑

p1∈P
(u′)
h−1(G1)

∑

p2∈P
(v′)
h−1(G2)

λ1+branch(t(p1))
1(t(p1) = t(p2))

)

,

(24)
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which can be further decomposed into:

kh(u, v) =1(l(u) = l(v))

+
1(l(u) = l(v))

λ

∑

R∈M(u,v)

∏

(u′,v′)∈R

∑

p1∈P
(u′)
h−1(G1)

∑

p2∈P
(v′)
h−1(G2)

λ1+branch(t(p1))
1(t(p1) = t(p2)).

(25)

The second part of the right member of (25) matches pairs of tree-patterns of depth 2 ton rooted in
(u, v). It follows directly from the proof of Proposition 2 that such a pair(p1, p2) of matching tree-
patterns is weighted byλbranch(t(p1)). The first part of the right member of (25) matches the trivialpair
of tree-patterns of depth 1 rooted in(u, v) consisting of the single nodes(u, v). The corresponding tree
has a zero branching cardinality, and we can therefore write

1(l(u) = l(v)) =
∑

t∈T1

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2).

Taken together, these two arguments show that (25) can be written as

kh(u, v) =
∑

t∈Th

λbranch(t)ψ
(u)
t (G1)ψ

(v)
t (G2),

which concludes the proof.

C Proof of Proposition 4

The proof is derived from results presented in Mahé et al. (2005). The sets of walks and no-tottering
walks of the graphG = (VG, EG) are respectively defined byW(G) =

⋃∞
n=0 Wn(G) andWNT (G) =

⋃∞
n=0 W

NT
n (G), where

Wn(G) = {(v0, . . . , vn) ∈ Vn+1
G : (vi, vi+1) ∈ EG, 0 ≤ i ≤ n− 1}

is the set of walks of lengthn defined is Section 4.1, and

WNT
n (G) = {(v0, . . . , vn) ∈ Wn(G) : vi 6= vi+2, 0 ≤ i ≤ n− 2}

is the set of no-tottering walks of lengthn defined in Mahé et al. (2005). We start by stating the following
lemma.

Lemma 1. A tree-patternp of the graphG associated to the treet is no tottering if, and only if, any
walk of G defined as a succession of vertices ofp corresponding to nodes oft forming a path from its
root to one of its leaves is no-tottering.

Proof of Lemma 1.According to Definition 9, let(v1, . . . , v|t|) ∈ V
|t|
G be a no-tottering tree pattern

of the graphG = (VG, EG) corresponding to the treet = (Vt, Et), whereVt = (n1, . . . , n|t|). Let

(ni0 , . . . , nik) ∈ Vk+1
t be a path from the root oft to one of its leaves. By Definition 3, it is clear that

(vi0 , . . . , vik) ∈ W(G). Moreover, by the definition of paths we have(nim , nim+1), (nim+1 , nim+2) ∈ Et

for 0 ≤ m ≤ k − 2. By Definition 9, this implies thatvim 6= vim+2 for 0 ≤ m ≤ k − 2, meaning that

(vi0 , . . . , vik) ∈ WNT (G). Conversely, letp ∈ V
|t|
G be a tree-pattern of the graphG = (VG, EG)

corresponding to the treet = (Vt, Et). Consider the set of walks ofG defined as successions of vertices
of p associated to nodes oft forming paths from its root to its leaves. If these walks are not tottering, it
is clear from Definition 9 that the tree-pattern itself is nottottering.
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We can now state the proof of Proposition 4.

Proof of Proposition 4.If, according to Definition 11, we letG′ be the transformed graph ofG, Mahé
et al. (2005) showed that there is a bijection betweenWNT (G) and the set of walks ofG′ starting in a
vertex corresponding to a vertex ofG, which can be formally defined as

W{VG}(G′) = {(v0, . . . , vn) ∈ W(G′) : v0 ∈ {VG}, n ∈ N},

if we let VG ⊂ VG′ be the subset ofVG′ that corresponds toVG. It follows from Lemma 1 that there is a
bijection between the set of no-tottering tree-patterns ofG and the set of tree-patterns ofG′ rooted in a
vertex ofVG. Finally, Mahé et al. (2005) showed that a walk inWNT (G) and its image inW{VG}(G′)
are identically labeled, which enables to count no-tottering labeled walks inG, by counting identically
labeled walks inG′ starting in a vertex ofVG . It follows that counting no-tottering tree-patterns inG
is equivalent to counting tree-patterns inG′ rooted in a vertex ofVG. As a result, we haveψNT

t (G) =

ψ
{VG}
t (G′), which concludes the proof.
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