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Abstract

Motivated by chemical applications, we revisit and exterfdraily of positive definite kernels
for graphs based on the detection of common subtrees, llipitisoposed by Ramon and Gartner
(). We propose new kernels with a parameter to conteottimplexity of the subtrees used
as features to represent the graphs. This parameter atbosysdothly interpolate between classical
graph kernels based on the count of common walks, on the am had kernels that emphasize
the detection of large common subtrees, on the other han@dldtgropose two modular extensions
to this formulation. The first extension increases the nunoifesubtrees that define the feature
space, and the second one removes noisy features from the gpresentations. We validate
experimentally these new kernels on binary classificatéskd consisting in discriminating toxic
and non-toxic molecules with support vector machines.

1 Introduction

There is an increasing need for algorithms to analyze ars$ifjagraph data, motivated in particular
by various applications in chemoinformatics and bioinfatits. An prominent example in chemoin-
formatics, which motivates this work, is the generic prablef predicting various properties of small
molecules, such as toxicological effects, given tinedlecular graphthat is, the graph representing the
covalent bonds between atoms (Leach and (5jllet,|2003) sffitzstion of graphs is often associated with
the problem of graph mining, which consists in detectingnasting patterns occurring in the graphs, and
using them as features to build predictive modgls (King lefl&0%;[Tnokuchi et al[, 2003; Helma ef al.,
P004:[Deshpande etldl., 2005). As an alternative to thisomgpr, kernel methods associated with graph
kernels have recently emerged as a promising approachassifitation of graph data. Kernel methods
such as support vector machines (SVM) operate implicitly possibly high-dimensional Hilbert space
of features, in the sense that no explicit computation oftrege of the input data in the feature space
is required. Instead, only the inner product between thg@saaf any two input data points, called the
kernel is required [[Scholkopf and Smpla, 2D(2; Shawe-Taylor@nskianinj,[2004). Applying kernel




methods to graph data therefore requires the definition afragk between graphs, thereafter simply
referred to agraph kernel Choosing a graph kernel implicitly amounts to defining acfdeatures to
represent the graphs and an inner product in the space ofdeat

Graph kernels were pioneered[by Kashima k{al. (2004) anth&zet a). [2043), who showed how to
map graphs to an infinite-dimensional feature space indeyéiiear subgraphs, and compute an inner
product in that space. The resulting graph kernels compawegtaphs through their common walks,
weighted by a function of their lengthls (Gartner dt[al., 308 by their probability under a random walk
model on the graphsg (Kashima ef al., 2004). While this regmegion might appear restrictive, these
kernels led to promising empirical results, often compatmstate-of-the-art approaches in the fields of
chemoinformatics[(Mahé etld]., 20d5; Ralaivola ét[al.,.3)Gthd bioinformatics[(Borgwardt etld]., 2005;
Karklin et al.,[2005).

Nevertheless] Ramon and Garfnler (2003) highlighted thidd expressiveness of graph kernels
based on linear features, showing in particular that mafigrdint graphs can be mapped to the same
point in the corresponding feature space. Figpre 1 illtssrehis issue on a simple example. On the other
hand, they also showed that computing a perfect graph kehatlis, a kernel mapping non-isomorphic
graphs to distinct points in the feature space, is NP-hardis Suggests that the expressiveness of
graph kernels must be traded for their computational coxitgleAs a first step towards a refinement
of the feature space used in walk-based graph kernels, Ranbaringr[(2003) introduced a kernel
function comparing graphs on the basis of their common eabtrThis representation looks promising
in particular in chemoinformatics, because physicochahgioperties of atoms are known to be related
to their topological environment that could be well captul®y subtrees. However, the relationship
between the new subtree-based kernel and previous wadkitk@snels was not analyzed in details, and
the relevance of the new kernel was not tested empirically.

Our motivation in this paper is to study in detail, both thetmally and empirically, the relevance of
subtree features for graph kernels, and in particular tesasthe benefits they bring compared to walk-
based graph kernels. For that purpose we first revisit theutation introduced by Ramon and Garfner
(R003) and propose two new kernels with an explicit desiompof their feature spaces and correspond-
ing inner products. We introduce a parameter in the fornanatthat allows to gradually increase the
complexity of the subtrees used as features to represegtapbs, the notion of complexity depending
on the formulation. By decreasing the parameter we recdessical walk-based kernels, and by in-
creasing it, we can empirically observe in detail the eftddhcreasing the number and the complexity
of the tree features used to represent the graphs. Both Fatioms can be efficiently computed by dy-
namic programming, in the spirit of the kernel proposed bynea and Gartng (2003). When the size
of allowed subtrees is increased, however, we observehbairactical use of this kernel is limited by
the explosion in the number of subtrees occurring in thelggam a second step, we therefore introduce
two extensions to the initial formulation of the kernelsttaiow, on the one hand, to extend and gen-
eralize their associated feature space, and on the othdr tmremove noisy features that correspond
to unwanted subtrees. The different kernels are comparneeriexentally on two binary classification
tasks consisting in discriminating toxic from non-toxic lexules with a SVM.

Although our main motivations are in chemical applicationg adopt the general framework of
graph kernels in this paper, because the kernels introdonagdfind different applications in domains
where data have a natural graph structure, such as bioiafm$nnatural language processing or image
processing. We assume that the reader is familiar with kduametions and SVMs, and refer him to
Bcholkopf and Smdld (2002); Shawe-Taylor and Cristin(®004) and references therein for a back-
ground on the subject. The remaining of the paper is orgdrazefollows. Notations and definitions
related to graphs and trees are introduced in Sef}ion 2yfel in Sectior}]3 by the definition of a gen-




eral class of kernels based on the detection of common ®sbtiEhe next section (Sectifh 4) revisits
the framework introduced ih Ramon and Gaitrjer (R003), framch two particular graph kernels are
derived and further extended in Sect[bn 5. The kernels didavad experimentally in Sectidh 6, and we
give concluding remarks in Sectigh 7.
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Figure 1. Two graphs having the same walk content, namely5 ; e—e : x4 ande—e—e : x2, and
consequently mapped to the same point of the feature spaesponding a kernel based on the count

of walks (Gartner et al[, 20D3).

2 Notations and Definitions

In this section we introduce notations and general defimsti@lated to graphs and trees.

2.1 Labeled Directed Graphs

A labeled graphG = (Vg, &) is defined by a finite set ofertices);, a set ofedgest; C Vo x Vg,
and a labeling function : Vg U £ — A which assigns éabel [(z) taken from an alphabet to any
vertex or edge:. We let|V;| be the number of vertices 6f, |£.| be its number of edges, and we assume
below that a set of labeld common to all graphs has been fixed directedgraphs, edges are oriented
and to each vertex € V¢ corresponds a set @icoming neighborg—(u) = {v € Vg : (v,u) € &g}
andoutgoing neighborg ™ (u) = {v € Vg : (u,v) € Eg}. We letd™ (u) = |6~ (u)| be thein-degree
of the vertexu, andd™ (u) = |61 (u)| be itsout-degree A walk of lengthn in the graphG = (Vg, £)
is a succession of + 1 vertices(vy, ..., v,) € Vg“, such thatv;, v;+1) € Eg fori =0,...,n — 1.
A pathis a walk(vo, ..., v,) with the additional condition that# j <= wv; # v;. Finally, a graph
is said to beconnectedf there is a walk between any pair of vertices when the oagon of edges is
dropped.

For applications in chemistry considered below, we assoeitabeled directed gragh= Vg, £a)
to the planar structure of a molecule. To do so, we let thefsetrticesV correspond to the set of atoms
of the molecule, the set of edgég to its covalent bonds, and label these graph elements aogaa
an alphabet4 consisting of the different types of atoms and bonds. Naedimce graphs are directed, a
pair of edges of opposite direction is introduced for eaatatmt bond of the molecule. Figure 2 shows
a chemical compound seen as a labeled directed graph.

2.2 Trees

A treet is a directed connected acyclic graph in which all verticagehn-degree one, except one that
has in-degree zero. The node with in-degree zero is knowhea®dt r(¢) of the tree. Nodes with

out-degree zero are known &f nodes, others are callégternal nodes. Trees are naturally oriented,
edges being directed from the root to the leaves. The owguéighbors of an internal node are known
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Figure 2: A chemical compound seen as a labeled graph

as itschildren and the unique incoming neighbor of a node (apart from tb8 is known as itparent

If two nodes have the same parent, their are said teililengs Thesize|¢| of the treet is its number
of nodes:|t| = |V;|. Thedepthof a node corresponds to the number of edges connectingtietmobt
plus oné, and the depth of the tree is the maximum depth of its nodesallii we introduce a couple
of definitions that will be useful in the following.

Definition 1 (Balanced tree). A perfectly depth-balanced tred order & is a tree where the depth of
each leaf node i&. Perfectly depth-balanced trees are also calbedanced treelkelow.

Definition 2 (Branching cardinality). We define thberanching cardinalitpf the treet, noted branck),
as its number of leaf nodes minus one. More formally, fortett= (V;, &) with Vy = (vq, ..., vp),
branch(t) is given by;
It]
branch(t) = " 1(d* (v;) = 0) — 1,
=1
wherel(.) is a binary function equal to one if its argument is true, artbzotherwise.

This terminology stems from the observation that this qgtiaatso corresponds to the sum, over the
non-leaf nodes of the tree, of their numbers of children mione. It therefore measures how many extra
branchings there are compared to a linear tree, which hastiray cardinality 0. These definitions are
illustrated in Figurg]3.

Figure 3: Left: a tree; of depth 5 with|t;| = 9 and brancfy;) = 3. Right: a balanced treg of order
3 with |t2| = 8 and brancl¥s) = 4. Top nodes are root nodes, bottom nodes are leaf nodes.

The remaining of the paper introduces kernel functions betwlabeled directed graphs based on
the detection in the graphs of patterns corresponding &lddhtrees. To lighten notations, we simply
refer below to labeled directed graphs and labeled treesaghig and trees.

INote that the depth of the root node is one.



3 The Tree-Pattern Graph Kernel

This section introduces a general class of graph kernetbas¢he detection, in the graphs, of patterns
corresponding to particular tree structures. We start lfiypithg precisely this notion of tree-pattern.

Definition 3 (Tree-pattern). Leta graphG = (Vg, &) and atreet = (Vy, &), WithVy = (n1,...,nyy)-

A [t|-uple of verticeq(vy, ..., v) € V‘ lis atree-patterrof G with respect taf, which we denote by
(v1,...,vy) = pattern(t), if and only |f the following holds:

Vi € [13 |t|]7 l(vl) = l(n2)7
V(n;, n;) € &, (vi,v5) € Ea A l((vi,vj)) = l((ni,nj)) ,
V(ni,nj),(ni,ng) €&, j#k < vj# .
In other words a tree-pattern is a combination of graph eestthat can be arranged in a particular
tree structure, according to the labels and the connectpribperties of the graph. Note from this
definition that vertices of the graph are allowed to appesersé times in a tree-pattern, under the

condition that siblings nodes of the corresponding treeaasaciated to distinct vertices of the graphs.
We now introduce a functional to count occurrences of thestems.

Definition 4 (Tree-pattern counting function). A tree-pattern counting functiaeturning the number
of times a tree-pattern occurs in a graph is defined for the trand the graphG = Vg, &q), Vo =

(?}1, - 7U|VG|)1 as

= [{(u, .. Sap) €1, Vel : (vay,- - Vo) = pattern(t) }|.

A restriction oﬁ/zt to patterns rooted in a specified vertexs given by

(@) = {(ar,..., ) € LVl (vay, ... va,,) = Patternt) Ava, = v}.

With this new definition at hand we can define a general graphekdbased on the detection of
common tree-patterns in the graphs.

Definition 5 (Tree-pattern graph kernel). The tree-pattern graph kernk&l is given for the graphs&7,
and G, by
K(G1,Ga2) = w(t)(G1)v(Ga),
teT
where7 is a set of treesw : 7 — R is a tree weighting functional and; is the tree-pattern counting
function of Definitior 4.

The kernel of Definitior{]5 is obviously positive definite sinit can be written as a standard dot-
product K (G1,G2) = (¢(Gh), ¢(G2)), whereo(G ) is the mapping that maps any graphto the
feature space indexed by the trees of theZsess¢(G (\/ () (G Figure[4 illustrates this
mapping.

et

4 Examples of tree-pattern graph kernels

In a recent work} Ramon and Garingr (2003) proposed a pkatitree-pattern graph kernel fitting the
general Definitior{]5. In this section, we propose two diffefeernels with explicit feature spaces and
inner products, discuss their practical computation, agtilight their differences with the kernel of

Ramon and Gartrief (2003).
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Figure 4: A molecular compound (left) and its feature space representatigtr) (right). Note that the
red and green trees are balanced. Note moreover that thetgeeeconsists of a set of linearly connected
atoms, which is known asolecular fragmenin chemoinformatics. Note finally that the safieatom
appears in the 3rd and 5th positions in the tree-patterresponding to the green tree.

4.1 Kernels Definition

According to Definitior]J5, two key elements enter in the déifini of a tree-pattern graph kernel. Firstly,
the set of tree§ indexing the feature space the graphs are mapped to musbberchThe kernels we
consider in this section are based on the same feature sigcepace indexed by the set of balanced
trees of ordeh introduced in Definitior]1, labeled according to the gragtieling alphabet. We will
refer to this set a&, in the following. Second, the tree weighting functiermust be defined. A natural
way to define such a functional is to take into account thecgira of the trees, and accordingly, we
propose to relate the weight of a tree to its size or its briaugcbardinality. In particular we propose to
consider the following kernels:

Definition 6 (Size-based balanced tree-pattern kernel)For the pair of graphs>; and G», thesize-
based balanced tree-pattern kernel of ofdexr defined as

K&,dGi,Ga) = Y NI (G (Go). (1)

teBy,

Definition 7 (Branching-based balanced tree-pattern kernB. For the pair of graphg7; andG,, the
branching-based balanced tree-pattern kernel of driedefined as

Kgranch(Gla Ga) = Z )‘brancr(t)wt(Gl)wt(GQ)' 2

teBy

Note that the depth of a tree is a lower bound on its size,natthfor a tree consisting of a linear
chain of vertices. For such a tree, at depthve havelt| — h = brancht) = 0, and we see that the cor-
responding tree-patterns are given a unit weight in theeterof Definitiong 6 anf] 7. The complexity of
a tree naturally increases with its size and branching eality, and the\ parameter entering the kernel
Definitions[§ and]7 has the effect of favoring tree-pattermysethding on their degree of complexity. A
value of\ greater than one favors the influence of tree-patterns oé@sing complexity over the trivial
linear tree-patterns, while they are penalized by a valuk shaller than one. We can note, however,
that while the size of a tree increases with its branchindinality, the converse is not true. For any tree
t of depthh, we therefore always havg — h > branch{t), and the tree weighting is more important in



the size-based than in the branching-based kernel. In $eafedbalanced trees, this difference is par-
ticularly marked when the nodes with large out-degree argecto the root node. This is due to the fact
that every leaf must be at depth and while the size of the tree necessarily increases bystie- 1
along each path starting from the root, the branching calitindoes nat. The main difference in the
feature space representations of the graphs is therefdoeead by this particular type of tree-patterns,
that can be interpreted as collections of regular subtrééerpa merged in the root node. This suggests
for instance that, foA < 1, the branching-based formulation of the kernel may to soxtené tolerate
large, yet regular patterns, that would be strongly peedlin the size-based formulation. Figdfe 5
illustrates these tree weightings based on the size andHirancardinality.

A AT AN

Figure 5: A set of balanced trees of order 3, together witlr #ire-based (left) and branching-based
(right) A weighting.

When\ tends to zero, the complexity of the patterns is so penattzattbnly tree-patterns consisting
of linear chains of graph vertices have non-vanishing wisigind the kernels of Definitiofs 6 afjd 7 boil
down to a kernel based on the detection of common walks (€&t al.[ 2003). More formally, if we
define the set of walks of lengthof the graphG as

WH(G) - {(U07 - ) Vn+1 (UHUZ-H) €ég, 0<i<n-— 1}

and define for the graphs; andG, the following walk-count kernel:

Kjai(Gr,Go) = ) Z ) = U(ws)), €)

w1€
Wi (G1) Wn(Gg)
wherel(l(w;) = I(w2)) is one if all pairs of corresponding edges and vertices ametically labeled in
the walksw; andws, and zero otherwise, one easily gets that:

lim K§;o(G1, G2) = Jim Kgrane(G1, G2) = Kyai(G1, Ga).

Increasing the value of relaxes the penalization on complex subtree features, andherefore be
interpreted as introducing tree-patterns of increasimgpiexity in the walk-based kernel of Equatign 3.

It should be noted finally that the parametiérand\ are directly related to the nature of the features
representing the graphs and to their relative importanggin@l values of the parameters are therefore
likely to be dependent on the problem and data consideraticam hardly be chosen a priori. As an
example, because of the variety of chemical compounds réping considered in a chemical application
can have a great structural diversity. This suggests tlegttiparameters should be estimated from the
data using, for example, cross-validation techniques.

2At the extreme, we havig| = 1+ (h — 1) x d*(r(t)) Vs branclit) = d* (r(t)) — 1.
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4.2 Kernels Computation

We now propose two factorization schemes to compute theekeoi Definitiong}e andl] 7. These fac-
torizations are inspired by the dynamic programming (DBdalhm proposed by Ramon and Gartner
(R003) to compute a slightly different graph kernel, disaasin the next subsection. The factorization
relies on the following definition:

Definition 8 (Neighborhood matching set). The neighborhood matching set!(u,v) of two graph
verticesu andv is defined as

M(u,v) = {RC 6 (u) x 6T (v) | (V(a,b),(c,d) € R:a#cAb#d)
A (Y(a,b) € R:l(a) = 1(b) ANl((u,a)) =1((v,b))) }.

EachR € M(u,v) consists of one or several pair(s) of neighbors.aind v that are identically
labeled and connected toandv by edges of the same label. It follows from Definitign 1 thattsu
an elementR corresponds to a pair of balanced tree-patterns of ordeot2ddn« andwv, found in the
graph(s)u andv belong to. Moreover, provided andv have the same label, these patterns correspond
to the same balanced tree. We can state the following primusi whose proofs are post-poned in

Appendix[A:

Proposition 1 (Size-based kernel computation). The orderh size-based tree-pattern kernﬁ’lé1
Definition[§ between two graph$; and G, can be computed as:

|ze

KSIZE(G17G2 )\h Z Z kh U, ?} (4)

u€Vg, vEVq,

wherek,,n =1, ..., his defined recursively by

(v)),
(v)) Z H kn_1(u/ "), n=2,... h

ReM(uw) (v w')ER

ki(u,v) = AN1(l(u) =1
kp(u,v) = AL(l(u) =1

Proposition 2 (Branching-based kernel computation).The orderh branching-based tree-pattern ker-
nel K&, of Definition[J between two grapli$; and G can be computed as:

KBranch(GhGQ Z Z kp (u, v) (5)

UGVGl UGVG2

wherek,,n =1, ..., his defined recursively by

kp(u,v) = 1(l(u) = 1(v)) Z % Mep_1(u/',0"), mn=2,... h
ReM(uw) (W' ')ER

Not surprisingly, Propositiong 1 afifi 2 show that the kerhgls, and K, .., of Definitions[ and]7
have the same complexity. More precisely, for the pair opgsts; andGs, it follows from (4) and [(b)
that this complexity is equal to the product of the size&'pfandG,, times the complexity of evaluating
the functionalk,. In both cases, for the pair of graph vertieeandv, evaluatingky, (u, v) amounts to

summing, over all possible matching of neighb&sc M (u,v), a quantity expressed as a product of
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|R| functionalsk;_;. The size ofM (u,v), |[M(u,v)|, is maximal if all the neighbors af andv, as
well as the edges that connect themutandv, are identically labeled. In that case we have

min(d*t (u),dt (v))
(M(u,v)| = > Al (Al (1)
k=1
wherek ranges over the cardinalify?| of the set of matching neighbors. If we lébe an upper bond
on the out-degree of the vertices of the graphs consideréallows that| M (u, v)| < Zizl(A’j)Q and
we can derive the following worst case complexity
d
O(Kgize(leGQ)) = O(Kgranch(GhGQ)) = Ve, | x [Va,| x (Z k(Ag)Q)h_l-
k=1

In the case of chemical compounds, we have- 4. The factorzz:1 k(A%)? equals 4336, and the
complexity looks prohibitive. However this is only a worstse complexity which is strongly reduced
in practice because (i) the out-degree of the vertices énafimaller than¥ and (i) the size oM (u, v)

is reduced by the fact that vertices and edges can havediikthels.

4.3 Relation to previous work

At this point, it is worth reminding the kernel formulationtioduced by Ramon and Garingr (2003) in
order to highlight the differences with the kernels progbse Definitions[p and]7. In the context of
graphs with labeled vertices and edtyes orderh, the kernel introduced ih Ramon and Gaitrier (2003),
that we denote by} is formulated as follows:

KI}?Lamon(GlaG2): Z Z kep (u, v),

UEVGI UEVG2

wherek,, is defined by

k1 (u,v) = 1(l(u) = l(v))

ki (u,0) = 1(1(u) = 1(v)) Audo Y T Ena@'v), n=2,....n
ReM(u,v) (u/,v')eER

It is clear that this kernel and the kernels of Definitiphs @ @rhave the same feature space. The main
difference lies in the fact that in this formulation, a pasder )\, is introduced for each vertexof each
graph. It can be checked that under this parametrizatiarh eae-pattern is weighted by the product of
the parametera, associated to its internal nodes. In the special case whese fparameters are taken
equal to a single parametgr each pattern is therefore weighted yaised to the power of its number
of internal nodes. While this bears some similarity with $sime-based weighting proposed in the kernel
of Definition [§, we note for instance that the three leftmoses of Figurd]5 are identically weighted,
namely by a facton\2. Moreover, the convergence to the walk-based kernel of &auB observed
when tends to zero for the kernels of Definitiph 6 ghd 7 does not tatld this formulation.

3For example, in the two datasets considered in our expetﬁﬂm&sectiorﬂG, the average out-degree of the vertices iynea
2 (2.14 for the first dataset, and 2.06 for the second one).

“The original formulation considered graphs with labelettiges only, and the definition of the neighborhood matching
set is refined in this paper in order to handle labeled edges.



5 Extensions

The kernels introduced in the previous section arise dyrdéicim the adaptation of the algorithm pro-
posed if Ramon and Garth¢r (2P03). In this section we intredwo extensions to this initial formula-
tion. First, we extend the branching-based kernel of Défim[# to a feature space indexed by a larger,
and more general, set of trees. Second, we propose to elaranset of noisy tree-patterns from the
feature space.

5.1 Considering all trees

The DP algorithms of Sectidn 4.2 recursively extend the pratgerns under construction until they reach
a specified depth. Because they are based on the notion dfeeigpod matching sets introduced in
Definition [, these algorithms add at least one child to elemf node of the patterns under extension
at each step of the recursive process. When they reach thiiespalepth, the patterns are therefore
balanced, and the choice of the feature space associatezlkernels of Definitiong 6 arffl 7 was actually
dictated by their computation.

Rather than focusing on features of a particular size, stahepresentations of molecules involve
structural features of different sizes. A prominent exariplthat of molecular fingerprints (Ralaivola
et al.,[2006) that typically represent a molecule by its eskige list of fragments of length up to 8,
where a fragment is defined as a linear succession of comhettims (see Figufé 4). In this section, we
note that a slight modification of the DP algorithm of ProfiosiR generalizes the kernel of Definition
fi to a feature space indexed by the set of general trees upvteradepth, instead of the set of balanced-
trees of the corresponding order. More precisely, if weZJebe the set of trees of depth up/pand if
we define theuntil-N extensiorof the branching-based kernel of Definitifin 7 as

Kgin(Gr, Go) = Aty (G )y (Go), 6)
teTy

we can state the following proposition, whose proof is posgal in Appendix B.

Proposition 3 (Until-N kernel computation). Theuntil-N extensionk §ni% of the branching-based
kernel of orderh, of Definition[7 is given for the graph; and G5 by

untll h
Kpranch (G1,Ga) = Z Z kn(u,v)

UGVGl UGVG2

wherek,,n = 1,..., his defined recursively by
k1(u,v) = 1((u) = 1(v)),
1 / /
kn(u,0) = 1(0(u) = 1(v)) {1+ > 5 [T Mo v)], n=2..h

ReM(u,w) (v w')ER

The computation given in Propositigh 3 follows that of Prsition [2, and this until-N extension
comes at no extra cost. The feature space correspondingstextended kernel has nevertheless a
much larger dimensionality than that of the original brangkbased kernel. Actually, because the set
of trees7}, includes the set of balanced treBg as a special case, the feature space associated to the
branching-based kernel is a sub-space of the feature spaceiated to its until-N extension. Figufe 6
illustrate the different mappings. The behavior of thigledmwith respect ta follows that of the original
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Figure 6: A graphG, and the set of balanced trees of order 3 (left) and genees tof depth up to
3 (right) for which a tree-pattern rooted in the dashed weidfound inG, together with their kernel
weighting \brancht)

branching-based kernel. In particular, whetends to zero, the set of tree-patterns with non-vanishing
weights reduces to linear chain of vertices and the kerniéd down to a kernel based on the detection
of common walks of length up th — 1. More formally, one can easily check that, in this case:

h—1
. 'I_
,{lﬂ% Kgranci G1, G2) = E OKGVam(Gl’GQ)?
n=

where K. is the kernel based on the detection of common walks of lengttefined in Sectiof 4.1,
EquationB.

Finally, we note that this extension is not directly appieato the size-based kernel of Definitijn 6
because of a slight difference in the computations of Piiipas[1 and P. Indeed, note from Proposition
that in order to get thal!~" weighting of the tree proposed in Definitiofi]6, the size-based kernel
is initially computed from patterns weighted by their sizaasd is subsequently normalized by a factor
A~". As a result, while the above extension would still have fifiece of extending the feature space to
the space indexed by trees Bf, this A" normalization would affect every tree-pattern regardefss
their size, and the pattern weighting proposed in Definiamould be lost.

5.2 Removing tottering tree-patterns

The DP algorithms of Sectiors #.2 ahd]5.1 enumerate balameeepatterns of ordek through the
recursive extension of balanced tree-patterns of ordefi@eatktby neighborhood matching sets of pairs
of vertices. According to Definitiof] 8, the whole sets of mdigrs of a pair of vertices enter in the
definition of their neighborhood matching sets. As a resultan be the case in a tree-pattern that a
vertex appears simultaneously as the parent and a childexfand vertex. This phenomenon is the tree
counterpart of a phenomenon observed in the context of ivadled graph kernels, where a random walk
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under extension could return to a visited vertex just aéiaving it. This behavior was callédtteringin
Maheé et d). [2005), and following this terminology, we refie a tree-pattern in which a vertex appears
simultaneously as the parent and a child of a second verteto#tering tree-patternFigure[7 illustrates
the tottering phenomenon.

A 2<Zj/>i
NSNS

c——¢C

Figure 7: Left: tottering (red) and no-tottering (blue) k&l Right: tottering (red) and no-tottering(blue)
tree-patterns.

In many cases these tree-patterns are likely to be unintorenfeatures. In particular they are not
proper subgraphs of the initial graphs. Even worse, the @itithe number of tottering tree-patterns
over the number of non-tottering tree-patterns quicklyéases with the depthof the trees, suggesting
that informative patterns corresponding to deep trees nhigiidden by the profusion of tottering tree-
patterns. In order to tackle this issue we now adapt an idddabie et a). [[2035) to filter out these
spurious tottering tree-patterns in the kernels presant&ectiong]3 anfi 4. Tottering can be prevented
by adding constraints in the tree-pattern counting fumgtéccording to the following definition.

Definition 9 (No-tottering tree-pattern counting function). From the tree-pattern counting function
of Definition[#, ano-tottering tree-pattern counting functioan be defined for the tree= (V;, &), with
Vi = (n1,...,np), and the graptG = (Vg, &g), With Vg = (v1, ..., vy,)), @S

TG = [{(ar, - a) € L Vel (Vg vay, ) = pattern(t)
A (ni,ng), (nj,ng) € & <= o # ak}‘.

Following Definition[b, a graph kernel based on no-tottettireg-patterns can be defined from this
no-tottering tree-pattern counting function.

Definition 10 (No-tottering tree-pattern kernel). A graph kernelK T based on no-tottering tree-
patterns is given for the graphs; and G, by

KNT(Gy,Ga) = w(t)y T (G)¢N T (Ga), (7)
teT

whereT is a set of treesw : 7 — R is a tree weighting functional ang;*” is the no-tottering
tree-pattern counting function of Definitigh 9.

This latter definition therefore extends the tree-pattemmél of Definitior[ p to the no-tottering case.
However, due to the additional constraints on the set offsiabée patterns, the DP framework based on
neighborhood matching set described in Sect[ons 4.7 ahddg4 not hold any longer. al.
(R00%), the following graph transformation was introdugedrder to filter tottering walks.
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Definition 11 (Graph transformation). For a graphG = (Vg,&g), we let itstransformed graph
G' = (Vgr, Eqr) be defined by:

e Vo =V U&g,
o £ =1{(v,(v,1) [v € Vo, (v,t) € &} U {((u,0), (0,6)) | (), (0,1) € Eq,u # t},
and labeled as follows:
e foranodev’ € Vg the label is eithel (v') = (V') if v/ € Vg, orl(v') = 1(v) if v/ = (u,v) € &g,

e for an edgee’ = (v}, v}) between two vertices;, € Vg U E¢ and vy, € &g, the label is simply
given byl(e') = 1(vh).
This graph transformation is illustrated in Figide 8 for t@ph corresponding to the chemical
compound of Figur¢| 2. Based on this graph transformafiorhévi aJ. [2005) proved that there is a

) 0 1) e, (9
H—C/ @2@‘/}9“
o :6\
DI @\—@\/
@’. @H H / /®
.P.\ @%@)\

Figure 8: The graph transformation. 1) The original moleculll) The corresponding grapff =
Ve, Ec). ) The transformed graph. 1V) The labels on the transfedgraph. Note that different
widths stand for different edges labels, and gray nodesharaddes belonging 5.

bijection between the set of no-tottering walks of a grapth the set of walks of its transformed graph
that start on a vertex corresponding to a vertex of the axlggnaph. In a similar way, we show below
that there is a bijection between the set of no-tottering-patterns found in a graph and the set of tree-
patterns found in its transformed graph rooted in a verteresponding to a vertex of the original graph.
This is summarized in the following proposition, which pipostponed in Appendii|C.

Proposition 4. If we let G} (resp. G5) be the transformed graph @, (resp. G2), the no-tottering
tree-pattern kernel of DefmmoEIlO is given by

KNT(Gy,Gs) = Zw( Yo T (G (Ga)

teT

= > wvw" G (@),

teT
where, ifG’ is the transformed graph @¥ given by Definitiod 11V; C Vg is the set of vertices @’
corresponding to the vertices 6f, and@”l"“’”“}(G) = Z wlf”i)(G)
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This proposition shows that we can compute no-totteringresibns of the kernels of Definitiofils 6
and[J, and of the until-N kernel extension of Equafipn 6, gisive graph transformation of Definitign] 11
and the original DP algorithms of Sectidns| 4.2 5.1. Hawedhis operation comes at the expense of
an increase in the cost of computing the kernel. More prgise definition of the graph transformation,
we havelVe | = [Vg| + |Ec|. Moreover, as noticed Hy Mahé et dI. (2005), the maximurdegtree of
the vertices of the transformed graph is equal to that of tigtrnal graph. As a result, the worst case
complexity of evaluating the functiona}, (u, v) of Propositiong]1f]2 and 3 is the same indv belong
to Ve, andVg,, or Vg, andVg,. It follows that for the graph&/; andG, we have

|VG1| + |5G1|)(|VG2| + |5G2|)
|VG1||VG2|

O(KNT(Gl,GQ)) = ( O(K(GlaGQ))a

whereK is one of the kernels given in Equatiof}s[]L, 2 &hd 6, &ngr is its no-tottering extension of

Definition[10.

6 Experiments

We now turn to the experimental section. The problem we dangs a binary classification task con-
sisting in discriminating toxic from non-toxic moleculeQur main goal is to assess the relevance of
tree-patterns graph kernels over their walk-based copautisr for this type of chemical applications. To
do so, recall from sectioh 4.1 that in the proposed kernegsirtfluence of the tree-patterns is controlled
by the parametek. When\ tends to zero, the kernels converge to kernels based on timt cbcom-
mon walks in the graph$ (Gartner et fl., 7J003). For increpsj tree-patterns of increasing complexity
are taken into account with increasing weight in the kern€ee can therefore study the relevance of
tree-patterns by studying how the performance of the kemalves with\ > 0, and checking whether

it improves over their walk-based counterpart obtained\fer 0.

The first step towards this goal is to evaluate the kernelsedfnions[§ and]7, and therefore the
original formulation presented |n Ramon and Gaftper (2008a second step, we want to validate the
extensions to these kernels proposed in secfiohs 5L dn@6 the one hand we will compare the results
obtained with the until-N extension of the branching-bakedhel (§) to its initial formulation[{2), and
on the other hand we will compare the results obtained wighnthrtottering extension§|(7) of the size-
based, branching-based, and until-N branching-basea@lsaintheir original formulations. Because our
interest here is to get insights about the behavior of tHereifit kernels, we report experimental results
for varying values of the parameters entering their definjtnamely the ordés of the patterns, and the
pattern weighting parameter. In real-world applications one should of course designaggalure to
select the best parameters from the date.

The classification experiments described below were chotigwith a support vector machine based
on the different kernels tested. Each kernel was implendent€++ within the open-source ChemCpp
toolbox, and we used the open-source Python machine lgapaickage PyME to perform SVM clas-
sification. The SVM prediction is obtained by taking the sifra score function. However, by varying
this zero decision threshold, it is possible to compute tlwdudion of the true positive rate versus the
false positive rate in a curve known as the Receiver Opgr&maracteristic (ROC) curve. The area un-
der this curve, known as AUC for Area Under the ROC Curve, tisro€onsidered to be a safer indicator
of the quality of a classifier than its accuragy (Favdett,$)Pbeing 1 for an ideal classifier, and 0.5 for
a random classifier. The results presented below are avkrid€ values obtained for 10 repetitions of

SAvailable atht t p: / / pyni . sour cef or ge. net
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a 5-fold cross-validation process. Within each crossdeion fold, the’ C” soft-margin parameter of
the SVM was optimized over a grid ranging frai—3 to 103, using an internal cross-validation method
implemented in PyML.

We considered two public datasets of chemical compoundsriexperiments. Both gather results
of mutagenicity assays, and while the first is a standard benchmark for evaluating
chemical compounds classification, the second pne (HelraB, ®00%) was introduced more recently.
The first dataset contains 188 chemical compounds testedutargenicity orbalmonella typhimurium
The molecules of this dataset belong to the family of arotnatid hetero-aromatic nitro compounds,
and they are split into two classes: 125 positive exampl#s lwgh mutagenic activity (positive levels
of log mutagenicity), and 63 negative examples with no or iomtagenic activity. The second database
considered consists of 684 compounds classified as mutagana-mutagens according to a test known
as theSalmonelldnicrosome assay. This dataset is well balanced with 34hgeuts compounds for
343 non-mutagens ones. Note that although the biologicglguty to be predicted is the same, the
two datasets are fundamentally different. WiHile King ét(&B9%) focused on a particular family of
molecules, this dataset involves a set of very diverse atedrabmpounds, qualified aencongeneric
in the original paper. To predict mutagenicity, the modeléfiore needs to solve different tasks : in the
first case it has to detect subtle differences between homeoges structures, while in the second case it
must seek regular patterns within a set of structurallyed#ifit molecules.

6.1 First Dataset

Tree-patterns Vs walk-patterns:

Figure[P shows the results obtained for the size-baseq dledt branching-based (right) kernels of Defi-
nitions@ anq]7. Each curve represents the evolution) for\ < 1, of the AUC obtained from patterns
of a given orderh taken between 2 and 10.

Because the corresponding AUC values start by increasitigwive can note from Figurg 9 (left)
that the introduction of tree-patterns is beneficial to tize-based kernel for patterns of order greater
than two. In the case of the branching-based kernel, Figrigi®t) suggests that this is only true for
patterns of order greater than 2 and smaller than 6, but &[@firshows that, based on smaller values
of )\, this is still the case for patterns up to order 7. Taken togretFigured]9 anfl L0 show that the
optimal AUC values obtained with the size- and branchingelakernels for patterns of order 2 to 7
are globally similar. Interestingly however, the corrasiog A values are systematically smaller in the
case of the branching-based kernel. This is due to the fattdls noted in secti.l, the size-based
penalization is stronger than the branching-based pexttigiiz As a result, optimal values observed
using the size-based kernel are shifted towards zero usengranching-based kernel.

We can also note from Figur¢s 9 ahd 10 that optimal values teihd to decrease for increasing
h. This is probably due to the fact that the number of treeepast increases exponentially with
and, as a result, the kernels need to limit their individméluence. Actually, we observe that higher
order patterns, witth > 7, can only be considered for sufficiently small valueshof For example,
we note that the size-based kernel computation does noermenf we consider patterns of order 10
and\ greater than 0.15. In the case of branching-based kerneltadilne weaker pattern penalization,
this phenomenon is even emphasized, and in that ¢asé,is the largest value acceptable far This
difference in the way to penalize the patterns probablyaimplthe fact that while a slight improvement
over the walk-based kernel can be observed in the case ozthbased kernel whenis greater than 7
(Figure[9, left), the performance systematically decreasith the branching-based kernel (Figlirg 10).

Additionally, we note that because the size- and branchamed penalization of balanced trees of
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order 2 is the same, the results obtained o= 2 are identical with the two kernels. Surprisingly
however, no improvement over the walk-based baseline srebd, which suggests that in this case, the
tree-patterns do not bring additional information to thattained in the walk features, that consist here
of simple pairs of connected atoms.

In conclusion, these experiments demonstrate the impremewf the tree-patterns graph kernels
over their walk-based counterparts. The impact of the pegterns is particularly marked for patterns
of order 3 and 4, where the two kernels improve by more thant8#®UC of the corresponding walk-
based kernel. For patterns of increasing order, this figtaduglly decreases, and for patterns of order
greater than 7, it drops to 1 % in the case of the size-basextlkevhile no more improvement is ob-
served with the branching-based kernel. In both casesnaptiesults are obtained for patterns of order
4, with AUC values of 95.3% and 95.0%. Finally, it is worth imgtthe combinatorial explosion in the
number of patterns for large orders, which in practice kntlite acceptable values dfto small values.

SIZE-BASED, TOTTERING BRANCH-BASED, TOTTERING

. . . . . . . . . ) 89 . . . . . . . . . )
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
lambda lambda

89
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Figure 9: First dataset. Evolution of the AUC with respecitat different orders:. Left: size-based
kernel [1) ; Right: branching-based kerrfg! (2).

Until-N extension:
Figure[1]L presents the results of the until-N extensipn {&)@branching-based kerng] (2). The figure
on the left-hand side, showing the evolution of the AUCZox h < 10 and0 < A < 1, corresponds to
that on the right-hand side of Figuile 9. The figure on the figiitd side plots these AUC values versus
corresponding values obtained using the original kefel (2

We can first notice strong similarities between the curvdéléft-hand side and its original kernel
counterpart. This is confirmed in the right-hand curve wiadirthe points lie near the diagonal line that
represents the equivalence between the two kernels. Ttin#dche differences between the two kernel
formulations are barely noticeable is quite surprisingsitheir associated feature spaces are intuitively
quite different. In sectiof 5.1, we mentioned that the featpace associated to the branching-based
kernel is actually a subspace of the feature space assbéiaiis until-N extension. As a result, Figure
f[1 suggests that the extra features related to the untiltdhsion do not bear additional information into
the kernel. This hypothesis seems to be confirmed by theHatthe differences between corresponding
walk-based kernels, observed fdr= 0, are not significant neither. This might be explained by the
fact that the dimensions of the corresponding feature spaxrobably strongly correlated due to the
relation of inclusion existing between trees and walksepagt of orders:, and those of orden + 1.
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Figure 10: First dataset, branching-based kerfjel (2) . UEemi of the AUC at different ordera for
small values of\.

Another possible explanation for the lack of improvementhef until-N extension lies of course in the
difficulty of learning in high dimension, suggesting thadatiminating patterns of a given order are lost
within the flood of patterns of greater orders taken into aotdy this until-N extension.

BRANCH-BASED UNTIL-N, TOTTERING AUC(branching-based, until-N) Vs AUC(branching—based)
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Figure 11: First dataset, until-N extension. Left: evalatiof the AUC with respect ta at different
ordersh, for the until-N extension[[6) of the branching-based ke(@p Right: AUC values Vs original
AUC values.

No-tottering extension:
Figureqd IP[ 113 anld L4 respectively show the results of thetering extension{]7) of the size-basgd (1),
branching-based](2), and until-N branching-based ke(f®!sThe curves on the left-hand side show the
evolution of AUC for2 < h < 10 and0 < X < 1, and the curves on the right-hand side plot these AUC
values versus corresponding values obtained using thimakigrnels.

If we compare the results of the no-tottering extensionhefsize-based and branching-based ker-
nels (Figure$ 12 ar[d]13), we can first note that the the inttimhu of tree-patterns is now systematically
beneficial forh > 2 in both cases. Moreover, we note that the kernel computatiemain feasible for
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h = 10 andX = 1, which means that the no-tottering extension limits the lzioiatorial explosion we
observed with the original formulation. While optimal réswere obtained foh = 4 using the original
kernels, we observe that here, in both cases, the perfoargaadually increases from= 3 to an opti-
mum value obtained fos = 8. At a given order, we note that the optimal AUC values obiaiwéh the
two kernels are similar, and that the correspondinglue is smaller in the case of the branching-based
kernel, which is consistent with the observations madeeamittevious section. Optimal AUC values are
close to 96.5% and improve over the values around 95% olatevith the initial formulation. Impor-
tantly, we note that these optimal values are obtained ymngmetrizations of the kernels that lead to a
combinatorial explosion in their initial formulation. Ftly, from the fact that almost all points lie above
the diagonal in the right-hand curves, we can draw the ceiaiuthat the no-tottering extension has
almost consistently a positive influence on the classificain both cases. It is worth noting however
that, even though the introduction of no-tottering tretiggas was shown to be beneficial, part of the
overall improvement over their tottering counterparts ug do the no-tottering extension itself, since
no-tottering walk-based kernels, observed o 0, already improve significantly over their tottering
counterparts, especially for high order patterns.

We now turn to Figur¢ 14 and the no-tottering extens[¢n (#hefuntil-N branching-based kernel
(B). We can first notice that conclusions similar to thosatesl to the no-tottering extension of the
branching-based kernel can be drawn: an improvement oeecdhresponding walk-based kernel is
systematically observed for tree-patterns of order grehem 2, the kernel behaves more nicely (no
combinatorial explosion), and the no-tottering extengionsistently improves over the initial until-N
branching-based kernel (right-hand curve). Interesfihgwever, we note that optimal results obtained
for 4 < h < 10 tend to converge to an optimal value around 95.5% (betweed &t 95.9%) for a
A value around 0.05. While this global optimum is not as goothasoverall optimal result obtained
with the no-tottering branch-based kernel (Fighre 13)tilit ®@mains competitive (95.5% Vs 96.5%).
This observation contrasts with the the results obtaindl tlie until-N extension in the tottering case,
where patterns of a given order seemed to be lost in the anobyatiterns of greater orders taken into
account by the kernel. This is due to the fact the the nofingeextension limits the number of patterns
to be detected, and suggests that patterns of differentsocda now be considered simultaneously in the
kernel. This fact therefore suggests that in the no-tattecase, the until-N extension can help solving
the problem of pattern order selection by taking a maximtkepa order large enough (here,> 4).

6.2 Second Dataset

In this section, we apply the same analysis to the secondetata

Tree-patterns Vs walk-patterns:
Figure[1p shows the results obtained with the original based[(1) and branching-bas¢ll (2) kernels.
Several observations are consistent with those we drew tiéHfist dataset. First, the introduction
of tree-patterns has in both cases a positive influence onl#issification, and is particularly marked
for patterns of limited order (up to a relative improvemehtla% for h = 2, and 4.5% forh = 3).
Moreover, optimal values of the parameter are smaller in the case of the branching-basedlkérey
decrease for increasirig and quickly lead to a combinatorial explosion for high-@rgatterns. Finally,
we note that, in both cases, optimal AUC values are around 8#&bare obtained for patterns of order
3 and 4, which is similar to the optimal order observed forfttet dataset. However, we can note the
interesting difference that here, tree-patterns of orderfzove dramatically the results over their walk
counterparts, which suggests that different moleculaufea are to be detected in both datasets.
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SIZE-BASED, NO-TOTTERING AUC(tottering) Vs AUC(no-tottering), size-based ponderation
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Figure 12: First dataset. Left: evolution of the AUC withpest to) at different orderg: for the no-
tottering extension[]7) of the size-based kerfEl (1). Rigiattottering AUC values Vs original AUC
values.
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Figure 13: First dataset. Left: evolution of the AUC withpest to) at different orderg: for the no-
tottering extension[[7) of the branching-based kerfjel @yht: no-tottering AUC values Vs original
AUC values.
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BRANCH-BASED UNTIL-N, NO-TOTTERING AUC(tottering) Vs AUC(no-tottering), branching—based ponderation, Until-N extension
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Figure 14: First dataset. Left: evolution of the AUC withpest to) at different orders: for the no-
tottering extension[]7) of the until-N branching-basednkéi). Right: no-tottering AUC values Vs
original AUC values.
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Figure 15: Second dataset. Evolution of the AUC with restmeatat different orders. Left: size-based
kernel [1) ; Right: branching-based kerrjgl (2).

Until-N extension:
Figure[1§ shows the results obtained with the until-N extendg) of the branching-based kern@l (2).
Here again, observations are consistent with the first éfatés particular, we can note that the results
obtained with and without the until-N extension are veryiEmand this fact is even more pronounced
here. This second evidence confirms that the until-N expbansiof little use in the original formulation
of the kernel, most probably because patterns of a giverr ardedrowned within the amount of patterns
of greater orders.

No-tottering extension:
Figure[1f [ 18 anfl 19 respectively present the results ofdhettering extension([7) of the size-based
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BRANCH-BASED UNTIL-N, TOTTERING AUC(branching-based, until-N) Vs AUC(branching-based)
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Figure 16: Second dataset, until-N extension. Left: ewmtubf the AUC with respect ta at different
ordersh for the until-N extension[[6) of the branching-based ke(@gl Right: AUC values Vs original
AUC values.

(fl), branching-based](2), and until-N branching-bakdké&els.

Several observations are consistent with the first dataAket.can likewise note that with the no-
tottering extension, the introduction of tree-patternsyistematically beneficial in both kernels. More-
over, at a given order, optimal results observed with thekemmels are similar, and the corresponding
A value is smaller with the branching-based kernel. Fingtlg,no-tottering extension limits the combi-
natorial explosion of the kernels computation.

There is however a striking difference because results gtimal here for patterns of order 3, pat-
terns of order 2 rank second, and the results gradually dser®r orders greater than 3. This behavior
is exactly opposite to the one we observed with the first éataghere results gradually increased with
the order of the patterns and were optimal for patterns ofroBd This therefore tends to confirm that
distinct features are to be detected within the two dataseid can be explained by the fact that the
compounds are structurally similar in the first dataset, @diffdrent (ornoncongenericin the second
one. Indeed, while the kernel needs to detect subtle diféer® between the compounds of the first
dataset, it must identify regular patterns within the selcone, and it is not surprising that discriminat-
ing patterns are shorter in this case. This observationastgpthe intuition that the choice of the order
of the patterns should to be related to (or learned from) Htaset itself, as suggested in secfion 4.1.
Finally, we note that the best AUC value is around 84 % (cpwading to a relative improvement of
7% over the corresponding walk-based kernel), and is theraimilar to that obtained with the original
formulation of the kernel. Nevertheless, we observe froecilirves on the right-hand side that contrary
to the first dataset, the no-tottering extension has a lavoteerall impact. This is due to the surprising
fact that here, the no-tottering extension does not seem bebeficial by itself, since we can note that it
systematically degrades the performance of the corresppmneblk-based kernels, obtained for= 0.

As a result, even though the introduction of tree-pattesrixeneficial in both cases, better performances
can be obtained here if we consider tottering tree-patteddmee again this behavior is opposite to that
of the first dataset. This might be explained as well by th¢ taat, contrary to the first dataset, the
molecules considered here are structurally different,amd result, tottering can help finding common
features between these noncongeneric compounds.

Concerning the no-tottering extensidh (7) of the until-Mriwhing-based kernd] (6), results presented
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in Figure[1D are not clear. Indeed, in that case, the intiolumf the tree-patterns only improves
the results for patterns of limited order, and for patterherder greater than 4, results systematically
decrease. We can however note the interesting point themalptesults obtained for patterns of order
5 to 10 converge to a global optimal value between 85 and 86 Bis therefore tends to confirm that
in the no-tottering case, the until-N extension can helgisglthe problem of pattern order selection by
considering a maximal pattern order large enough (here, 4). Nevertheless, the striking difference
with the results obtained with the first dataset is that is tdse, wheh > 4, the introduction of tree-
patterns could not further improve the results obtainechyuntil-N walk-based kernel, that constitute
the overall best performance we could observe for this datas

SIZE-BASED, NO-TOTTERING AUC(tottering) Vs AUC(no-tottering), size-based ponderation
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Figure 17: Second dataset. Left: evolution of the AUC witbpext to) at different orders: for the
no-tottering extension|7) of the size-based kerfiel (1)ghRi no-tottering AUC values Vs original
values.
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BRANCH-BASED UNTIL-N, NO-TOTTERING AUC(tottering) Vs AUC(no-tottering), branching—based ponderation, Until-N extension
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Figure 19: Second dataset. Left: evolution of the AUC witbpext to) at different orders: for the
no-tottering extensior{|(7) of the until-N branching-bakecdhel (§). Right: no-tottering AUC values Vs
original values.

7 Discussion

This paper introduces a family of graph kernels based on éfection of common tree patterns in the
graphs. In a first step, we revisited an initial formulatiorgented if Ramon and Gariner (2003), from
which we derived two kernels with explicit feature spacesianer products. A parametarenters their
definition and makes it possible to control the complexityhaf features characterizing the graphs. At
the extreme, admissible tree-patterns consist of lineainshof graph vertices, and the kernels resume
to a classical graph kernel based on the detection of comnatksWGartner et al], 20p3). Walk-based
graph kernels are therefore generalized to a wider classroéls defined by features of increasing levels
of complexity. In a second step we introduced two modulaemsibns to this initial formulation. On
the one hand, the set of trees initially indexing the feafyrace is enriched by the set of their subtrees
with an until-N extension, leading to a wider and more general feature sp@cethe other hand, a
no-totteringextension prevents spurious tree-patterns to be detduzasdd on the notion of "tottering”
initially introduced in the context of walk-based graphrels [Mahe et al], 20D5).

In the context of chemical applications, experiments on twxicity datasets demonstrate that the
tree-pattern graph kernels under their initial formulatimprove over their walk-based counterpart.
However, while a significant improvement could be obsenarddlatively small patterns, experiments
revealed the difficulty to handle high order patterns. Thisliie to the fact that the number of tree-
patterns detected in the graphs increases exponentidtytigir depth, which leads to a combinatorial
explosion of the kernels computation for large patterns.tifis reason, the until-N extension showed to
be useless in this context: patterns of a given order arerdgrdwvithin the flood of patterns of greater
order, and the two kernel formulations turned out to be edlait. With the elimination of artificial
tree-patterns, the no-tottering extension limits this boratorial explosion, and patterns of higher order
can be considered in the kernel. This was in particular beiaéfo the first dataset where optimal results
were obtained with high-order no-tottering patterns. Nihadess, we notice that this extension is not
always beneficial, and that in some cases, artificial comnadteims due to the tottering phenomenon
can help detecting molecular similarity. This is in parlécuthe case for the second dataset, and can be
explained by the fact that, in opposition to the first datasebnsists of structurally different compounds.
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The combination of the two extensions led to mixed resulwy; the first dataset, we observe that the
introduction of tree-patterns in this context could now ioye over their walk-based counterparts for
any maximum pattern order. This suggests that the limitatibthe combinatorial explosion offered
by the no-tottering extension makes it possible to combiaikemns of different order in the kernel.
However, albeit close, optimal results with the until-Nendion could not come up with the optimal
results that were obtained with no-tottering patterns olvargorder. This suggests that very precise
patterns were to be detected, and that their discriminativeer is reduced by the addition of other, less
predictive, patterns. For the second dataset, the conrinaftthe two extensions led to optimal results.
In that case however, the introduction of tree-patternsneaalways beneficial and these optimal results
were obtained by until-N, no-tottering walk-kernels. Hipave can note that, when the maximum order
of the patterns considered is large enough, results olotauith the until-N extension and no-tottering
patterns tend to converge to a global optimum which is closegqual to, to the overall best performance
observed in both datasets.

Among the possible extensions to our work, we note that ithinige relevant in the context of
chemical applications to incorporate chemical knowledgthé graph representation of the molecules.
For instance, it is well known that physico-chemical prajesr of atoms are related to their position
in the molecule, and as a first step in this direction, an brmant of atom labels by their Morgan
indices led to promising results in the context of walk-liakernels [[Mahé et &l[, 2005). However, this
particular approach is likely to have a lesser impact in tuistext, because the information encoded
by the Morgan indices is at some extend already incorporate¢de tree-patterns. Alternatively, we
note that the kernel implementation could easily be exténiderder to introduce a flexible matching
between tree-patterns based on measures of similarityeleatpairs of vertices and edges, following
for instance the construction of the marginalized kernélvben labeled graphg (Kashima e} pl., 2004).
Such an extension would induce an increase in the cost of atimgpthe kernel, but is likely to make
sense for chemical applications, where atoms of differgres can exhibit similar properties.

A Proof of Propositions[] and[2

In Propositiong]1 anf] 2, we want to prove that for the graghandG,

D wt) i (GY(Ga) = alh) Y > ka(u,v), (8)

teBy, UGVGl UEVG2

where in Propositiofi] 1x(h) = A" andw(t) = A= while in Propositio]2q(h) = 1 andw(t) =
)\brancr(t)

From Definition[# we have), (G Z wt . As aresult,
ueVag
S w®u GG = Y 3 (3w G)u(6a),
teBy, uEVgl ’UEVG2 teBy,

and in order to prove|8) we just need to prove

S w(t) e ()" (Ga) = alh)kn (u, v). ©)

teBy,
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A.1 Proof of Proposition[1

In order to prove Propositid 1, it follows frorfy (9) that wesjuneed to prove that

v) = SN (G (Ga),

teBy,
or equivalently:
= " Ny (G (Ga) (10)
teBy
whereky, is defined recursively b¥; (u,v) = A1(I(u) = I(v)) and forh > 1:
kp(u,v) = A1(I(u) = 1(v)) Z H kp_1(u',v). (11)

ReM(u,w) (v w)ER

We prove [1D) by induction oh. The casé = 1 is rather trivial. Indeed, a tree of depth one is just
a single node, and;t(“)(Gl) is therefore equal td if [(u) = I(r(t)), 0 otherwise. It follows that

> A (G (G) = 3 ALAr(1) = Uw)1A(r () = U(v))

teBy teBy
= AL(l(u) = U(v)),

which corresponds tb (u, v).

Let us now assume thdt (10) is true at oréler 1, and let us prove that it is then also true at order
h > 1. Combining the recursive definition &f, (1) with the induction hypothesi§ {10) at level- 1
we first obtain:

Bn(w) =10 =) Y T[> ARG @) 1)

ReM(u,v) (v v)eREB,_1

Second, for any grap8, let us denote bSD,S“) (G) the set of balanced tree-patterns of ordepoted in

u € Vg, and for any tree-patterm € PT(L“)(G) lett(p) € B, denote the corresponding tree. With these
notations we can rewrite, for amy> 1 and(u,v) € G1 x Ga:

S (G (Ga) = Y ST A (py) = t(pa)). (13)
teBn plEszu)(Gl)mepy(f)(GQ)

Indeed both sides of this equation count the number of péisgrlar tree-patterns rooted i ando.
Plugging [1B) into[(72) we get:

ka(u,0) = A1(1w) =1) > I Do Z NEDIL(E(p1) = t(p2)) . (14)

ReM(u.w) (W v)ER b ep ) () paeP) (Ga)

Now we use the fact that any tree-patternf orderh can be uniquely decomposed into a tree-pattern
p’ of order2 and a set of tree-patterns of order- 1 rooted at the leaves g@f. We note that matching
two tree-patterns is equivalent to matching the tree-pattan their decomposition, and that the sets of
leaves of tree-patterns of order 2 rooted respectively @amdv matching each other are exactly given
by M(u,v). In other words,[(14) performs a summation over pairs of hiagctree-patterns of depth
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h, rooted respectively im andv: the corresponding pairs of patterns of order 2 are impficitatched
by the summation oveM (u, v) and the conditiori(I(u) = [(v)), and the subsequent pairs of patterns
(p1,p2) of orderh — 1 are matched by the product of conditioh@(p;) = t(p2)).

The tree-pattermp; in G of such a matching pair of tree-patterns of ordemoted in(u,v) de-
composes as a pattern of depth 2 rooted inith leaves in some&? € M(u,v), and a set of patterns
p1(u') of depthh — 1 rooted in the leaves’ € R. By (14), to each such matching pair is associ-
ated the weightn x ], ,ep AP, which is exactly equal ta**")| since we obviously have
t(p1)| = 1+ X wyer [t(p1(w))]. As aresult, [(14) can be rewritten as:

Fnwo)= Y S NI (t(py) = t(p)),

PP (G1) p2eP (G2)

which combined with[(13) prove§ (10). O

A.2  Proof of Proposition 2

The proof of Propositiofy] 2 is a straightforward variant o firoof of Propositior] 1. By[[9) we need to
show that

(s 0) = 3 AR (G (Ga). (15)

teBy,

whereky, is defined recursively b¥; (u,v) = 1(I(u) = I(v)) and forh > 1:

kp(u,v) = 10(w) = I(v)) Z H Mep_1(u/,0") . (16)

A
ReM(u,v) (u',v')eER

We proceed again by induction ovietto prove [1b). The cask = 1 is easily done by checking, using
an argument similar to that of the previous proof, that (55pme if/(u) andi(v) are identical, zero
otherwise, which corresponds to the definitionkefu, v). If we assume thaf{ (15) is true at the level
h — 1, we can plug it in [(16) to obtain:

]. l - l ’ u/ v/
kp (u,v) = M Z H Z \L-+branctit )7/)15/ )(Gl)wé )(Gz) ) (17)
ReM(uw) (W' W)ERYEBL_1

We can then follow exactly the same line of proof as in the ijprev section and obtain the following
equations

Z )\brancm)lbt(u)(Gl)i/fév)(GZ) _ Z Z )\brancf(t(pl))l(t(pl) = t(p2)), (18)
teBy, p1EPSY(G1) p2ePS)(G2)
and
kp(u,v) = 1((u) = U(v)) H > Z ALHPranetieO)) 1 (¢(py) = t(pa)) ,
REM(uw) (W v)ER ) ep) () paeP™) (Ga)
(19)
that correspond respectively o (13) afd] (14). The onlyediifice with the previous proof is in the

exponent of\ to form the weight of a matching pair of tree-patterns. Bylagywith the previous proof,
we consider the tree-pattepn in GG; of a pair of matching tree-patterns of deptinooted in(u, v), that
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decomposes as a pattern of depth 2 rootedwith leaves in somé? € M(u,v), and a set of patterns
p1(u) of depthh — 1 rooted in the leaves’ € R. By ({L9), to each such matching pair is associated the
weight L [T e g ALFPRCERL () = A1 S wner THOrENCEr: (4))) we observe that the number
of leaves of a tre¢, that we note leavés), is equal tol + branch{t). The weight associated to the above

pair of matching tree-patterns can therefore be writteh a8 = v/ er 1€avest(pi (W), Finally, because
the number of leaves of the tree-patternis equal to the sum of the leaves of the patterng.’), it
follows that this expression is equal xo 1 Heavest(p1)) — \brancht(p1))  As a result, we can writ§ (19) as

kn(wo)= Y N AR (4(py) = t(ps)),
p1€7’,(1“)(G1)p2€73}(Lv)(G2)

which, combined withlﬂS), concludes the proof. O

B Proof of Proposition[3

The proof presented in this section is very similar to theofs@f Proposition$]1 and 2. Based on the
observations made in the beginning of Apper{dix A, it folldwsn (@) that in order to prove Proposition
B, we just need to prove that

ki (u,v) = Y AP0 (G () (G) (20)
teTy,
whereky, is defined recursively b¥; (u,v) = 1(I(u) = l(v)) and forh > 1
1
o (1, v) = 1(1(u) = l(v))(l + > 5 10 )\kzh_l(u',v’)). (1)
ReM(uw) (W W)ER

We proceed again by induction ovito prove [2p). The cask = 1 directly follows from the proof of
Propositior{. If we assume th4t]20) is true at the lével 1, we can plug it in[(21) to obtain:

kn(u,0) = 100 =@ (1+ > 5 [T X Ameuidcnel’ (). (@2)

ReM(u,v) (u v)ERYET,_1

By analogy with the construction of the previous proof, fay @raphG, let us denote bjP,(L“)(G) the
set of tree-patterns of depth 1l#aooted inu € Vg, and for any tree-pattenn € PT(L")(G) lett(p) € 7,

denote the corresponding tree. Note tﬁé‘f)(G) corresponds here to general tree-patterns of depth 1
to n, in opposition to the balanced-tree patterns of ord@wvolved in the previous proofs. With these
notations we obtain similarly, for any > 1 and(u,v) € G x Ga:

S bt (G (Go) =D Yo AP (k(p) = t(p2),  (23)
te Ty p1ePSY(G) p2eP (Ga)
and, plugging[(33) into[(22), we get:
kp(u,v) =1(l(u) = l(v))

(DY | DS SO A 1 (1(p) = t(p2) ),

ReM(uw) (u/’UI)ERmEP;“_/i(G&)szP,(Lv_/i(Gb)
(24)
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which can be further decomposed into:
kn(u, v) =1(I(u) = I(v))

n 1(l(u))\— l(’U)) Z H Z Z )\1+brancr(t(p1))1(t(p1) _ t(pQ)).
ReM(uw) (W)ER ePffﬁ(Gl) p2€7’,(;i/)1(G2)
(25)

The second part of the right member pf](25) matches pairseefatterns of depth 2 to rooted in
(u,v). It follows directly from the proof of Propositiofj 2 that sue pair(p;, p2) of matching tree-
patterns is weighted byPranct(v1)) | The first part of the right member df {25) matches the tripair
of tree-patterns of depth 1 rooted (i, v) consisting of the single nodé€s, v). The corresponding tree
has a zero branching cardinality, and we can therefore write

1(U(u) = 1(v) = Y A0 (G (Ga).
teTh
Taken together, these two arguments show {hat (25) can tenvais
i, 0) = >0 ARG (G (Ga),
teTy,

which concludes the proof. O

C Proof of Proposition@g

The proof is derived from results presented in Mahé { &0%2. The sets of walks and no-tottering
walks of the grapiy = (Vg, &) are respectively defined BY(G) = (o2, Wi (G) andWNT(G) =
U2, WHT(G), where

Wi (G) = {(vo, - vn) € VAT (v,vi41) € €, 0< i <n—1}

is the set of walks of length defined is Sectio@.l, and
WNT(GY = {(vo, ..., vn) € Wp(G) : v; # Vi, 0 <i<n—2}

is the set of no-tottering walks of lengthdefined ifMaheé et &lf (20p5). We start by stating the foltayvi
lemma.

Lemma 1. A tree-patternp of the graphG associated to the tregis no tottering if, and only if, any
walk of G defined as a succession of verticep obrresponding to nodes offorming a path from its
root to one of its leaves is no-tottering.

Proof of Lemmag|1 According to Definition[P, let(vs,...,vy) € Vg be a no-tottering tree pattern
of the graphG' = (Vg,&c) corresponding to the tree = (V;, &), whereV, = (nq,...,ny). Let
(n4y,- -, ) € V! be a path from the root dfto one of its leaves. By Definitiof} 3, it is clear that

(Vigs - - - v3,) € W(G). Moreover, by the definition of paths we hawe, ., ni,,.., ), (7,1 Mipss) € &

for 0 < m < k — 2. By Definition[9, this implies that;, # Vipyo fOr 0 <m < k — 2, meaning that
(vig,---,vi,) € WNT(G). Conversely, lep € V!l be a tree-pattern of the gragh = (Vg, &q)
corresponding to the trege= (), &;). Consider the set of walks @f defined as successions of vertices
of p associated to nodes bforming paths from its root to its leaves. If these walks asttottering, it

is clear from Definitior{]9 that the tree-pattern itself is taitering. O
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We can now state the proof of Propositin 4.

Proof of Propositior{J4.If, according to Definitio] 11, we e’ be the transformed graph 6f, Mahé
et al. {2006) showed that there is a bijection betwien’ (G) and the set of walks of’ starting in a
vertex corresponding to a vertex @f which can be formally defined as

WG = {(vo, ..., vn) € W(G') : vo € {Vg},n e N},

if we let Vi C Ve be the subset o that corresponds td. It follows from Lemmd]L that there is a
bijection between the set of no-tottering tree-pattern& aind the set of tree-patterns @f rooted in a
vertex of V. Finally, [Mahé et 41.[(2005) showed that a walki¥ 7 (G) and its image inV{Ve} (@)
are identically labeled, which enables to count no-tatgetabeled walks irtz, by counting identically
labeled walks inG’ starting in a vertex of/; . It follows that counting no-tottering tree-patternsGn
is equivalent to counting tree-patternsGf rooted in a vertex of/;. As a result, we have¥" (G) =

V¢ (G"), which concludes the proof. =
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