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One of the paradigms of nonlinear science is that patterns result from instability and bifurcation.

However, another pathway is possible: self-similar evolution, singularity formation, and form. One

example of this process is the formation of spherical drops through the pinch off of a cylindrical

thread of liquid. Other example is given by the evolution of a vortex sheet, which from an initial

regular shape, develops a finite time singularity of the curvature, resulting in the generation of a

spiraling vortex. We investigate some simple systems, a stretched vortex sheet, the free surface of a

perfect fluid driven by a vortex dipole, and the splash produced by a convergent capillary wave, in

order to illustrate some specific scenarios to the appearance of a “form” through a singularity.

I. INTRODUCTION

The Escher lithograph “Print Gallery” [10] illustrates how a singularity can organize the sur-
rounding space (figure 1). Indeed, in this print something impossible happens, something which
cannot be drawn is there, masked at the center by the painter signature (a really unusual place to
put it!). The center is a singularity, its presence allows strange phenomena to occur. Locally, all
the details are coherent: a visitor with his hands behind his back, a woman looking down through
her open window, the background town. However, globally one remarks that the young man on the
left is simultaneously inside the gallery and outside, in the print he is seeing! The space is spiraling
clockwise around the “empty center”, as Escher describe it (figure 1). From a mathematical point
of view this center is a singularity in an otherwise regular manifold (locally Euclidean): the field
amplitude vanishes there but its phase turns around. What is relevant for us here is the ability of
a singularity to determine, globally, the system’s properties. The structure itself of the singularity
in the Escher print can be deduced from the observation that any characteristic length scale can be
identified. Indeed, the object sizes growth from the center, length scales increase following a spiral
from the center. Therefore, following a counter-clockwise direction one arrives at the conclusion
that at the center the scale length must vanish: this is a self-similar effect, and the result of this
self-similarity is the appearance of a singularity. The object of this work is to illustrate, using
simple physical systems, the relation between similarity, singularity and form.
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FIG. 1: Escher lithograph “Print Gallery”, 1956, 32×32 cm2: “The boy sees all these things as two-

dimensional details of the print that he is studying. If his eye explores the surface further then he sees

himself as part of the print.” [10]

A. Patterns and topological transitions

Pattern formation is usually related to the existence of an instability of the basic homogeneous
state, or, in more complicated situations, to the instability of more complex states (oscillating,
spatially periodic, etc.). This instability appears at some definite value (perhaps zero) of an order
parameter, whose variation may drive the system to different regimes, through successive bifur-
cations. The susceptibility of the system manifests also in the fact that small variations of the
external parameters, that control its state, can result in drastic changes (bifurcation) in its phys-
ical properties, such as symmetry breaking transitions. As a consequence of the instability some
characteristic length (and time), appears in the physical system, and a pattern forms. Often the
selection of characteristic scales results from the interplay of linear and (weak) nonlinear effects,
that depend essentially on the type of bifurcation encountered. This mechanism is reminiscent of
phase transitions, when the temperature changes, intrinsic symmetries of the system may appear
(or disappear), like the formation of a crystal structure from the isotropic liquid state. However,
bifurcation, instability and form is not the only pathway by which a physical system can create
intrinsic length or time scales: there exist purely dynamical mechanisms at the origin of morpho-
genesis. These dynamical mechanisms are not directly related to some external change of an order
parameter, but, on the contrary, in a manner independent of external constraints, the system is
able to generate its own length and time scales at the origin of form.

An example may clarify these statements. Let us consider the wake behind a body, produced by
the flow of some liquid around it. If the fluid flow has a characteristic velocity U and kinematic
viscosity ν, and the body size is L, one can form a Reynolds number Re = UL/ν. At low Re
the flow is laminar, but at some critical value Re0 a recirculation zone appears, and for Reynolds
numbers larger than some other critical value Re1, a periodic release of vortices is observed. One



3

may interpret Re0 as the transition point between a homogeneous state and an inhomogeneous one,
and Re1 as signaling a Hopf bifurcation point, through which the system losses its stationarity.
The mathematical description of these bifurcations is given by the Ginzburg-Landau equation
of some amplitude A, whose spatial and temporal variation describes the spatial and temporal
pattern of the wake. However, there are other features of the wake formation that cannot be
described in terms of weak nonlinear phenomena. These effects appear clearly if one considers the
same problem, but as an initial value one: instead of changing the control parameters, one left the
system evolve from an initial state. The transitions between different states are in fact accompanied
by topological changes in the flow structure. Indeed, the appearance of a recirculation, from an
initial laminar state for instance, is only possible if a stagnation point (a point with zero velocity) is
formed inside the fluid (and not only on the body wall). Analogously, the state of periodic release
of vortices establishes only after some transitory, and it implies a complex separation mechanism
of vorticity from the body walls. The important point is that in these cases, the system evolution
entails some singular behavior. To see this it is better to consider the perfect fluid limit. In this
limit the flow topology is conserved. Therefore, the above effects, appearance of a recirculation
zone, or the release of vortices, are only possible if at some moment the initially regular velocity
field undergoes a singularity allowing the topological change to occur. Regularization by viscosity
does not fundamentally change these statements, because the length and time scales resulting from
the transition are not directly related to viscous effects. In summary, the transition between two
distinct topologies can be described, not only in terms of bifurcation, but also in terms of ”finite
time” singularities. Instead of changing external parameters to pass from a state to another one,
the system can evolve self-similarly from an initial (perhaps unstable) state with a given topology,
towards a topologically different state through a singularity.

B. Topological change in a Hele-Shaw interface

In order to fix these ideas we study a simple physical system amenable to an exact computation
of the topological transition: the Hele-Shaw flow of an interface between a non-viscous fluid (air)
and a viscous one (oil). The fluids are confined in the gap of width b, between two parallel
plates. The oil velocity v is given by the Darcy law. The fluid is driven by the pressure gradient
v = −(b2/12µ)∇p, where µ is the oil viscosity (the viscosity of the air is neglected). From the
incompressibility condition ∇ · v = 0 one finds that the pressure p = p(x, y, t) is harmonic

∆p(x, y, t) = 0 , in D ,

in the more viscous fluid domain D. The air-oil interface C is determined from de condition of
mechanical equilibrium, it is a line of constant pressure p = 0 (we neglect the effects of surface
tension), and the condition of mass conservation, or in other terms, the advection of the constant
pressure line with the fluid velocity:

pt + v · ∇p = pt − (b2/12µ)|∇p|2 = 0 , at C , (1)

where the index t means time derivative (in general we denote derivatives with subscript variables).
The relation (1), indicates that the normal velocity of the interface is Vn = −∂np, where ∂n is the
gradient in the normal direction (at the interface). It is convenient to choose the length unit b,
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time unit b2ρ/12µ and mass unit ρb3 (ρ is the constant viscous fluid density) in order to eliminate
non-essential parameters. In this unit system the above equations reduce to{

∆p = 0 , in D(t) ,
p = 0 , pt − |∇p|2 = 0 , at C(t) ,

(2)

valid at the interface C(t), boundary of the fluid domain D(t), where p(x, y, t) = 0 can be considered
as its implicit function equation. The Hele-Shaw problem entails to find the harmonic function p

in D(t) on the moving boundary C(t) which is itself an unknown satisfying the last equation in (2).
The initial shape of the interface is given by C(0) : p(x, y, 0) = 0.

In order to simplify this problem we introduce the complex velocity potential f(z) = −p+iψ and
make a conformal transformation z = z(t, ψ) such that, in the complex ψ plane the interface has
the simple equation =ψ = 0 (independent of time). Here ψ is a current function (p is equivalent
to a velocity potential), and the original fluid domain is transformed to the =ψ < 0 semi-plane.
Using this analogy with the perfect fluid flow, it is clear that the normal velocity at the interface is
given by Vn = −∂p = ∂lψ, where ∂l is the tangential derivative and l the arclength. Moreover, we
have the geometrical definition Vn = =(z̄tzl) (z = z(t, ψ) is the parametric equation of a curve in
the plane, with parameter ψ). Therefore, the form of the interface is determined by the equation
=(z̄tzl) = ∂lψ, or

=(z̄tzψ) = 1 , (3)

where ψ is taken at the interface =ψ = 0. This is the well known Laplacian growth equation first
derived to describe solidification fronts and dendritic growth, but appearing also in the problem
of surface waves in a perfect fluid [32]. This equation has families of solutions including finite
time singularities. Most of these solutions are regularized by an arbitrary small surface tension
and are therefore not physically relevant. However, some particular singular solutions may have a
signification even in the presence of small surface tension.

We study the formation of a drop from an initial flat interface through a “pole” solution of the
Laplace growth equation. This solution has the peculiar property that it can be followed even after
the formation of a singularity (singularity associated with the topological transition). The form
of the conformal transformation (or equivalently of the parametric curve defining the interface) is
assumed to be

z(t, ψ) = ψ − it+
a(t)

ψ − ib(t)
, (4)

where a(t) and b(t) are two real functions of time to be determined by substitution of (4) into (3).
This substitution give the two differential equations:

bȧ+ aḃ+ a = 0 , (5)

b(a+ b2)ȧ− a(a+ b2)ḃ− ab2 = 0 . (6)

Formula (4) together with a(t) and b(t) satisfying (6) give the form of the interface in time. A
typical solution of these equations is depicted in figure 2. The initial flat interface develops a
finger while advancing; this finger progressively shrinks at its base, up to finally form a separated
drop of fluid. We note that both functions a(t) and b(t), tend to zero simultaneously, at a time
t = t∗ ≈ 1.62. An exact particular solution of the system (6) can be found in terms of powers

{a(t) = −4(t0 − t)2/9 , b(t) = (t0 − t)/3} , (7)
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FIG. 2: Typical behavior of the pole coefficients a(t) and b(t) of formulas (6) in the solution of the Hele-

Show interface evolution (a). Both functions vanish linearly at the same critical time (t = t∗ ≈ 1.62).

Form of the interface at different times, t = 0.8 : .2 : 1.6 (b). For increasing time a and b decrease, the

interface shrinks, and tends to form two symmetric cusps at the moment where a drop separates.

where t0 is an arbitrary parameter. This solution describes the behavior of a(t) and b(t) for a
certain range of times before the time of the singularity formation (the separation of the drop),
but not in the very neighborhood of the singularity. Near the singularity a(t) and b(t) can be
developed in powers of t∗ − t, where t∗ denotes the singularity formation time, to obtain,

{a(t) = A(t∗ − t) , b(t) = (t∗ − t)/2} , (8)

where A is a free parameter (determined by the external solution). Therefore, the approach of
the two sides of the interface towards the point of contact, follows a power law in time; these two
points (±x∗, y∗), having vertical slope, approach the singularity at a velocity diverging as

dx∗
dt

=
√
A/(t∗ − t) , for t→ t∗ . (9)

These formulae describe completely the behavior of the interface up to the moment of its self-
intersection. Moreover, the fact that a(t) and b(t) vanish at the same time, means that (4) remains
analytic up to the time of contact, the pole contribution vanishes at just this contact instant, and
therefore, the conformal transformation can be continued for times t > t∗ after the singularity by
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simply adding the front line C1 and the trailing circle C2:

z(t, ψ) =

{
ψ − it at C1(t) ,
(a(t∗)/b(t∗)) e2πiψ + iy∗ at C2 .

(10)

The important fact about (10) is the appearance of a new scale in the system, the circle radius
a(t∗)/b(t∗) (although a and b vanish at t∗, their ratio is finite, as given by (8)). This length
scale depends on the nature of the singularity (it depends on the singularity time t∗ through the
functions a, b), and its appearance is not a straightforward consequence of the initial condition.

Therefore, in this example issued form the theory of the flow in a Hele-Shaw cell, in the absence
of capillary effects (which in fact regularize the system’s evolution), one can follow the emergence
of (i) a self-similar evolution, leading to (ii) a finite time singularity associated to a change in
the topology of the interface, and the subsequent introduction of (iii) a new scale, dynamically
determined, signaling the formation of a spatial structure. This three steps scenario, similarity,
singularity and form, of “pattern formation”, does not need to invoke the variation of an external
parameter in order to describe the emergence of new characteristic scales or topological changes,
and as a consequence, it is worth interesting to be investigated in different physical systems. In the
following sections we briefly describe some of these mechanisms at work in the context of vortex
sheets and fluid interfaces.

II. VORTEX SHEETS: INSTABILITY AND BREAKDOWN

A vortex sheet (see figure 3) is, in a perfect fluid, a tangential velocity discontinuity: the vorticity
is concentrated in a surface rather than in volume. In real fluids, possessing a finite viscosity, these
sheets have a small width and are commonly created by the motion of bodies having sharp edges.
They may also spontaneously appear in a strong shear flow or in shear layers. The classical example
is the flow around a delta wing, where the boundary layer vorticity separates at the wing edge
forming the vortex sheet. This vortex sheet rolls-up to form a spiraling conical surface and, by
vorticity diffusion near its center, it evolves into a strong vortex. Shear layers are also common
in fluid flows, and it is not too hard to see the characteristic cloud patterns resulting from the
Kelvin-Helmholtz instability in the stratified atmosphere.

Figure 3 shows the rolling-up of a vortex sheet generated by the circular motion of a rectangular
plate immersed in water, having a sharp edge (of dihedral angle π/6). Vorticity is visualized by a
fluorescent colorant painted on the plate edge, and lighted by a laser on a plane perpendicular to the
plate axis. A camera is disposed under the tank containing the fluid. The sequence follows in time
the formation of a characteristic spiral, where the vorticity is concentrated. The Reynolds number
of the flow in this experiment is Re = 17500 and the angular motion of the plate is uniformly
accelerated one (the plate angular velocity is proportional to time, Ω ∝ t). Small undulations grow
on the spiral, forming a succession of secondary vortices. The origin of these secondary vortices is
not so clear, in principle they may grow from spurious perturbations driven by defects in the plate
motion, or on the contrary, they can be the manifestation of an intrinsic instability of the vortex
sheet roll-up. In this section we study this secondary instability and the subsequent non-linear
evolution of the perturbations.
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FIG. 3: Experimental vortex sheet rolling up. The four pictures (from left to right and from top to bottom)

represent the spiral sheet at times 0.3, 0.6, 0.9 and 1.2, respectively. Vortex sheet instability generates

secondary vortices which modify the main vortex structure (bottom right panel).

A. Vortex sheet instability and Moore singularity

In two dimensional perfect fluid flows a compact description of the vortex sheet dynamics exists,
based on the Birkhoff-Rott equation [26],

∂

∂t
z(Γ, t) =

−i
2π

−
∫

dΓ′

z(Γ, t)− z(Γ′, t)
, (11)
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where z(Γ, t) = x(Γ, t) + iy(Γ, t) is the complex coordinate of a point on the vortex sheet, the
circulation Γ satisfying the relation

dΓ
dt

= 0 , (12)

is an appropriate parameter of the curve (a vortex sheet in a two dimensional flow is then repre-
sented as a line in the complex plane). The integral in (11) is computed over the whole vortex
sheet (the range of Γ), and must be interpreted in the sense of the Cauchy principal value. As
a consequence of the Helmholtz theorem on the conservation of circulation, the vorticity initially
concentrated on the sheet remains on there for later times. The velocity field, which is potential
everywhere outside the sheet itself, can be computed directly (through the Biot-Savart equation)
from the knowledge of the sheet motion. Therefore, the solution of the Euler equation reduce to
the solution of the initial value problem (11).

The Birkhoff-Rott equation is also a good starting point to devise numerical algorithms. A simple
discretization of the integral gives a set of differential equations analogous to the motion of point
vortices: the vortex sheet can be thought as the continuous limit of a succession of point vortices.
However, direct discretization is not possible due to the singular nature of the kernel (related to
the Green function of the Laplace operator), and some regularization must be introduced. Krasny
[15] proposed to modify the kernel in (11) in order to smooth out the smallest scales (related to
the discretization method) by introducing a cut-off parameter δ, that regularize the short distance
interaction of point vortices,

1
z
→ z̄

|z|2 + δ2
, (13)

this prescription is also compatible with the Cauchy principal value of the original equation (11),
in the limit δ → 0, the pole contribution, with δ in the numerator, being excluded.

The simplest vortex sheet is a plane z(Γ) = Γ/U of constant tangential velocity discontinuity
U ≡ U/2 − (−U/2). A plane vortex sheet is an exact solution of the Birkhoff-Rott equation, but
it is sensitive to the Kelvin-Helmholtz instability. Indeed, a perturbation of wavelength λ and
amplitude ε, proportional to ε sin(2πΓ/λU), or

z(Γ, 0) = Γ + ε(1− i) sin(2πΓ) , (14)

where lengths are measured in units of λ and velocities in units of the vortex sheet strength U , is
unstable as can easily be verified by linearizing (11) around the plane basic state ε = 0. A simple
dimensional argument permits to write the growth rate σ ∝ U/λ as a function of the dimensional
parameters λ and U . A complete calculation gives σ = πU/λ, or for an arbitrary wavenumber the
growth rate is found to be

σ(k) = k/2 , (15)

(in non-dimensional quantities). Equation (15) shows that the linearized Birkhoff-Rott equation
is ill posed: even if initially the shape of the vortex sheet is regular, the Fourier modes increase
exponentially with k after a finite time, reflecting the appearance of a singularity. This situation
is similar to the one encountered in the Hele-Shaw problem, with the Laplace growth equation (3).
It is straightforward to show that the plane front z(ψ, t) = ψ− it is unstable, and that the growth
rate of this instability is also proportional to |k|. Non-linear interactions are not able to render the
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interface smooth for all times, and finite time singularities arise during its evolution. Therefore,
one important question arises about the ill-posedness of the vortex sheet motion, as is actually
the case for the interface propagation in a Hele-Show cell: one may ask whether non-linear terms
will regularize the evolution. This question was thoroughly analyzed by Moore in a celebrated
paper [22]. He found that the Kelvin-Helmholtz instability leads to a finite time singularity, the
vortex sheet curvature diverges at some critical time t∗. Although not yet demonstrated, one may
speculate that this curvature singularity is the seed of the spiral which rolls-up in the compression
region of the vortex sheet (the region where proper lengths shrink).

From the physical point of view the appearance of a singularity during the nonlinear evolution
of the Kelvin-Helmholtz instability can be related to the unavoidable existence of a topological
transition between the initial state of a plane sheet and the subsequent development of another
state dominated be a spiral rolling-up of the sheet. These spirals, arising from the growth of a
Kelvin-Helmholtz instability, are commonly seen in natural shear layers, or in direct numerical
simulations of the regularized Birkhoff-Rott equation [15, 17]. Indeed, the transition from a line
(the initial vortex sheet is a continuous deformation of a straight line) and a double branched
spiral is impossible without the introduction of a new scale: the curvature radius of the spiral at
its center. This length must vanish when the width of the vortex sheet goes to zero, the Euler case.
Therefore, in the limit of an infinitely thin layer one must admit a divergence of the curvature as
the necessary precursor of the spiral.

From the mathematical point of view, the singularity is related to the collision of a pole in the
complex Γ plane (the “length” parameter of the curve) to the real axis, in a finite time. The first
step to demonstrate the mechanism of singularity formation is to analytically continue the Birkhoff-
Rott equation to the upper half complex Γ plane (a similar computation can be done to the lower
half complex plane). The form of the vortex sheet is given by the function z(Γ, t) = Γ+s(Γ, t), with
s(Γ + 2π) = s(Γ) and s(−Γ) = s(Γ) (periodic, odd perturbation of the planar sheet). Introducing
the operator ∗, to generalize the complex conjugation: s∗ = s(Γ̄), one sees that for real Γ the
property s∗ = s̄ allows to perform the analytical continuation:

s∗t (Γ, t) =
−i
2π

−
∫

dΓ′

Γ− Γ′ + s(Γ, t)− s(Γ′, t)
, (16)

if s is analytic (see refs. [7, 8]). By simple manipulation of (16) one can transform the principal
value integral into a contour integral plus the pole Γ = Γ′ contribution,

−
∫

dΓ′

z(Γ, t)− z(Γ′, t)
= −

∫
dΓ′

[
dΓ′

z(Γ, t)− z(Γ′, t)
− 1

Γ− Γ′

]
= −−

∫
dΓ′

(Γ− Γ′)2
s(Γ)− s(Γ′)

1 + s(Γ)−s(Γ′)
Γ−Γ′

=
∫
C

dΓ′

(Γ− Γ′)2
s(Γ)− s(Γ′)

1 + s(Γ)−s(Γ′)
Γ−Γ′

− iπ
sΓ

1 + sΓ
, (17)

where the path C is taken for =Γ > 0. If s was analytic in the upper half plane, the integral in
(17) would vanish, and the motion of the vortex sheet would reduce to the simple equation

s∗t = −1
2

sΓ
1 + sΓ

. (18)



10

In a second step, it was demonstrated that for a wide class of regular initial conditions of small
amplitude, the contour integral in (17) can actually be neglected [7, 8]. Under these conditions,
equation (18) contains all the information about the sheet singularity. Numerical simulations
showed that the singularity approaches the real axis following the imaginary axis: Γ = iy, s(Γ, t) =
f(y, t), and s ∗ (Γ, t) = −f̄(y, t) [16, 28]. Therefore, equation (18) together with its complex
conjugated, reduces to the local partial differential equations

f̄t = − i
2

fy
1− ify

, ft =
i
2

f̄y
1 + if̄y

. (19)

These are the equations deduced by Moore in 1979 [22]. Using the transformation

1− ify =
(
he−ig

2

)1/2

, 1 + if̄y =
(
heig

2

)1/2

, (20)

equations (19) become simpler,

ht = gy , h2gt = hy , (21)

and can be solved using the method of characteristics. It is streightforward to find the equations
satisfied by the characteristics: (21), dy/dt = ±1/h = dg/dh, from which one obtains the two
families,

g − lnh = a(y0) = const. on
dy

dt
=

1
h

g + lnh = b(y0) = const. on
dy

dt
= − 1

h

where a and b are determined as functions of the characteristic family parameter y0, through the
initial condition s(Γ, 0) = iε sin(Γ), or in terms of h and g,

h(y, 0) = 2 +
1
2
ε2e2y , g(y, 0) = −2 arctan(εey/2) .

For small ε an approximation of the characteristics can be found [23]:

y = y0 + t/2 +
1
2
εey0(et − t− 1) ,

and

y = y0 − t/2− 1
2
εey0(e−t + t− 1) .

This second family possesses an envelope (that marks the trajectory of the singularity in the (y, t)
plane)

y = ln(4/ε)− t/2− 1− ln(e−t + t− 1)

showing that for small t the singularity is far on the Γ imaginary axis, but that it approaches the
real axis y = 0 at time t∗ given by

1 + t∗/2 + ln(e−t∗ + t∗ − 1) = ln(4/ε) (22)

Recently Moore and Stuart [8], found an exact solution of the system (21), using a convenient
choice of the initial condition and the hodograph method, and showed that the estimation of the
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FIG. 4: Numerical computation of the nonlinear evolution of the Kelvin-Helmholtz instability

critical time given by (22) is essentially correct. A more detailed analysis would show that the sheet
develops a weak singular inflection point y ∼ ±|x|3/2 (in some local coordinates of the singular
point (x, y) = (0, 0)), in the region of maximum compression rate. Therefore, the curvature at the
singular point diverges as κ ∼ |x|−1/2, what may be considered as the seed of the double branched
spiral (an assertion not yet demonstrated).

B. The development of a secondary instability

When the regularized kernel (13) is used, instead of the curvature singularity one observes the
formation of a spiral, whose core size is of the order of the cut-off parameter δ, as seen in the
sequence of the figure 4. The spiral forms in the region of maximum compression, this is coherent
with the fact that the growth rate of the Kelvin-Helmholtz instability increases with diminishing
length scales. To demonstrate this point [1], already discussed by Moore [20, 21], we linearize
the Birkhoff-Rott equation around the basic state zKH(Γ, t) given by the evolution of the primary
instability. We insert z = zKH + ∆z into (11) to obtain,

∂

∂t
∆z(Γ, t) =

i

2π
−
∫
dΓ′ ∆z(Γ, t)−∆z(Γ′, t)

[zKH(Γ, t)− zKH(Γ′, t)]2
. (23)

If one assumes that the basic state is given, at least locally, by the simple power law form

zKH(Γ, t) = AtαΓ

where A is a dimensional constant, that describes a sheet locally flat, but stretched in time.
Using this expression in (23), and developing ∆z ∼ ak(t) exp(ikΓ) in Fourier series, one deduces a
differential equation for the Fourier amplitude of mode k,

äk(t) =
İk

Ik
ȧk(t) + |Ik|2 ak(t) , (24)

where

Ik(t) = (1/2πA2t2α)−
∫

(1− eiku)du/u2 = |k|/2A2t2α , (25)
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FIG. 5: Growth of secondary vortices from a perturbed vortex sheet. The wave number of the perturbation

is kp = 4, but only two new vortices appear (δ = 0.05, akp = 0.1, and t0 = 0.6).

and the overdot means time derivative (Ik may in general be complex, this depends on the form
of basic sheet). Note that for α = 0 one retrieves the Kelvin-Helmholtz growth rate σKH = |Ik| =
|k|/2A2 (with k = 2πn/λ and A2 = 1/∆U). This equation has the same asymptotic properties as
the one obtained in Ref. [20]. Equation (24) has an exact solution,

ak(t) = c1 exp
(
Ikt

1−2α

1− 2α

)
+ c2 exp

(
−Ikt

1−2α

1− 2α

)
,

showing that (i) for α < 1/2, stretching does not compensate the Kelvin-Helmholtz growth and
the perturbation amplitude increases as ak ∼ exp(Ikt1−2α/(1 − 2α)); and (ii) for α > 1/2, the
amplitude decreases algebraically ak ∼ t1−2α. In the α < 1/2, and for fixed t, the effective growth
rate |(1/ak)dak/dt| is linear in k, as in the primary instability.

Therefore, strong stretching stabilizes the Kelvin-Helmholtz instability, while weak stretching
leads to instability, and a fortiori one may assume that compression enhance the vortex sheet
instability (the above analysis breaks down for negative α). This simple argument allows us to
think that if the primary unstable vortex sheet is perturbed, the non-uniform stretching may be
at the origin of secondary instability and growth of the perturbation amplitude. To investigate
this effect, we modified the evolution of the system by introducing at some specific time t0 a new
perturbation,

z(Γ, t0) = zKH(Γ, t0) + iakp cos(2πkpΓ) , (26)

of amplitude akp , wavenumber kp, and shifted by π/2 in phase, with respect to the initial state.
Figure 5 shows a sequence of the evolving vortex sheet, after a kp = 4 perturbation. Although
one may expect that four new spirals form (at the four maxima of the perturbation amplitude, for
instance), only two new spirals emerge.

To understand why the other two spirals are smeared out, it is interesting to compute the strain
rate S(s, t) = τ ·Vτ as a function of the sheet length parameter s = s(Γ), where ds2 = dx2 + dy2,
τ (s) is the tangent vector at s, and Vτ is the gradient of the velocity in the tangential direction.
It appears that S(s, t0) presents two compression zones just at the formation sites of the two new
spirals, the two other ones are placed in stretching zones and are finally damped. Later, as can be
seen in figure 6, the strain rate develops a very complex pattern. The striking difference between
the regular shape of the vortex sheet winding and the rich variation of the strain rate, implying a
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discontinuity).

complicate vortex intensity function along the sheet, can be related to the “Lagrangian” character
of the strain rate at variance to the “Eulerian” character of the vortex sheet motion as a whole.
In other words, one may imagine the vortex sheet as formed by a series of point vortices whose
motion follows the Hamiltonian dynamics, and tend to concentrate or disperse along the curve in
a complicate manner: the local density of these points is a measure of the variation of lengths and
at the same time of the local velocity discontinuity (the vortex sheet intensity). The consequences
of such a behavior are far reaching, and may be related to the appearance of turbulence [2].

The characterization of the secondary instability is in principle rather involved, because of the
complexity of the basic state. However, it appears that the deformation D(Γ, t) = ={z(Γ, t) −
zKH(Γ, t)} allows to define a time range so that the Fourier amplitudes ak(t) of the transformed
D̂ ≡ FD, evolve independently. Therefore, using D̂(t) as a measure of the perturbation, a “linear”
evolution time window is found: if initially one puts ak(0) = akp

δk,kp
, with akp

a small constant,
the modes with k 6= kp remain small, and the growth of the kp mode can be measured. Indeed,
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FIG. 8: Vortex breakdown experiment using a triangular plate to generate a conical vortex sheet. This

geometry allows for the generation of a vortex having an axial flow. At some moment of the vortex sheet

evolution, a stagnation point appears at the vortex core (left), leading to the formation of a recirculation

zone, here visualized (right).

in this time interval the growth rate of the perturbation σ(t, k) = d ln |ak(t)|/dt is a well defined
function of the wavenumber and of time. The dispersion relation of the secondary instability is
shown in figure 7. The instability is controlled by the dimensional parameters δ, which fixes the
scale of damping (the high wavenumber cut-off), and δ/∆U , which fixes the time scale evolution of
the growth rate. However, a new time scale appears in the problem, the optimal growth rate, that
is the time tM ≈ 2.0δ/∆U , for which the growth rate appears to be maximum. The wavenumber
of maximum amplification also depends on time, and it tends to diminish as the system evolves
rendering unstable much larger scales, an effect related to the elongation of lengths on the vortex
sheet [1]. In summary, the secondary instability is intrinsic to the vortex sheet evolution, and not
a spurious effect due to external perturbations. Moreover, the nonlinear evolution of the secondary
perturbations depends crucially on the local strain rate, whose Lagrangian nature accounts for its
complex time evolution. The creation of a fine structure in the vortex sheet properties (strain rate
and intensity) as time evolves, makes difficult to predict its long time behavior.

C. Vortex breakdown in the core of a conical vortex sheet

Although bi-dimensional vortex sheets have a rich variety of behaviors, some of which are not
well understood, such as the stability of their self-similar winding, in three dimensional flows,
topological transitions open the way to unexpected effects (see figure 8). Let us consider the flow
created by the motion of a triangular plate, instead of the rectangular one that created the vortex
sheet we showed in figure 3. When the triangular plate starts to turn, a vortex sheet is generated,
that one can loosely compare with the flow around a delta wing. The larger the width of the
plate, the larger the circulation, and as a consequence, the more intense the vortex sheet and the
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greater the number of turns in its spiral. Therefore, a vortex sheet with a conical winding shape
is released. At the same time, the core of the sheet, that rapidly evolves to a concentrated vortex,
is stronger in the wider plate region than in the thinner plate one, and from the relation between
vorticity and pressure, a difference of pressure should be generated, and a subsequent axial motion
of the fluid from the high pressure region of weak vorticity and the lower pressure in the region of
the strong vortex core. The existence of this supplementary axial flow, to the usual rotational one,
deeply change the properties of the flow with respect to the two-dimensional case.

The ratio between the characteristic axial velocity V and the characteristic rotational one U
is the Rossby number Ro = V/U . One may estimate these characteristic velocities from the
experimental conditions: V ∼ ∆p/ρL, where ∆p is the pressure drop and L is the length of the
plate, and U ∼ ωa ∼ ΩR, where ω is the core vorticity, and a its size, or in terms of the plate
parameters, Ω the angular velocity and R the plate width. In fact, the axial flow cannot be
continued indefinitely because of the finite length of the plate, implying some deceleration region.
In the actual experiment the plate is vertical (the wider edge on the top), immersed in water, and
the vortex ends at the free surface. Therefore, the axial velocity cannot be a monotonous function
of the height z. The combination of a small Rossby number and of a deceleration zone is well
known to be favorable to the appearance, in stationary flows, of vortex breakdown [5, 26]. Vortex
breakdown is characterized by the sudden change in the vortex core, the appearance of a strong
deceleration of the axial flow, often followed by the appearance of a stagnation point, and the
subsequent increase in the core size, where recirculation zones appear. In figure 8 such a typical
situation is presented, but contrary to the usual situation, this experiment demonstrate the vortex
breakdown in an open non-stationary flow.

The physical description of the vortex breakdown is a subject of debate [29]. However, from the
experiment of figure 8 one can draw some conclusions. Often the vortex breakdown is related to
the existence and uniqueness of steady solutions of Euler equations, and is thought to result from
a fold bifurcation [6]. Alternatively, some effort was spent to relate vortex breakdown to “shock”
formation in the core of slender vortices (vortex filaments) [19], and to a finite time singularity
[29]. This second approach seems to be more appropriated to account for the present experiment.
We observe vortex breakdown as the normal evolution of the flow, and not as a consequence of
the change of some external parameter, as in the case of steady flows in pipes – the usual setup
of vortex breakdown experiments. The position where the stagnation point appears is not directly
related to some length associated with the deceleration near the free surface (or to the change
in curvature of the vortex core, which orients itself perpendicular to the free surface, instead to
follow the inclined line of the plate edge). The very appearance of a stagnation point, that is a
topological transformation of the basic flow, as time evolves is a manifestation of some singular
behavior. Many open questions remain, in particular the influence of the conical structure of the
vortex sheet and the associated non-slenderness of the vortex core.

III. CURVATURE SINGULARITIES OF A DRIVEN FREE SURFACE

Fluid interfaces are privileged physical systems to visualize and investigate singularity formation:
the simple burst of a bubble, the fragmentation of a thread of water, the wave breaking are common
examples. These systems, which a first sight may appear as fairly simple, can in fact show very
complex behavior. One illustration of the rich dynamics present in simple configurations is the
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FIG. 9: Sequence showing the burst of a water drop at the oil-water interface, the formation of a cavity,

the appearance after collapse of the cavity of a new water drop, and this new drop before its own burst

(from left to right). This cycle can repeat several times producing a series of smaller and smaller drops,

up to the complete separation of the two immiscible fluids.

oil-water interface shown in figure 9. Initially a drop of water, immersed in the oil phase, lies just
above the interface. A thin oil film present between the drop and the interface, slowly drains out,
up to the moment for which its two walls touch each other. After the pinching of the oil film the
water drop reconnects to the water phase, a cavity opens, as in the similar case of the burst of an
air bubble. The retraction of the large cavity is not uniform, and at some moment a change in
curvature arises in the bottom region. This change in the bottom curvature is also observed at the
air-water interface, for the cavity left by the burst of a bubble, and in this case it results in the
emergence of a jet. In the oil-water case what we see is that a new water drop is trapped. The final
situation is similar to the initial one, but in a much smaller scale, and the whole process can repeat
itself for several generations of drops. One can appreciate the complexity of this process by the
simple consideration of the range of spatial and temporal scales present: from the slow dynamics
of draining, a lubrication flow in part controlled by gravity, to the grow of the hole determined by
surface tension, in passing by the pinching singularity for which microscopic forces of the van der
Waals type play a role, one finds a range of 107 in length and in time scales. In some sense, this
wide range of scales and the global complexity of the phenomenon is comparable in difficulty to
fluid turbulence.

A. Two dimensional free surface formalism

As is the case in turbulence, it is important to study relevant elementary mechanisms in order
to understand the physics of singularity formation at interfaces. One interesting situation was
observed in the Joseph group with experiments on cusped interfaces [14]. Although their original
motivation was the study of the rheology of complex fluids, they found that the free surface of a
Newtonian viscous fluid entrained by the motion of a semi-immersed cylinder could form a cusp.
This is a particular important observation, which may be compared to the contact line problem:
the stress forces diverge at the curvature singularity. Moffatt and Jeong [13] studied the stationary
Stokes flow of a viscous fluid near the cusp, and demonstrated that capillary effects are enough
to regularize the curvature singularity, but the regularization length is extremely small, even with
respect to atomic distances. The curvature radius at the “cusp” is of the order of exp(−32πCa),
where Ca = Uµ/σ is the capillary number (µ the fluid viscosity, and σ the surface tension). Even
for very small Ca the curvature is a formidable number.

An interesting related problem is the formation of the cusp singularity, as time evolves, in a
free surface driven by a dipole (the geometry introduced in [13], see the figure 10). One may ask
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FIG. 10: Problem set-up of a free surface driven by an under beneath dipole. The interface of length L

separates two perfect fluids. The interface is advected by a fixed dipole vortex of intensity α, placed at a

depth d. This is a two dimensional problem in the plane (x, y).

whether the cusp, a specific solution of the Stokes flow (a linear stationary problem), can result
from the dynamical evolution of an interface (a nonlinear time dependent problem). In its simplest
formulation this initial value problem can be studied by neglecting viscous and capillary effects, to
focus on inertial effects. The dimensional parameters of the system are: α the dipole strength (it
has dimensions L3/T), g the acceleration of gravity, d the depth of the dipole, L the length of the
system (we assume periodic boundary conditions in the x-direction) and ρ1, ρ2 the densities of the
two fluids (we assume in the following that ρ2 = 0 and ρ1 = ρ). Three non-dimensional numbers
can be defined to completely characterize the system, the length ratio D = d/L = 0.1 (for most
simulations), and the Atwood number A = (ρ1 − ρ2)/(ρ1 + ρ2) = 1, which we take fixed, and the
Froude number Fr = α/

√
d5 g.

In two dimensions (x, y) the equations describing the free surface motion y = s(x, t), of a perfect
fluid, are the Laplace equation for the velocity potential ∆φ = 0, and the boundary conditions at
the interface. The Bernoulli equation

φt +
1
2
|∇φ|2 +

1
Fr2

s(x, t) = 0 , y = s(x, t) , (27)

(in nondimensional form), where we put p = 0 and the velocity potential includes the contribution
of the dipole. The kinematic condition

st + φxsx = φy , y = s(x, t) , (28)

insures the continuity of the interface motion, the normal velocity of the interface is equal to the
normal velocity of a fluid particle attached at the interface.

A more convenient form of these equations can be obtained by conformal transformation z =
x + iy = z(ζ, t) of the fluid domain y < s(x, t) into the lower half plane η < 0, where ζ = ξ + iη
[11, 27]. In the ζ-plane the interface is simply given by η = 0, and we may take the dipole
placed at ζ = −i, such that z(−i, t) = −i. Therefore, the function z(ζ, t) constitutes a parametric
representation of the interface in the original z-plane with x = x(ξ, t) and y = y(ξ, t). The complex
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velocity potential f = φ + iψ = f(ζ, t) is analytic in the lower half plane, except at the dipole
position, where f(z) ∼ iα/(z + i).

Using the complex potential to express the fluid velocity fz = u − iv ≡ w in terms of the new
variables fζ/zζ = u− iv, and noting that the normal at the interface is n = (−yξ, xξ), the equality
of the normal fluid velocity (u, v) · n and the interface normal velocity (xt, yt) · n, gives for the
kinematic condition in the ζ-plane,

=z̄tzζ = =fζ , (29)

where the last term includes the dipole contribution. Although this expression is reminiscent to
equation (3), in order to compare both equations, the right hand side of (29) on the free surface
η = 0 must be computed. To this end, we use the fact that the velocity potential f is harmonic,
and then it can directly be determined from the knowledge of the velocity distribution on the
interface itself, by the analog of the Birkhoff-Rott equation applied to the fluid normal velocity at
the interface (this is in turn a consequence of the Biot-Savart formula):

=fζ |η=0 = − 1
π
−
∫
φξ(ξ′)
ξ − ξ′

dξ′ ≡ −Hφξ , (30)

where H denotes the Hilbert transform. Moreover, we used =w = ψ and the property that the
imaginary part of the complex potential, which is an analytic function in the lower half plane, can
be determined by its real part through the Hilbert transform (see Henrici’s book for an account of
the Hilbert transform properties [12], vol. 3). The fact that in the transformed variables the free
surface is given by the straight line η = 0, −∞ < ξ < ∞, allows this simple expression hold for
the velocity at the interface. Then, on the interface we have [32],

=z̄tzξ = −Hφξ , (31)

and, at variance to (3), (31) is an integro-differential equation coupled with (27) through the
velocity potential. The Bernoulli equation in terms of the transformed variables, takes the form

φt +
1

Fr2
=z(ξ, t) +

1
2
|fξ|2

|zξ|2
=

1
|zξ|2

<
(
fξ z̄tzξ

)
, (32)

on η = 0.

The expression of the Bernoulli equation in terms of quantities computed at the interface is
much more cumbersome. It was recently deduced by Zakharov and Dyachenko [9, 32],

φt +
1

Fr2
=z(ξ, t) =

1
|zξ|2

H(φξHφξ) + φξH
(
Hφξ
|zξ|2

)
, (33)

where one recognizes on the right hand side, the quadratic terms of the velocity, scaled with the
Jacobian of the conformal transformation |zξ|2, which under some circumstances can be large. If the
Jacobian was effectively large, in general this assumption is demonstrated a posteriori, the surface
potential function can be approximated by φ ≈ −λ2t/2 + λ={z} + φD, where λ is an arbitrary
constant, and φD is the dipole contribution. Therefore, the “high Jacobian approximation” leads to
the Lagrangian growth equation, as the one analyzed in section I B, but with an extra contribution
coming from the dipole. This equation has cusped solutions as in the case of the Hele-Shaw
problem.
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The simplest case for which the interface evolves towards a cusp is the one where the interface
is simply advected by the dipole field. In this case, and for a flat initial condition, an asymptotic
solution near the singular point can be obtained from the characteristics of (28),

xt = ψy , yt = −ψx , (34)

where we used y = s(x, t) and ψ = =i/(z + i) is the current function of the dipole. Therefore, the
equation of the characteristics are Hamiltonian, with ψ as the Hamiltonian. As ψ is independent
of time, it is itself a constant of motion, a property that permits to reduce (34) to a first order
differential equation. The family of characteristics are in principle a function of the two arbitrary
constants (x0, y0), related to the initial point in the interface. We take (x0, 0) as the initial condition
(the flat surface); for such an initial condition the constant “Hamiltonian” is ψ = x0/(x2

0 +1). This
last condition allows to find y = y(x, t;x0), or x = x(y, t;x0) in closed form. The singular point
(0,−1) is approached following the laws:

x(t;x0) ∼ x0(1− t/t0)2/3 , (35)

and

y(t;x0) + 1 =

√
x2

0 + 1
x0

x− x2 ∼ (1− t/t0)1/3 , (36)

where t0 = t0(x0) = x3
0/3(x2

0 + 1)3/2 (for small |x|). The point of symmetry x = 0 is the first to
attain the singular point,

y + 1 = (1− 3t)1/3 , (37)

which gives t∗ = 1/3 for the singularity formation time (this is the time at which the interface
touches the dipole). The form of the interface at this time is obtained from the expression of x0

as a function of x and t in the limit x→ 0, and t→ t∗, and substituting into (36),

y + 1 ≈ |x|2/7, at t = t∗ . (38)

Equation (38) shows that at t = t∗ the free surface forms a cusp.

B. Waves, corners and cusps

The behavior of this simple system is rather rich, and several regimes are observed as the Froude
number is changed. In order to investigate the behavior of the interface as a function of the Froude
number we perform a series of numerical simulations, using the boundary integral method. The
motion of the surface is determined by the equation for the complex potential:

f(z, t) =
1

4πi
−
∫ 2π

0

µ(s, t)zs(s, t) cot (z − z(s, t)) ds+ fD(z) (39)

in terms of the distribution of the potential discontinuity on the free surface µ(s, t), and where
z = z(s, t) is a point on the surface; (39) is the analogous of the Birkhoff-Rott equation
but instead of the velocity of the sheet, it determines the potential function. The last term
fD(z) = −iπD tan (πD(z + i)) is the contribution from the dipole, computed at the surface point
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z. The cot z kernel replaces de usual 1/z one, because of the periodic boundary conditions used in
numerical computations. Equation (39) is coupled with the surface kinematic condition (28), for
the temporal evolution of the interface, and to the Bernoulli equation (27), that allows to find the
distribution µ. The interface between two fluids can be assimilated to a surface of discontinuity
in the velocity potential (the stream function is continuous across the interface). The quantity
µ = φ1 − φ2 defines then a “dipole intensity”, equivalent to the velocity discontinuity of a vortex
sheet. We rewrite these equations in terms of the quantities attached to the surface z = z(s, t),
f = f(z(s, t), t), and µ = µ(s, t):

z̄szt(s) = f̄s , (40)

is the kinematic condition (compare with (29)), and

µt +
µ2
s

4|zs|2
= 2<{ft}+

|fs|2 + µs<{fs}
|zs|2

− 2
Fr2

={z} , (41)

is the Bernoulli equation for the potential discontinuity. The set (39,40,41) constitutes a complete
system that is at the base of the numerical method (see for example [3]).

Schematically, as the Froude number increases, one may distinguish several regimes:

(i) waves, linear and weakly nonlinear stationary waves, range of Froude numbers Fr ≈ (0, 0.1);

(ii) corners, formation of cavities whose evolution leads to curvature singularities; these are
associated to the appearance of corners, Froude numbers in Fr ≈ (0.1, 0.6);

(iii) cusps, formation of cusp singularities when the interface motion is dominated by advection
in the dipole velocity field, Fr > 0.6.

The (i) regime is related to very small Froude numbers, for which the interface is dominated by
the restoring action of gravity, and linear (in the limit Fr → 0) or nonlinear standing waves are
observed. The linearized boundary conditions together with the Laplace equation for the potential,
can be analytically solved using Fourier series method, allowing for a comparison with numerics.
An interesting phenomenon emerges in the moderate Froude number range, where the regime of
non-linear waves breaks down and a new regime characterized by finite time singularities sets in:
the interface develops a kind of cavity, whose curvature locally increases up to the appearance
of a singularity of the wedge type (figure 11). It is interesting to note that the singularity is
approached following a self-similar law, and the angle of the corner results to be independent of
Fr (within the given range). The wedge angle is rather flat β ≈ 160, and although this value
does not vary with Fr, the size of the region, around the singularity point, where a self-similar
evolution of the interface form is observed diminishes with the Fr number. This explains the very
existence of a range of Fr where wedge formation is observed, in particular the existence of un upper
limit in Froude number above which the corner region size vanishes and the interface evolution
change qualitatively. Moreover, the temporal self-similarity of the interface near the singularity
can be characterized by the acceleration at the singular point (0, y0). The acceleration diverges as
ÿ0(t) ∼ −1/

√
−t (for t → 0, the singularity time), the minus sign comes from the fact that the

corner is forming in a ascending surface. This strong deceleration near the singularity is consistent
with the behavior of the interface, whose evolution is rather independent of the Froude number:
the acceleration due to gravity becomes negligible with respect to the surface acceleration.
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FIG. 11: Formation of a corner for intermediate values of the Froude number (a). Zoom of the singularity

region (b). The corner angle is about 160◦.

The mechanism of corner formation may be related to the approach of a singular point, of the
stagnation velocity type, present in the upper half plane, that is in the non-physical domain, where
singularities initially absent can emerge during the system evolution. The formation of the corner,
in this scenario, would coincide with the arrival of the stagnation point at the interface. This is
supported by the numerical evidence just mentioned: the velocity of the interface tends to zero
ẏ0(t) ∼

√
t (or to a constant, depending on the Galilean frame) at the corner together with the

fluid velocity, while the deceleration diverges. The appearance of a stagnation point at the fluid
interface, allows to speculate about the further evolution of the system. On may think that this
is the precursor of the formation of a jet, as often observed in the collapse of cavities after the
bubble burst (see [33]). Indeed, the stagnation point entering the fluid must be accompanied, as
a result of momentum conservation, by the motion of two opposite jets, one moving towards the
bottom, and the other one ascending and deforming the surface. We remark however, that our
results concern the two dimensional geometry, and the collapse process (the formation of the wedge
results from the converging motion of the fluid) can be much more violent in three dimensions,
where the fluid is allowed to converge to a point rather than to a line. Therefore, it would be
interesting to investigate, under analogous conditions, the axisymmetric flow, and the formation
of a conical singularity as precursor of jet emission.

In the large Froude number limit (Fr > 0.6) the corner is no more observed, the interface is
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FIG. 12: For large Froude (Fr > 0.6) a cusp is formed. The interface is shown for different times, near the

singularity. The singular shape of the interface is attained before it reach the dipole (at y = −1).

continuously stirred by the dipole towards its direction, and finally a cusp is formed (figure 12).
In the case of stationary viscous flow the cusp form y0(x) ∼ |x|α, is characterized by the exponent
α = 2/3, leading to a divergence of the curvature as κ ∼ |x|−4/3. For the perfect fluid we found
a power law whose exponent depends on the Froude number α = α(Fr). As the Froude number
increases it pass from a value of α ≈ 2/5 (for Fr ≈ 1) to a value of α→ 2/7 as Fr →∞ (in practice
Fr ≈ 10 is enough to detect this regime). The value of 2/7 corresponds to the flow dominated by
the dipole, where the interface is purely advected (see equation (38)). In the same regime, when
the deepest point of the interface approaches the dipole, its velocity diverges in time as ẏ0 ∼ t−2/3,
while the curvature diverges in time as κ(t) ∼ t−2, in accordance with the laws derived using the
pure advection approximation (35-36-37).

IV. WEAK NONLINEAR WAVES AND SHOCKS OF A CAPILLARY FILM

In the theory of nonlinear waves two opposite problems, the spreading from an initial peak, or
the convergence towards the center of a initial bump, may present essentially different behavior.
The classical example is the strong explosion problem of Sedov and Taylor, and its “time” reversal
version, the implosion problem of a spherical shock (see a complete account of these problems
in the Landau [18] or Whitham [30] books). In the expanding case the shock radius R(t), de-
termined be the initial energy E0 and ambient gas density ρ, is given by the similarity solution
R ∼ (E0/ρ)1/5t2/5, as verified by dimensional analysis (here t → ∞, meaning that this is an
asymptotic result). The convergent shock, although from the dimensional analysis point of view
is identical to the explosion case, the only dimensional constants also are the initial shock energy
and the ambient gas density, does not satisfy a trivial (dimensional) self-similarity law, but a non
trivial one, sometimes called of the second type (see Barenblatt book [4], for a thorough discussion
of self-similarity and intermediate asymptotics). This means that the shock radius satisfies asymp-
totically a power law R ∼ (−t)α, for −t→ 0 and the scaling exponent α, different from the one of
the divergent shock case (for which α = 2/5). The similarity exponent is not determined directly
from dimensions but it is related with more subtle symmetry properties of the system (as revealed
sometimes by the application of the renormalization group), or with the whole nonlinear structure
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FIG. 13: Modulational instability of a high frequency shallow water capillary wave. Full simulation of the

hydrodynamic equations (42) using a spectral method with 512 Fourier modes.

of the equations and boundary conditions (showing that the exponent is in fact not universal, but
may change according to the external solution, that is far from the singular point).

One interesting problem of wave convergence is the one related to the fall of a drop on the free
surface of a thin film of liquid, resulting in the formation of a splash, a kind of incompressible shock
[31]. Waves on a shallow water can be described in the Boussinesq approximation, by mass and
momentum conservation in terms of the liquid hight h(x, t) and velocity u(x, t) (in one dimension).
In the limit of negligible gravity effects and, for motions driven by inertial and capillary forces,
Boussinesq equations reduce to the simple system [30],

ht + (hu)x = 0, ut + uux = Shxxx , (42)

where S = σ/ρ is the dimensional surface tension to density ratio; using a reference depth h0 and
S as dimensional parameters, all the quantities can be converted to nondimensional ones: length
unit h0, time unit h3/2

0 /S1/2, and velocity unit (S/h0)1/2. If one considers mass conservation

Q =
∫
dxh(x, t) = const. , (43)

one may use Q1/2 = h0 as the definition of the reference length; (43) applies for instance when
the initial condition is in the form of a bounded bump. In this case h0 does not represent a
characteristic length of the system but rather a characteristic amount of matter. The system (42)
is for one dimensional waves, the axisymmetric case is readily found to be,

ht +
1
r
(rhu)r = 0, ut + uur = S

[
1
r

(rhr)r

]
r

, (44)

and the mass conservation becomes

Q =
∫
drrh(r, t) = const. , (45)

where Q1/3 = h0 does not have the same dimensions as in the one dimensional case, and h = h(r, t)
and u = u(r, t) depend on the radial coordinate r.
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FIG. 14: The shape h(x, t) of the free surface in the case of wave focusing. The initial condition consists of

a bounded bump driven by a convergent flow. One observes the evolution towards a high amplitude peak

of vanishing size.

It is easy to find the dispersion relation ω(k) of linear waves related to (43): ω2 = h0Sk
4,

showing that waves propagates in both directions with a phase velocity linear in the wavenumber√
h0Sk. The properties of the linear dispersion relation suggest that weakly nonlinear waves

are modulationally unstable, and that their envelope amplitude satisfies a nonlinear Schrödinger
equation. This is effectively the case, and a standard computation gives

iAt +
1
2
Axx +

7k2

4
|A|2A = 0 , (46)

(in nondimensional form), where h(x, t) = A(x, t)eikx−iωt is the primary wave packet with A a
slowly varying amplitude (figure 13). The numerical simulation of (42), using an initial profile
consisting of a superposition of a sinusoidal wave with k = 16, and other one of smaller amplitude
with k = 1 to modulate the first one, shows that for initial weak waves, the system evolves like
an almost integrable system (as described by the nonlinear Schrödinger equation). This can be
confirmed from the long time behavior of the wave, and observing that the system is quasi-recursive.
However, the generic behavior of the system is very far from the one of an integrable one, and for
finite initial amplitude waves, the appearance of strong nonlinear effects such as the formation of
shocks is systematically observed (figure 14).

In order to understand the behavior of the free surface in the region of singularity formation,
we analyze the similarity solutions of (42), subject to the constraint (43). The self-similar solution
has in one dimension the form,

h(x, t) =
H(ξ)
t2/5

, u(x, t) = sgn(t)
U(ξ)
t3/5

, ξ =
x

t2/5
, (47)

or in the axisymmetric case,

h(r, t) =
H(ξ)
t2/3

, u(r, t) = sgn(t)
U(ξ)
t2/3

, ξ =
r

t1/3
, (48)

where the presence of sgn(t) express the time reversal symmetry of the original equations. Indeed,
the system is invariant under the transformation t→ −t and u→ −u, hence equations (47) or (48)
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FIG. 15: Self-similar solution of the wave focusing problem in one dimension. Collapse occurs at t = 0.

The wave amplitude increases as ∼ 1/t2/5 and its width decreases as ∼ 1/t2/5 (with t < 0).

describe the evolution of the system from an initial concentrated wave packet or the convergence
of an initially extended bump.

When equations (47) or (48) are inserted into the evolution equations for one dimensional and
axisymmetric waves respectively, one obtains ordinary differential equations that can be solved
explicitly in the bounded case. Assuming that the velocity field as well as the liquid height vanish
outside a bounded region, it is possible to find a solution, asymptotically valid near the singularity,
which remains bounded for all times, and satisfy exactly the original dynamical equations. One
may consider that initially this region is at infinity in the focusing case; or concentrated on a point
in the expanding case. This situation is equivalent to the case of the Burgers equation in the limit
of vanishing kinematic viscosity ν. A self-similar solution can be obtained that coincides with
the regular solution in the limit ν → 0. In fact there exists an interesting and deep link between
self-similar and “weak” solutions of partial differential equations. The one dimensional solution
reads,

H(ξ) =
1
8

(
50
S

)1/5 (
1− ξ4

ξ40

)
, U(ξ) =

2
5
ξ , (49)

where ξ0 = (125S/2)1/5. This solution is depicted in figure 15. In the case of axisymmetric waves
the solution reads,

H(ξ) =
1
4

(
4
S

)1/3 (
1− ξ4

ξ40

)
, U(ξ) =

1
3
ξ , (50)

where ξ0 = (432S)1/6. In both one-dimensional and axisymmetric cases, outside the region ξ < |ξ0|,
the self-similar height H and velocity U are zero: the velocity varies linearly U ∼ −ξ inside ξ < |ξ0|
and is discontinuous at ξ0 (converging flow), while the surface height peaks at ξ = 0. This behavior
is similar to the usual case of a shock in the framework of the simple wave equation ut + uux = 0
for the velocity u, mentioned before as the inviscid limit of the Burgers equation. In this case
it is straightforward to verify the solution u(x, t) = x/t for x <

√
2Qt and zero outside, where

Q =
∫
udx; or in self-similar form u =

√
2Q/tU(ξ) with ξ = x/

√
2Qt, and U = ξ for 0 < ξ < 1
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and zero outside (note that here the scaling x ∼
√
t is also appropriated to the viscous extension

of the simple wave equation, that adds a term νuxx to the right hand side).

Therefore, bounded regions of converging waves focus to a line (in one dimension) or to a
point (in the axisymmetric case). This behavior has been invoked to explain some features of
splash formation, after the impact of a drop onto a film of liquid [31]. Moreover, other types
of singular behavior may develop in the framework of the Boussinesq system (42). For instance,
in the case of a thin film and for a set of initial conditions, the film height can vanish in finite
time h(x, t) → 0, at some point x∗ and at some instant t∗ [25], following a self-similar law h ∼
(t∗ − t)αH((x − x∗)/(t∗ − t)β) near (x∗, t∗) (with α and β positives). When introducing this
form, and a similar one for the velocity, into the Boussinesq equations, a one parameter family of
similarity exponents is obtained. The selection of one such a laws can be obtained if one imposes
as a constraint that the process of film pinching conserves the energy:

E =
1
2

∫
dx

(
Sh2

x + hu2
)
. (51)

In such a case a self-similar law with α = 2/7 and β = 4/7 is obtained. The general case, not yet
solved, may present a selection of the similarity law by more subtle mechanisms, as for instance
through a solvability condition or for satisfying some external solution, as often encountered in
second type similarity laws.

V. CONCLUSIONS

Let us mention in conclusion some interesting problems worth to be investigated. Many examples
of singularity approach obeying a self-similar evolution are well known, and the subtle mechanism
of selection of the power law exponent rather well understood. However, the continuation of the
singular solution through the topological transition, continuation that may involve some controlled
regularization method, is much less studied, and in parallel much more difficult to analyze, espe-
cially when the system also evolves towards a singular configuration. This is precisely the case
of the Moore singularity and the formation of the spiral vortex: before the transition the system
consists in a Kelvin-Helmholtz unstable vortex sheet approaching an infinite curvature shape, a
“cusp”, while after the singularity another self-similar regime, the rolling-up of the spiral, sets
in. Both states, before and after the transition, can be considered as weak solutions of the Euler
equations, or as the zero viscosity limit of the Navier-Stokes equations. Is in this last framework
that the problem acquires all its significance. This is also the case of the wedge-jet transition at
the interface of two perfect fluids, case that can be considered as being the zero surface tension and
viscosity limit of real fluids. Related problems to the singular to singular solution transition, are
the stability of self-similar evolutions, their ability to “attract” a wide range of initial or boundary
conditions, and the status of singularities with respect to smoothing effects (dissipation, capillarity,
etc.). A specific problem combining these items, is the stability of vortex sheets when the vortex
intensity is inhomogeneous, or equivalently, when the strain rate is variable (the above mentioned
Moore singularity is a special case, applied to the initial flat sheet).

Therefore, a central question arises when considering these problems: the relation between
dissipation and singular solutions. We saw in the case of focusing of capillary waves that the
bounded initial bump amplifies up to infinite amplitude. This process, which is mass conserving
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(the constraint that determined the set of similarity variables), do not conserve energy: the height
of the film is not a differentiable function. Although in some cases, as for the Burgers equation
or for one-dimensional shocks in a compressible medium, the link relating the self-similar solution
with the smoothed solution can be established, in general this relation is unknown. Onsager in
1949, introduced the concept of dissipative solutions of conservative systems [24]. Dissipative
solutions are in fact weak or singular solutions of reversible dynamical systems, the ones holding at
both sides of topological transitions, or the ones related to finite time singularities. Indeed, these
singular solutions are unavoidable when one wants to relate the properties of a conservative system
to its associated dissipative counterpart, like Euler equations for a perfect fluid with respect to
Navier-Stokes equations for a viscous one (the example taken by Onsager in relation to the turbulent
cascade). The investigation of this relation in specific systems may contribute to the understanding
of the behavior of physical systems in the limit of vanishing dissipation, a limit often characterized
by very complex motions (like in the case of turbulence).
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