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When a light beam illuminates the interface between two homogeneous media

under total internal reflection, the barycenter of the reflected beam does not coincide

with that of the incident one: this is the Goos-Hänchen effect.1 This phenomenon has

been analyzed in its many guises, both theoretically2,3, 4, 5 and experimentically.1,6, 7, 8

In its original form, the incident beam was to come from the medium with higher

index, in order to obtain total internal reflection. In this communication, we show

that there is also a Goos-Hänchen shift when a monochromatic beam illuminates a

photonic crystal, that is, a periodically structured device exhibiting photonic band

gaps.9,10 Since the beams considered in nanophotonic devices are usually very narrow,

this effect should be taken into account when designing such structures when the

photonic band gap phenomenon is involved. The Goos-Hänchen effect is linked to

the variation of the phase of the reflection coefficient with the angle of incidence.

In the case of total internal reflection, the existence of evanescent waves explains

the variations of the phase. Such an effect can be expected in photonic crystals in

photonic band gaps, where the Bloch waves behave much like evanescent ones. The

main difficulty is here to consider the correct reflection coefficient.

We deal with 1D (for instance a stack of Bragg mirrors) or 2D photonic crystals

(for instance a stack of diffraction gratings periodic in the x direction), which are

finite in the y direction (located between the y = 0 and the y = −h planes) and

infinite in the x and z directions (see fig. 1). We consider harmonic fields with a time

dependence of exp (−iωt). We denote λ the wavelength in vacuum and k0 = 2π
λ

the

wavenumber in vacuum. Considering only z invariant fields, the problem of diffraction

is reduced to the study of the two usual polarized cases : E|| (electric field linearly
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polarized along z) and H|| (magnetic field linearly polarized along z).

The photonic crystal is illuminated by an incident Gaussian beam:5

ui (x, y) =
∫

A (α, W ) e
i

(

αx+
√

k2

0
−α2y

)

dα (1)

where

A (α, W ) =
W

2
√

π
e−

W
2

4
(α−α0)2 , (2)

and α0 = k0 sin θ0, the angle θ0 being the mean angle of incidence of the beam (fig.

1).

For a 1D crystal, there is only one reflected (and hence transmitted) order of

diffraction. So that for an incident plance wave of wavevector k = k0 (sin θ,− cos θ),

the field outside the crystal can be written :

u(x, y) = eik0(x sin θ−y cos θ) + r(k0, θ)e
ik0(x sin θ+y cos θ), for y ≥ 0

u(x, y) = t(k0, θ)e
ik0(x sin θ−(y+h) cos θ), for y ≤ −h

For a 2D crystal, when the period along the x axis is smaller than 1
2
λ, there is

only one reflected (and hence one transmitted) propagating order of diffraction for

each plane wave constituting the beam. Since there are evanescent waves, the above

expressions for the field are not rigorous any more - they represent an approximation,

which holds far enough from the crystal.

It is then possible to characterize the electromagnetic properties of the structure

by simply deriving its transfer matrix, the considered structure being a 1D or a 2D
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crystal. More precisely,11 there exists only one real matrix T (k0, θ) such that :

T











1 + r

iβ0 (1 − r)











= t











1

iβ0











, (3)

where we denote β0 = k0 cos θ. This matrix gives an effective description of the

medium, as seen by the incident field.

The matrix T is real and has a determinant11 which is equal to 1. The eigenvalues

of T are thus the roots of the polynomial X2 − tr (T) + 1, which has real roots if

|tr (T)| > 2. The product of these roots is equal two 1. One of the eigenvalues is

smaller than one in modulus and we will denote it µ. The other one is then equal to

µ−1.

For a 1D photonic crystal, let us denote T0 the transfer matrix for a period. For

the whole structure containing N periods, the transfer matrix T is equal to T N
0 . Let

us denote κ the eigenvalue of T0 whose modulus is smaller than one (µ = κN). Then

the amplitude of the field is simply decreased by a factor κ each time it crosses a

period of the structure. The field thus behaves like an evanescent wave without being

one strictly speaking.

Finally, for 1D and 2D structures |tr (T)| > 2 implies that (k0, θ) is in a forbidden

band. In this case, let us denote v = (v1, v2) (respectively w = (w1, w2)) an eigenvector

associated with µ (resp. µ−1). Solving equation (3), we obtain the following form for

the reflection and transmission coefficients

r (k0, θ) =
(µ − 1) f

µ2 − g−1f
, t (k0, θ) =

µ (1 − g−1f)

µ2 − g−1f
(4)
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where the functions f and g are defined by

g (k0, θ) =
iβ0v1 − v2

iβ0v1 + v2

, f (k0, θ) =
iβ0w1 − w2

iβ0w1 + w2

(5)

Since µ < 1, then µ2 g

f
< 1 and 1

1−µ2 g f−1 can be considered as an infinite sum. Thus

the coefficients become12

r (k0, θ) = g + (g − f)
+∞
∑

m=1

µ2mgmf−m (6)

t (k0, θ) = (1 − gf−1)µ
+∞
∑

m=0

µ2mgmf−m (7)

The physical meaning of these series is well-known, it represents the multiple reflec-

tions12 inside the photonic crystals on the y = 0 and y = −h planes, leading to the

fact that infinitely many beams are transmitted and reflected (though of course, with

rapidly decreasing amplitude). Here we are only interested in the first reflected beam.

The above result means that this beam behaves for 1D crystal as if the structure was

semi-infinite (since g is the reflection coefficient of the semi-infinite crystal). For a 2D

crystal, g is not exactly the reflection coefficient of a semi-infinite structure though it

tends towards this coefficient when h → +∞.

The beam can finally be written

ud (x, y) =
∫

A (k0 sin θ, W ) g (k0, θ) eik0(x sin θ+y cos θ) cos θdθ. (8)

As T is a real matrix and µ is real as well, v1 and v2 are real too and hence

|g| = 1. Then g can be written under the form

g (k0, θ) = exp (iφ (k0, θ)) . (9)

The Goos-Hänchen shift is the distance between the centers of the incident and re-

flected beams. Since the center of the incident beam is located at x = 0 the shift can

5



be written :

Gr =

∫

x
∣

∣

∣ud (x, 0)
∣

∣

∣

2
dx

∫ |ud (x, 0)|2 dx
, (10)

using Parseval-Plancherel lemma, we get :

Gr = −
∫

A2 (θ, k0W ) ∂αφ (α) cos θdθ
∫

A2 (θ, k0W ) cos θdθ
(11)

and assuming a sufficiently large waist, we get :

Gr ∼ − (k0 cos θ)−1 ∂φ

∂θ
. (12)

This result is formally identical to that obtained for homogeneous media.

Remark : In fact, it can be shown that expression (6) is still valid for (k0, θ) outside

the gap, in which case g is still defined as in (5) but is no longer of modulus one. In

this case g = f and g is chosen such that |g| < 1. Moreover g is a continuous function

of (k0, θ).

We have computed the Goos-Hänchen shift for a 1D photonic crystal, illuminated

by a gaussian beam presenting a 50 degrees angle of incidence. The crystal is presented

figure and the shift versus the wavelength on figure . As could be expected, the shift

is important in the gaps, and more particularly, presents a peak at the left side of each

gap, due to a swift variation of the phase of g. This phenomenon has much in common

with what happens in the case of total internal reflexion. The phase of the reflection

coefficient indeed presents such a behavior near the limit angle. Let us consider the

Goos-Hänchen shift when λ/d = 10 is fixed and when the angle of incidence may

vary. It can be seen on figure that small angles corresponds to couples (k0, θ) outside
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the gap. But when the angle of incidence increases, the structure enters the gap.13 At

the very edge of the gap, the phase is subject to rapid variations, leading to a great

shift of the outgoing beam just like in the case of total internal reflection.5

We have theoretically demonstrated the existence of a Goos-Hänchen effect in the

gaps of photonic crystals and provided theoretical tools to deal with such an effect.

We have exhibited the function defined by equation (5) which is the correct reflec-

tion coefficient to be considered. Our numerical computations for a one dimensional

photonic crystal show that the shift can indeed be found for values of λ and θ in

a gap. The shift is very important when entering the gap by making either λ or θ

vary. In the latter case, the phenomenon has much in common with the total internal

reflection near the limit angle. This effect could play an important role in structures

such as that described in14 where a fine knowledge of the trajectories of the reflected

or refracted beams is needed for the structure to work properly.
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List of figure caption

Fig. 1. One period of the photonic crystal consists in two layers of height d and of

permittivity ε1 = 11.56 and ε2 = 1. The Goos-Hänchen shift is the distance between

the centers of the incident and reflected beams. schema.eps.

Fig. 2. Goos-Hänchen shift for a gaussian beam of waist 10λ under a 50 angle

of incidence for a wavelength λ/d ∈ [4.5, 18] (the height of a layer being of size 1).

The dash-dot line represents |g| so that the gaps, characterized by |g| = 1, can easily

be identified by the reader. The dashed line represents the derivative of the phase

of g which can barely be distinguished of the shift for a gaussian beam (solid line).

lambda.eps

Fig. 3. The Goos-Hänchen shift (normalized by λ = 10) for a gaussian beam is

presented for an angle of incidence θ ∈ [0, 70]. The dash-dotted line represents |g|.

angle.eps.
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