
1

GPU-accelerated generation of
correctly-rounded elementary functions

Pierre Fortin, Mourad Gouicem and Stef Graillat

F

Abstract—The IEEE 754-2008 standard recommends the correct

rounding of some elementary functions. This requires to solve the Table

Maker’s Dilemma which implies a huge amount of CPU computation

time. We consider in this paper accelerating such computations, namely

Lefèvre algorithm on Graphics Processing Units (GPUs) which are

massively parallel architectures with a partial SIMD execution (Single

Instruction Multiple Data).

We first propose an analysis of the Lefèvre hard-to-round argument

search using the concept of continued fractions. We then propose a

new parallel search algorithm much more efficient on GPU thanks to its

more regular control flow. We also present an efficient hybrid CPU-GPU

deployment of the generation of the polynomial approximations required

in Lefèvre algorithm. In the end, we manage to obtain overall speedups

up to 53.4x on one GPU over a sequential CPU execution, and up to

7.1x over a multi-core CPU, which enable a much faster solving of the

Table Maker’s Dilemma for the double precision format.

Index Terms—correct rounding, Table Maker’s Dilemma, Lefèvre al-

gorithm, GPU computing, SIMD, control flow divergence, floating-point

arithmetic, elementary function

1 INTRODUCTION

1.1 Problem

The IEEE 754 standard specifies since 1985 the im-
plementation of floating-point operations in order to
have portable and predictable numerical software. In
its latest revision in 2008 [1], it defines formats (bi-
nary32, binary64 and binary128), rounding modes (to
the nearest and toward 0, −∞ and +∞) and operations
(+,−,×, /,

√
) returning correctly rounded values.

Furthermore, it recommends correct rounding of some
elementary functions, like log, exp and the trigonometric
functions. As these functions are transcendental, one
cannot evaluate them exactly but have to approximate
them. However, it is hard to decide which intermediate
precision is required to guarantee a correctly rounded
result – the rounded evaluation of the approximation
must be equal to the rounded evaluation of the function
with infinite precision. This problem is known as the
Table Maker’s Dilemma or TMD [2, chap. 12].

Authors are with UPMC Univ Paris 06 and CNRS UMR 7606, LIP6
Address : 4 place Jussieu, F-75252, Paris cedex 05, France
Contact: mourad.gouicem@lip6.fr

[y − ǫ, y + ǫ]

Midpoints

Floating-points

Figure 1: Example of undetermined correct rounding for
rounding to nearest, where the rounding breakpoints are
the midpoints of floating-point numbers.

1.2 State of the art

There exist theoretical bounds on the intermediate pre-
cision required for correctly rounded functions [2, chap.
12], but these are not sharp enough for efficient floating-
point implementations of elementary functions. For ex-
ample the Nesterenko-Waldschmidt bound for the ex-
ponential in double precision gives that 7.290.678 bits
of intermediate precision suffice to provide a correctly
rounded result. Hence ad hoc methods are needed to find
a sharper bound for each function.

A first method introduced by Ziv [3] was to compute
an approximation y of a function value f(x) with a
bounded error of ǫ (containing mathematical and round-
off errors). As rounding modes are monotonic, if y − ǫ
and y + ǫ round to the same floating-point number,
f(x) does too : otherwise the correct rounding cannot
be determined (see Fig. 1). Hence having a correctly
rounded result of f(x) can be done by refining the
approximation (y, ǫ) – decreasing ǫ – until y − ǫ and
y + ǫ round to the same floating-point number. For the
most common elementary functions, such an ǫ exists
according to the Lindemann–Weierstrass theorem when
the function is evaluated at almost all floating-point
numbers [4].

However, the computation of many approximations
can be avoided by precomputing an ǫ guaranteeing
correct-rounding of the evaluation of f at any floating-
point number argument. This has to be done by finding
the hardest-to-round arguments of the function, that is
to say the arguments requiring the highest precision to
be correctly rounded when the function is evaluated at.
This precision guaranteeing the correct rounding for all
arguments is named the hardness-to-round of the function.

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13

http://hal.archives-ouvertes.fr/hal-00751446
http://hal.archives-ouvertes.fr


2

The hardest-to-round cases can be found by invoking Ziv
algorithm at every floating-point number in the domain
of definition of the function, but this is prohibitive (O(2p)
when considering precision-p floating point numbers as
arguments).

The first improvement was proposed by Lefèvre,
Muller and Tisserand in [5] (Lefèvre algorithm). The
main idea of their algorithm is to split the domain of
definition into several domains Di, to “isolate” hard-to-
round cases (HR-cases), and then to use Ziv algorithm to
find the hardest-to-round cases among them. This isolation
is efficiently performed using local affine approxima-
tions of the targeted function over O(22p/3) domains Di.
Stehlé, Lefèvre and Zimmermann extended this method
in 2003 [6] (SLZ algorithm) for higher degree approx-
imations, using the Coppersmith method for finding
small roots of univariate modular equation over O(2p/2)
domains Di.

1.3 Motivations and contributions

Even if they are asymptotically and practically faster
than exhaustive search, Lefèvre and SLZ algorithms
remain very computationally intensive. For example,
Lefèvre algorithm requires around five years of CPU
time for the exponential function over all double pre-
cision arguments, and the SLZ algorithm takes around
eight years of CPU time for the function 2x over
extended double precision arguments in the interval
[1/2, 1]1. Moreover, even if the hardest-to-round cases of
some functions in double precision are known [2, chap.
12.5], it is still not the case for about half of the univariate
functions recommended by the IEEE standard 754-2008.
Furthermore, we still have no efficient way to find those
of any elementary function in double precision, and
quadruple precision is out of reach. We will hence be
interested in accelerating the search of hardest-to-round
case in double precision (binary64).

As both algorithms split the domain of definition of
the targeted function into domains Di and search for
HR-cases in them independently, these computations are
embarrassingly and massively parallel. The purpose of
this work is therefore to accelerate these computations
on Graphics Processing Units (GPUs), which theoreti-
cally perform one order of magnitude better than CPUs
thanks to their massively parallel architectures.

We will focus here on Lefèvre algorithm, which has
been used to generate all known hardness-to-round in
double precision [2, chap. 12.5]. It is asymptotically less
efficient than SLZ as it considers more domains Di

(O(22p/3) against O(2p/2)). However, it performs less
operations per domain Di (O(log p) against O(poly(p))).
Therefore, Lefèvre algorithm is as efficient as SLZ in
practice for finding the hardness-to-round of elementary
functions for double precision format [7] [2, chap. 12]

1. SLZ Algorithm - Results, http://www.loria.fr/equipes/spaces/
slz.en.html

and offers fine-grained parallelism, making it suitable
for GPU.

In [8], we discussed implementation techniques to
deploy the original Lefèvre algorithm efficiently on GPU
which led to an average speedup of 15.4x with respect
to the reference CPU implementation on one CPU core.
The major bottleneck of this GPU deployment was the
control flow divergence which is penalizing considering
the partial SIMD execution (Single Instruction Multiple
Data) of the GPU. Hardware [9] and software [10], [11]
general solutions have been proposed recently to address
this problem on GPU. However, these solutions are not
efficient in our context as we have a very fine computa-
tion grain for each GPU thread. Hence we here focus on
algorithmic solutions to tackle directly the origin of this
divergence issue.

In this paper, we thus redesign Lefèvre algorithm
with the continued fraction formalism, which enables
us to get a better understanding of it and to propose
a much more regular algorithm for searching HR-cases.
More precisely, we strongly reduce two major sources
of divergence of Lefèvre algorithm: loop divergence and
branch divergence. We also propose an efficient hybrid
CPU-GPU deployment of the generation of polynomial
approximations Di using fixed multi-precision opera-
tions on GPU. These contributions enable on GPU an
overall speedup of 53.4x over Lefèvre’s original sequen-
tial CPU implementation, and of 7.1x over six CPU cores
(with two-way SMT). Finally, as we obtain in the end
the same HR-cases as Lefèvre, de Dinechin and Muller
experiments [7], [12] we also strengthen the confidence
in the generated HR-cases.

1.4 Outline

We will first introduce some notions on GPU architecture
and divergence in Sect. 2. Then we will present in Sect.
3 some mathematical background on the Table Maker’s
Dilemma and properties of the set {a · x mod 1 | x < n}
with a fixed. In Sect. 4, we will detail the HR-case
search step of Lefèvre algorithm and of the new and
more regular algorithm. In the same Sect. 4, we will also
present their deployment on GPU. In Sect. 5 we will
detail how to efficiently generate on GPU the polynomial
approximations Di needed by the two HR-case searches.
And finally, we will present performance results in Sect.
6 and conclude in Sect. 7.

2 GPU COMPUTING

Graphics Processing Units (GPUs) are many-core devices
originally intended for graphics computations. However
since mid-2000s they became increasingly used for high
performance scientific computing since their massively
parallel architectures theoretically perform one order
of magnitude better than CPUs, and since general-
purpose languages adapted to GPUs like CUDA [13] and
OpenCL [14] have emerged. In this section we briefly
describe the architecture of the NVIDIA GPU used to test

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13



3

our deployments (the Fermi architecture), GPU program-
ming in CUDA and the divergence problems arising
from the partial SIMD execution on GPU. We use here
the CUDA nomenclature.

2.1 GPU architecture and CUDA programming

From a hardware point of view, a GPU is composed
of several Streaming Multiprocessors denoted SM (14 on
Fermi C2070), each being a SIMD unit (Single Instruction
Multiple Data) [15]. A SM is composed of multiple
execution units or CUDA cores (32 on Fermi) sharing the
same pipeline and many registers (32768 on Fermi). GPU
memory is organized in two levels: device memory, which
can be accessed by any SM on the device; and shared
memory, which is local to each SM. The device memory
accesses are cached on the Fermi architecture.

From a software point of view, the developer writes
in CUDA a scalar code for one function designed to
be executed on the device, namely a kernel. At runtime,
many threads are created by blocks and bundled into a grid
to run the same kernel concurrently on the device. Each
block is assigned to a SM. Within each block, threads are
executed by groups of 32 called warps. The ratio of the
number of resident warps (number of warps a SM can
process at the same time) to the maximum number of
resident warps per SM is named the occupancy. In order
to increase the occupancy the number of blocks and their
sizes have to be tuned.

2.2 Divergence

As threads are executed by warps on the GPU SIMD
units, applications should have regular patterns for
memory accesses and control flow.

The regularity of memory accesses patterns is impor-
tant to achieve high memory throughput. As the threads
within a warp load data from memory concurrently, the
developer has to coalesce accesses to device memory and
avoid bank conflicts in the shared memory [13, chap. 6].
This can be done by reorganizing data storage.

The regularity of control flow is important to achieve
high instruction throughput, and is obtained when all
the threads within a warp execute the same instruction
concurrently [13, chap. 9]. In fact, when the threads of a
same warp diverge (i.e. they follow different execution
paths), the different execution paths are serialized. For
an if statement, the then and else branches are serially
executed. For a loop, any thread exiting the loop has to
wait until all the threads of its warp exit the loop. In the
following we will distinguish branch divergence due to if
statements and loop divergence due to loop statements.

The impact of branch divergence can be statically
estimated by counting the number of instructions issued
within the scope of the if statement. Let us consider the
then branch issues nthen instructions and the else branch
issues nelse instructions. If the warp does not diverge,
either nthen or nelse instructions are issued depending

on the evaluation of the condition. If the warp diverges,
nthen + nelse instructions are issued.

Contrary to branch divergence, measuring the impact
of loop divergence requires a dedicated indicator and
profiling. We introduced in [8] the mean deviation to
the maximum of a warp. This indicator is similar to the
standard deviation, which is the mean deviation to the
mean value. However, as the number of loop iterations
issued for a warp is equal to the maximum number of
loop iterations issued by any thread within the warp, it is
relevant to consider the mean deviation to the maximum
value. This gives the mean number of loop iterations a
thread remains idle within its warp. More formally, we
denote ℓi the number of loop iterations of the thread i
and we number the threads within a warp from 1 to
32. If ℓ = {ℓi, i ∈ J1, 32K}, the Mean Deviation to the
Maximum (MDM) of a warp is defined as

MDM(ℓ) = max(ℓ)− mean(ℓ).

We can normalize the mean deviation to the maximum
by max(ℓ) to compute the average percentage of loop
iterations for which a thread remains idle within its
warp. Hence, the Normalized Mean Deviation to the
Maximum (NMDM) is

NMDM(ℓ) = 1− mean(ℓ)

max(ℓ)
.

3 MATHEMATICAL PRELIMINARIES

In this section we give some definitions to introduce
more formally the Table Maker’s Dilemma. We also recall
some known properties on the distribution of the ele-
ments of the set {a · x mod 1 | x < n} with a fixed [16],
as well as the corresponding continued fraction formal-
ism.

3.1 The Table Maker’s Dilemma

Before defining the Table Maker’s Dilemma, we intro-
duce some notations and definitions. We denote {X} or
X mod 1 the fractional part of X . We write X cmod 1
the centered modulo, which is the real Y such that
X − Y ∈ Z and Y ∈ ]−1/2, 1/2] (Y equals X − ⌊X⌋ or
X − ⌈X⌉ depending on which has the lowest absolute
value). We also write Fp the set of precision-p floating
point numbers and #pE the number of precision-p
floating-point numbers in the set E (namely #(E∩Fp) ).

Definition 1. The mantissa m(x) and the exponent e(x) of
a non-zero real number x are defined by |x| = m(x) · 2e(x)
with 1/2 ≤ m(x) < 1.

Definition 2. We define distp(x) = |2p ·m(x) cmod 1| as
the scaled distance between a real number x and the closest
precision-p floating-point number.

Definition 3. We now define a (p, ǫ) hard-to-round case (or
HR-case) of a real-valued function f as a precision-p floating-
point number x solution of the inequality

distp(f(x)) < ǫ.

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13



4

f(x)

Figure 2: Distances between the curve defined by f and
the rounding breakpoints for rounding-to-nearest.

The given definition of HR-case only applies for di-
rected rounding. However, this definition can be ex-
tended to all IEEE-754 rounding modes as rounding-to-
nearest (p, ǫ) HR-cases are directed rounding (p + 1, 2ǫ)
HR-cases. To simplify notations, we will then focus on
directed rounding HR-cases.

It has to be noticed that if x is a (p, ǫ) hard-to-round
case, it also satisfies 2p · m(f(x)) + ǫ < 2ǫ mod 1. The
latter inequality is used to test if an argument is a (p, ǫ)
HR-case as it avoids the computation of absolute values
and cmod.

Hence, a (p, 2−p′

) HR-case x is a precision-p floating-
point number for which f(x) is at a scaled distance
(as defined in Def. 2) less than 2−p′

from the closest
precision-p floating-point number. In other words, more
than p + p′ bits of accuracy are necessary to correctly
round f(x) at precision-p.

Definition 4 (Table Maker’s Dilemma). If f is a real
valued function defined over a domain D, we define the Table
Maker’s Dilemma as finding a non trivial lower bound on
{distp(f(x)), x ∈ D}.

We call hardest-to-round cases the arguments x ∈ D
minimizing distp(f(x)). Knowing the hardest-to-round
cases gives us a lower bound on the distances between
the function f and the rounding breakpoints (see Fig. 2)
and therefore a solution to the TMD.

The general method to find the hardest-to-round cases
of a function is the following:

1) fix a “convenient” ǫ using probabilistic assump-
tions [2, Sect. 12.2],

2) find (p, ǫ) HR-cases with ad hoc methods such as
Lefèvre or SLZ algorithms,

3) find the hardest-to-round among the (p, ǫ) HR-cases
using Ziv method [3].

The most compute intensive step in this method is the
second one. Lefèvre or SLZ algorithms both relies on the
following three major steps.

1) The split of the domain of definition of the function :
we split the domain of definition of the function in
d domains Di = [Xi, Xi+1[ ∩ Fp such that, e(x) =
e(y) ∀x, y ∈ Di and #pDi = #pDj ∀i, j ∈ J0, d− 1K.

2) The generation of polynomial approximations : given
a relative error ǫapprox, we approximate the
function f(X) with X ∈ Di by polynomials
Pi(x) with x ∈ J0,#pDi − 1K such that
|Pi(x)− f(X)| < ǫapprox2

e(f(X))−p. We thus proceed
to a change of variable enabling to test the floating-
point arguments X ∈ Di by testing the integers
x ∈ J0,#pDi − 1K. Each polynomial Pi is first
centered on the domain Di by applying the
change of variable φ1 : X 7→ X −Xi. Then, as the
exponent is constant over each domain Di, we
will consider integer arguments by applying the
change of variable φ2 : X 7→ X · 2p−e(Xi). All in all,
x = φ2 ◦ φ1(X) = 2p−e(Xi)(X −Xi).

3) The HR-case search: we find the (p, ǫ′) HR-cases of Pi

with ǫ′ = ǫ+ ǫapprox which are the (p, ǫ) HR-cases for
f in Di.

In the HR-case search of both algorithms, a Boolean
test is used to isolate HR-cases. It successes if there is no
(p, ǫ′) HR-case for Pi in Di and fails otherwise.

In this paper, we focus on Lefèvre algorithm which
truncates polynomials Pi to degree one for the Boolean
test. We denote Qi(x) = Pi(x) mod x2 the truncation of
Pi to degree one with |Qi(x) − Pi(x)| < ǫtrunc2

e(Pi(x))−p,
and

2p ·m(Qi(x)) + ǫ′′ = b− a · x,

with ǫ′′ = ǫ′ + ǫtrunc. Hence, the Boolean test of Lefèvre
algorithm consists of testing if the following inequality
holds:

min {b− a · x mod 1 | x < #pDi} < 2ǫ′′. (1)

More precisely, if the inequality (1) does not hold, the
Boolean test returns Success as there is no (p, ǫ′′) HR-
cases for Qi in Di which implies there is no (p, ǫ′) HR-
case for Pi in Di. Else, it returns Failure. Moreover,
we remark that computing the minimum of the set
{b− a · x mod 1 | x < #pDi} is similar to finding the
multiple of a which is the closest to the left of b modulo
1 on the unit segment.

3.2 Properties of the set {a · x mod 1 | x < n}
Here we will detail some properties on the configura-
tions of the points {a · x mod 1 | x < n} over the unit
segment. These properties are necessary to efficiently
locate the closest point to {b} in these configurations
as we need a Boolean test over a lower bound on
{b− a · x mod 1 | x < #pDi}.

Theorem 1 (Three distance theorem [17]). Let 0 < a < 1
be an irrational number. If we place on the unit segment
[0, 1[ the points {0}, {a}, {2a}, . . . , {(n− 1)a}, these points
partition the unit segment into n intervals having at most
three lengths with one being the sum of the two others.

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13



5

00

00 1

00 1 2

00 1 2 3

00 1 2 34

00 1 2 34 5

00 1 2 34 5 6

00 1 2 34 5 67

00 1 2 34 5 67 8

00 1 2 34 5 67 8 9

00 1 2 34 5 67 8 910

00 1 2 34 5 67 8 910 11

00 1 2 34 5 67 8 910 11 12

00 1 2 34 5 67 8 910 11 1213

00 1 2 34 5 67 8 910 11 1213 14

00 1 2 34 5 67 8 910 11 1213 14 15

45
(0,0)

14 31
(0,1)

14 14 17
(0,2)

14 14 14 3
(1,0)

11 3 14 14 3

11 3 11 3 14 3

11 3 11 3 11 3 3
(1,1)

8 3 3 11 3 11 3 3

8 3 3 8 3 3 11 3 3

8 3 3 8 3 3 8 3 3 3
(1,2)

5 3 3 3 8 3 3 8 3 3 3

5 3 3 3 5 3 3 3 8 3 3 3

5 3 3 3 5 3 3 3 5 3 3 3 3
(1,3)

2 3 3 3 3 5 3 3 3 5 3 3 3 3

2 3 3 3 3 2 3 3 3 3 5 3 3 3 3

2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3
(2,0)

Figure 3: Example of configurations generated by
a = 14/45. The unit segment is scaled by a factor 45 for
clarity. Each two-length configuration is labelled by its
index (i, t) on the right.

Actually, the lengths and the distribution of these
lengths heavily rely on the continued fraction expansion
of a [16], which we will denote by

a =
1

k1 +
1

k2 +
. . .

.

We denote by (θi)i∈N the sequence of the remainders
computed during the continued fraction expansion of a
using the Euclidean algorithm, and by (pi/qi)i∈N the se-
quence of the convergents of a, defined by the following
recurrence relations :

p−1 = 1 p0 = 0 pi+1 = pi−1 + ki+1 · pi,
q−1 = 0 q0 = 1 qi+1 = qi−1 + ki+1 · qi,
θ−1 = 1 θ0 = a θi+1 = θi−1 − ki+1 · θi,

with ki+1 = ⌊θi−1/θi⌋. It has to be noticed that
(θi)i∈N is a decreasing real-valued positive sequence
whereas (pi)i∈N and (qi)i∈N are increasing integer-valued

i t qi−1,t qi θi−1,t θi k+1i

0
0 0

1
45

14 31 1 31
2 2 17

1

0 1

3

14

3 4
1 4 11
2 7 8
3 10 5

2 0 3 13 3 2 1

3
0 13

16
2

1 2
1 29 1

4 0 16 45 1 0 1

Table 1: Values of θi, θi−1,t, qi, qi−1,t and ki for each two-
length configuration of the example of Fig. 3. As in Fig.
3, the lengths θi and θi−1,t are scaled by a factor 45.

positive sequences. We also define θi−1,t = θi−1 − t · θi
and qi−1,t = qi−1 + t · qi with t ∈ J0, ki+1J. The lengths
obtained when adding multiples of a over the unit
segment are therefore the elements of the sequence
(θi,t)i∈N,t∈J0,ki+1J [16]. An example is provided in Fig. 3
and Table 1. All the properties provided in this section
are valid when a is irrational. However, they are also
valid for a rational as long as θi 6= 0 (that is to say, until
the last quotient of the continued fraction expansion is
computed).

In the following, we will use some properties on
the configurations {a · x mod 1 | x < n} which contain
intervals of only two different lengths. They are of
algorithmic interest as there are only O(log n) such con-
figurations when n tends to infinity. Each label (i, t),
with i ∈ N and t ∈ J0, ki+1J, denotes one two-length
configuration which verifies the following equation

qi · θi−1,t + qi−1,t · θi = 1. (2)

This Equation (2) gives details on the number of intervals
of each length. After adding qi + qi−1,t multiples of
a mod 1 over the unit segment, there are exactly two
different lengths of intervals over the unit segment : qi
intervals of length θi−1,t and qi−1,t intervals of length θi.

A special and noticeable subset of the two-length con-
figurations corresponds to the configurations produced
using the division-based Euclidean algorithm. These are
the (i, 0) configurations, satisfying

qi · θi−1 + qi−1 · θi = 1. (3)

Furthermore we have a way to construct the two-length
configurations.

Property 1 (Two-length configurations construction [16]).
Given a two-length configuration (i, t) for some i ∈ N and
0 ≤ t < ki+1, the next two-length configuration is

{

(i, t+ 1) if t < ki+1 − 1,
(i+ 1, 0) if t = ki+1 − 1.

To simplify notations, given the (i, t) configuration we
will write (i, t+1) its next two-length configuration and
assimilate the configuration (i, ki+1) to (i+1, 0). Property
1 implies that for going from a two-length configuration
to the next, the intervals of length θi−1,t are split. The

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13



6

way intervals are split is described by the following
directed reduction property and illustrated in Fig. 3.

Property 2 (Directed reduction [18]). Given the two-length
configuration (i, t), when constructing the next two-length
configuration, intervals of length θi−1,t are split into two
intervals in this order from left to right :

• one of length θi and one of length θi−1,t+1 if i is even,
• one of length θi−1,t+1 and one of length θi if i is odd.

4 HR-CASE SEARCH ON GPU

In this section we describe two algorithms for HR-
case search: Lefèvre HR-case search originally described
in [19] and our new and more regular HR-case search.
Both algorithms make use of Boolean tests which rely on
the properties described in Sect. 3.2. Hence, we will de-
scribe both of them with continued fraction expansions
which give a uniform formalism to explain and compare
their different behaviours. Then we will describe how
they have been deployed on GPU and the benefit on
divergence provided by our new algorithm.

4.1 Lefèvre HR-case search

In [19], Lefèvre presented an algorithm to search for
(p, ǫ′) HR-cases of a polynomial Pi(x). This algorithm
relies on a Boolean test on Qi(x) (the truncation of Pi(x)
to degree one) which computes a lower bound of the set
{b− a · x mod 1 | x < #pDi} and returns Success if the
inequality (1) does not hold, Failure otherwise.

In Sect. 3.2, we described some properties of the
configurations {a · x mod 1 | x < n}. According to these
properties, computing the lengths of the intervals of
the two-length configurations can be done efficiently
in O(log#pDi) arithmetic operations by computing the
continued fraction expansion of a. However, if we use
continued fraction expansion, we will place more points
than #pDi on the unit segment (at most 2 ·#pDi if we
use the subtraction-based Euclidean algorithm). To take
advantage of the efficient construction of the two-length
configurations, Lefèvre HR-case search computes the
minimum of {b− a · x mod 1 | x < n} with n the num-
ber of multiples of a placed and n ≥ #pDi . This gives
a lower bound on {b− a · x mod 1 | x < #pDi}. Then
the minimum of {distp(Pi(x)) < ǫ′ | x < #pDi} is exactly
computed by exhaustive search in O(#pDi) arithmetic
operations only if required. To minimize this exhaustive
search we use a filtering strategy in three phases.

• Phase 1: we compute a lower bound on
{b− a · x mod 1 | x < #pDi} and test if this lower
bound matches a (p, ǫ′′) HR-case of Qi. If not there is
no (p, ǫ′) HR-case for Pi in Di. Else, go to next phase.

• Phase 2: we split Di in sub-domains Di,j , we refine
the approximation Qi(x) by Qi,j(x) and we compute
a lower bound on {bj − aj · x mod 1 | x < #pDi,j} for
each Di,j . For each Di,j where the lower bound on
{bj − aj · x mod 1 | x < #pDi,j} matches a (p, ǫ′′j ) HR-
case of Qi,j , go to next phase.

Algorithm 1: Lefèvre lower bound computation and
test algorithm.

input : b− a · x, ǫ′′, N

1 initialisation:
p← {a}; q ← 1− {a}; d← {b};
u← 1; v ← 1;

2 if d < ǫ′′ then return Failure;
3 while True do
4 if d < p then
5 k = ⌊q/p⌋;
6 q ← q − k ∗ p; u← u+ k ∗ v;
7 if u+ v ≥ N then return Success;
8 p← p− q; v ← v + u;
9 else

10 d← d− p;
11 if d < ǫ′′ then return Failure;
12 k = ⌊p/q⌋;
13 p← p− k ∗ q; v ← v + k ∗ u;
14 if u+ v ≥ N then return Success;
15 q ← q − p; u← u+ v;

• Phase 3: we search exhaustively for (p, ǫ′) of Pi in Di,j

using the table difference method (see Sect. 5).

The corner stone of Lefèvre algorithm strategy
is therefore the computation of the minimum of
{b− a · x mod 1 | x < n}. In other words, it computes
the distance between {b} and the closest point to the
left of {b} in the configuration {a · x mod 1 | x < n}.
We write N the number of floating-point numbers in
the considered sub-domain (n ≥ N as we compute a
lower bound). Depending on how we generate the two-
length configurations (using the subtraction-based or the
division-based Euclidean algorithm) we can derive from
Property 2 two ways to compute this distance. The first
one is Lefèvre HR-case search, the second one is the new
HR-case search proposed in Sect. 4.2.

In the lower bound computation of Lefèvre HR-case
search, the way the two-length configurations are com-
puted depends on the length of the interval containing
{b}. When adding points in the interval containing {b}
and in the direction of {b} Lefèvre uses a subtraction-
based Euclidean algorithm (he moves from the (i, t)
configuration to (i, t+1)). Otherwise he uses a division-
based Euclidean algorithm (he moves from the (i, t)
configuration to (i + 1, 0)). Algorithm 1 describes the
lower bound computation of Lefèvre HR-case search and
the corresponding test with respect to ǫ′′ which is the
sum of all errors involved.

In this algorithm, the variables u and v count the
number of intervals as in Equation (2) in order to exit
when n = u + v ≥ N : u and v store respectively qi
and qi−1,t for i even and qi−1,t and qi for i odd. The
variables p and q store respectively the lengths θi and
θi−1,t for i even, and the lengths θi−1,t and θi for i odd.
The variable d contains the distance between {b} and the
closest multiple {a · x} to its left.

Hereafter we detail the relations between the two-
length configurations and the execution paths of Al-
gorithm 1. This algorithm starts with the configuration
(0, 1) and then considers the (i, t) configurations. It has
to be noticed that the condition at line 4 is false only if
we added one point directly at the left of {b} during the

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13



7

b
(i, 1) (i, 2) (i, 3) (i, 4) (i, 5) (i, 6) (i + 1, 0)

θi θi θi θi θi θi θi θi+1

b
(i, 1) (i, 2) (i, 3) (i, 4) (i, 5) (i, 6) (i + 1, 0)

θi θi θi θi θi θi θi θi+1

(a) i is even

b
(i, 1)(i, 2)(i, 3)(i, 4)(i, 5)(i, 6)(i + 1, 0)

θiθiθiθiθiθiθiθi+1

b
(i, 1)(i, 2)(i, 3)(i, 4)(i, 5)(i, 6)(i + 1, 0)

θiθiθiθiθiθiθiθi+1

(b) i is odd

Figure 4: Behaviour of Lefèvre (left) and the new (right) HR-case searches when b is in an interval of length θi
(solid lines) and when b is in an interval of length θi−1,t (dashed lines). Each point is labelled by the index (i, t) of
the two-length configuration it is added in.

previous loop iteration and true otherwise. Hence, it has
to be interpreted as “does d need to be updated?”. This
interpretation is allowed by the fact that the value of d
at line 4 corresponds to the previous configuration (the
configuration (0, 0) at start) and that at least one point
was already added (line 8 or 15). This condition enables
thus to handle the next four cases (illustrated in Fig. 4).

• If i is even:

– if {b} is in an interval of length θi, then d < θi (this
happens if the point previously added is just at the
right of {b}). Hence no point is added in the interval
containing {b} so we go directly to the configuration
(i+ 1, 0) (lines 5-6) and (i+ 1, 1) (line 8);

– if {b} is in an interval of length θi−1,t, then d > θi
(this case happens if the point previously added
is just at the left of {b}). Hence d is updated by
subtracting θi (line 10), k = 0 since θi−1,t > θi (lines
12-13), and we go to configuration (i, t+1) (line 15)
as other points can be added to the left of {b} in the
next two-length configuration under Property 2.

• If i is odd:

– if {b} is in an interval of length θi, then d > θi−1,t

(this case happens if the point previously added is
just at the left of {b}). Hence d is updated (line 10)
and we go to the configuration (i+1, 0) (lines 12-13)
and (i+ 1, 1) (line 15);

– if {b} is in an interval of length θi−1,t, then d < θi−1,t

(this case happens if the point previously added is
just at the right of {b}). Hence k = 0 since θi−1,t > θi
(lines 5-6) and we go to the configuration (i, t + 1)
(line 8) as a point can be added to the left of {b}
in the next two-length configuration according to
Property 2.

It has to be noticed that Lefèvre algorithm always re-
duces d by using subtractions at line 10 as points are
added one by one at the left of {b}. In practice Lefèvre
adds specific instructions to compute partly these reduc-
tions with divisions in order to avoid large quotients to
be entirely computed with subtractions. We have omitted
these instructions here for clarity but they are present in
our implementations of Lefèvre algorithm.

Furthermore the algorithm computes divisions (lines

Algorithm 2: New regular lower bound computation
and test algorithm.

input : b− a · x, ǫ′′, N

1 initialisation:
p← {a}; q ← 1; d← {b};
u← 1; v ← 0;

2 if d < ǫ′′ then return Failure;
3 while True do
4 if p < q then
5 k = ⌊q/p⌋;
6 q = q − k ∗ p; u = u+ k ∗ v;
7 d = d mod p;
8 else
9 k = ⌊p/q⌋;

10 p = p− k ∗ q; v = v + k ∗ u;
11 if d ≥ p then
12 d = (d− p) mod q;
13 if u+ v ≥ N then return d > ǫ′′;

5 and 12). In practice, we can make use of different
division implementations. We can apply a subtractive
division, a division instruction, or combine both in an
hybrid approach as presented and analysed in [8], [19].

4.2 New regular HR-case search

We here propose a new algorithm for the HR-case search
where we use the same filtering and division strategy as
in Lefèvre algorithm, but we introduce a more regular
algorithm – in the sense that it strongly reduces diver-
gence on GPU – in order to compute a lower bound on
{b− a · x mod 1 | x < #pDi}. Hereafter, we will refer to
this new algorithm as the regular HR-case search.

In this regular HR-case search described in Algorithm
2, we only consider configurations satisfying Equation
(3) in order to use only the division-based Euclidean
algorithm. The variables p and q store respectively the
lengths θi and θi−1 for i even, and the lengths θi−1 and
θi for i odd. The variables u and v store respectively qi
and qi−1 for i even, and qi−1 and qi for i odd.

Thus, instead of testing if {b} went from a split interval
to an unsplit one like in Lefèvre HR-case search, we
test here which length is reduced as in the classical
Euclidean algorithm, and then we reduce it and update
d accordingly (as illustrated in Fig. 4). In practice, the
quotients are computed like in Lefèvre HR-case search
with a subtractive division, a division instruction or the

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13



8

(1,0)

00 1

31 14

b

(2,0)

00 123

3 14 14 14

b

(2,1)

00 123 456

3 3 11 3 11 3 11

b

(3,0)

00 123 456 789 101112 131415

3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2

b

Figure 5: Example where Algorithm 2 considers a con-
figuration (i+ 1, 1) for i = 1.

hybrid approach. Now we detail the execution of the
algorithm. Let (i, 0) be a two-length configuration.

• If i is even, then the test p < q is true since θi < θi−1,
we go to the configuration (i + 1, 0) (lines 5-6) and :

– if {b} was in an interval of length θi, no point was
added in the interval containing {b} and d is not
updated as d < θi and d = d mod θi (line 7);

– if {b} was in an interval of length θi−1, points
were potentially added to the left of {b}. Hence
the distance d is updated by reduction modulo θi
(line 7) since intervals are split from the left under
Property 2.

• If i is odd, then the test p < q (line 4) is false, we go
to the configuration (i+ 1, 0) (lines 9-10) and :

– if {b} was in an interval of length θi, no point was
added in the interval containing {b}. However, we
might subtract θi+1 to d if d ≥ θi+1 (line 12), which
is similar to considering the configuration (i+1, 1).
Note that this would have been done in the next
loop iteration at line 7 (see Fig. 5);

– if {b} was in an interval of length θi−1, points were
potentially added to the left of {b}. According to
Property 2, intervals are split from the right. Then
the distance d is updated if d > θi+1 by reducing
d− θi+1 mod θi (lines 11-12).

4.3 Deployment on GPU

The exhaustive search algorithm perfectly takes advan-
tage of the GPU massive parallelism and of its (partial)
SIMD execution. Hence, we will focus on the deploy-
ment of the lower bound computation. In this section
we present the GPU deployment of Lefèvre HR-case
search as detailed in [8], and the GPU deployment of the
new regular HR-case search. We particularly study the
divergence in both HR-case searches at three levels: the
filtering strategy, the main loop and the main conditional
statement. For these deployments, we first changed the
data layout to a “structure of arrays” in order to have
coalesced memory accesses [13, Sect. 6.2.1]. We also
avoided as much as possible consecutive dependent
instructions in order to increase the instruction-level
parallelism within each thread.

Throughout this section, we will consider the example
domain [1, 1+2−13[ in the binade [1, 2[ for the exponential
function in double precision, as this binade is considered
in [19] as the general case.

(a) Lefèvre HR-case search with specific instructions

(b) Regular HR-case search

Figure 6: Normalized mean deviation to the maximum
of the number of main loop iterations per warp among
the 220 warps required for the exp function in the domain
[1; 1 + 2−13].

4.3.1 Filtering strategy divergence

As a consequence of the filtering strategy, we will have
few threads executing phase 2, and fewer executing
phase 3. Table 2 shows the number of sub-domains
involved in each phase for a domain Di containing 240

floating-point numbers. As we can see, very few sub-
domains are concerned by the exhaustive search step.
Hence, executing one kernel computing the three phases
leads to an important divergence as we have fewer and
fewer active threads within each warp from one phase
to the next [8].

To tackle this problem, we propose to use three ker-
nels, one for each phase. This allows us to re-build the
grid of threads between each phase, and to run the exact
number of threads required by each phase. However, this
implies two additional costs.

First, we have to write failing sub-domains2 of phases
1 and 2 in consecutive memory locations as we prepare
coalesced reads for the next phase. In [8], this was
done with atomic operations on the GPU global memory
since we had few failing sub-domains. For some specific
binades, the number of failing sub-domains can be much
more important and the numerous atomic operations
can then lower the performance. Hence, we use atomic
operations on the GPU global memory or compact

2. Sub-domains for which the computed lower bound is less than ǫ′′

in algorithms 1 and 2.

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13



9

Number of arguments
Lefèvre Regular

Phase 1 240 ≈ 1.1 · 1012 240 ≈ 1.1 · 1012

Phase 2 ≈ 3.6 · 109 ≈ 1.8 · 1010

Phase 3 ≈ 8.9 · 106 ≈ 5.9 · 107

HR-cases 243 243

Table 2: Details of argument filtering during HR-case
search in [1, 1 + 2−13].

HR-case search
min max mean mean

iteration iteration iteration NMDM
number number number

Lefèvre 5 328 24 25.6%
with specific

5 31 16 25.7%
instructions
Regular 8 19 12 0.1%

Table 3: Comparison of the main loop behavior among
the 220 warps required for the different HR-case searches
on exp function in the domain [1, 1 + 2−13].

operations based on parallel prefix sums provided by
CUDPP [20], depending on the expected number of
failing sub-domains.

Second, between two phases, we have to transfer back
to CPU the number of failing sub-domains to compute
on CPU the optimal grid size for the next phase.

It can be noticed in Table 2 that Lefèvre HR-case
lower bound computation filters a little more than the
new algorithm. Lefèvre HR-case lower bound computa-
tion uses indeed subtraction-based Euclidean algorithm
when splitting the interval containing {b}. This results
in a number of considered arguments less than 2N .
On the contrary, we always use the division-based Eu-
clidean algorithm in the regular HR-case search. If we
consider i such that qi + qi−1 < N < qi+1 + qi, then
qi+1+qi = qi−1+ki+1qi+qi < (ki+1+1)N – by considering
qi < N . However, the geometric mean of the quotients
ki of the continued fraction of almost all real numbers
equals Khinchin’s constant (≈ 2.69) [21]. Hence, using
the regular HR-case search we consider on average less
than 3.69 ·N arguments.

4.3.2 Loop divergence

The second source of divergence is the main uncondi-
tional loop (see line 3 in Algorithms 1 and 2). Fig. 6
shows the NMDM of the number of loop iterations by
warp for the different HR-case searches when testing
a domain Di containing 240 double precision floating-
point arguments. Table 3 summarizes statistical informa-
tions on the NMDM and the number of iterations for
both Lefèvre and the regular HR-case searches.

For Lefèvre HR-case search, this main unconditional
loop is an important source of divergence with a mean
NMDM of 25.6%, that is to say, a thread remains idle on
average 25.6% of the number of loop iterations executed
by its warp. To our knowledge there is no a priori
information on the number of loop iterations that would
enable us to statically reorder the sub-domains in order
to decrease this divergence. We also tried to use software

Algorithm 3: Lefèvre’s lower bound computation
and test algorithm with swap.

input : b− a · x, ǫ′′, N
1 initialisation:

p← {a}; q ← 1− {a}; d← {b};
u← 1; v ← 1; are swapped← False;

2 if d < ǫ′′ then return Failure;
3 if (d ≥ p) then
4 SWAP(p, q); SWAP(u, v);
5 are swapped← True;
6 while True do
7 if are swapped then
8 d← d− p;
9 if d < ǫ′′ then return Failure;

10 k = ⌊q/p⌋;
11 q ← q − k ∗ p; u← u+ k ∗ v;
12 if u+ v ≥ N then return Success;
13 p← p− q; v ← v + u;
14 if are swapped xor (d ≥ p) then
15 SWAP(p, q); SWAP(u, v);
16 are swapped← not(are swapped);

solutions to reduce the impact of the loop divergence [8]
to no avail because the computation is very fine-grained.

This divergence in Lefèvre HR-case search is mainly
due to the fact that the quotients are entirely or partially
computed at each iteration depending on the position
of b even with the specific instructions (see Sect. 4.1).
Thanks to these specific instructions the pathological
cases are avoided (see Table 3) but the mean NMDM
is still around 25.6%.

In the new regular HR-case search, the key point is
that a quotient of the continued fraction expansion of a
is entirely computed at each loop iteration, which is not
the case in Lefèvre HR-case search. Hence, the number of
loop iterations only depends on the number of quotients
of the continued fraction expansion of a computed to
reach #pDi points on the segment. As the number of
quotients to compute is very close from one sub-domain
to the next, we reduce the mean NMDM by warp to
0.1%.

4.3.3 Branch divergence

The third source of divergence is on the main conditional
statement (see line 4 in Algorithms 1 and 2). We aim
at reducing the number of instructions controlled by
the branch condition, and if reduced enough, benefit
from the GPU branch predication [13, Sect. 9.2]. This
branch predication enables indeed, for short sections of
divergent code, to fill at best the pipelines by scheduling
both then and else branches for all threads: thank to a per-
thread predicate, only the relevant results are actually
computed and finally written.

As observed in [8], both branches of Lefèvre HR-case
search contain the same instructions, except that the vari-
ables p (respectively u) and q (resp. v) are interchanged,
and that p is subtracted to d in the else branch. We
therefore swap the two values p and q (resp. u and v) to
remove the common instructions from the conditional
scope as described in Algorithm 3. The swap implies
a small extra cost but we thus reduce the number of
divergent instructions.

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13



10

Algorithm 4: New regular lower bound computation
and test algorithm unrolled.

input : b− ax, ǫ′′, N

1 initialisation:
p← {a}; q ← 1; d← {b};
u← 1; v ← 0;

2 while True do
3 k = ⌊q/p⌋;
4 q = q − k ∗ p; u = u+ k ∗ v;
5 d = d mod p;
6 if u+ v ≥ N then return d > ǫ′′;
7 k = ⌊p/q⌋;
8 p = p − k ∗ q; v = v + k ∗ u;
9 if d ≥ p then

10 d = d− p mod q;
11 if u+ v ≥ N then return d > ǫ′′;

As far as the new regular HR-case search is concerned,
there is in Algorithm 2 as much branch divergence
within the unconditional loop as in Algorithm 1. How-
ever the main conditional statements of the two algo-
rithms are rather different. In Lefèvre HR-case search,
this test depends on the position of the point b at each
iteration. In the regular HR-case search, it depends on
the length to reduce. Unlike the test on the position of
b, the test on the length to reduce is deterministic as
the regular HR-case search computes a quotient of the
continued fraction expansion of a at each loop iteration.
Hence the evaluation of the condition switches at each
loop iteration and it first evaluates to True as p is
initialized to {a} and q to 1. Therefore, by unrolling two
loop iterations (Algorithm 4), we can avoid this test and
strongly reduce the branch divergence.

5 POLYNOMIAL APPROXIMATION GENERATION

ON GPU

In this section, we detail how we have deployed on
GPU the generation of the polynomial approximations
Pi required for the HR-case search algorithms de-
scribed in Sect. 4. We recall that the change of variable
x = 2p−e(Xi)(X −Xi) enables to test the floating-point
arguments X ∈ Di of f(X) by testing the integer
arguments x ∈ J0,#pDi − 1K of Pi(x).

Computing as many approximations as Di domains
can be prohibitive using Taylor approximations. The
principle here is therefore to consider the union of τ
domains Dt, . . . , Dt+τ−1 – denoted Dt – and to approx-
imate the function f by a polynomial Rt of degree δ
– with a Taylor approximation for example – such that
|Rt(x) − f(X)| < ǫ′approx2

e(f(X))−p for all X ∈ Dt with

x = 2p−e(Xt)(X −Xt).
If τ is chosen such that e(x) = e(y) for all x, y ∈ Dt,

then Pt+i(x) is defined as Rt(x+ iN) for 0 ≤ i < τ with
N = #pDt (as #pDi = #pDj , ∀i, j ∈ Jt, t+ τ − 1K). The
shifts of the form Rt(x+ iN) are called Taylor shifts [22].
If we denote ǫshift the error propagated by the shift such
that |Pt+i(x) − Rt(x + iN)| < ǫshift, then we set ǫapprox
to ǫapprox = ǫ′approx + ǫshift (see Sect. 3.1).

In the following, we want to compute these polynomi-
als Pt+i . We first present a method named the hierarchical

x 0 1 2 3

∆0[Rt](x)

∆1[Rt](x)

∆2[Rt](x)

∆3[Rt](x)

0 1 8 27

1 7 19

6 12

6

− − −

− −

−

Figure 7: Newton interpolation of polynomial x3. The co-
efficients of the interpolated polynomial are highlighted.

0 1 8 27 64 125

1 7 19 37 61 91

6 12 18 24 30 36

6 6 6 6 6 6

∆0[rt,j ](i)

∆1[rt,j ](i)

∆2[rt,j ](i)

∆3[rt,j ](i)

+ + + + +

+ + + + +

+ + + + +

Figure 8: Tabulated difference shift for evaluating the
polynomial rt,j(i) = i3. The shifted polynomials are
highlighted.

method originally designed by Lefèvre [23] to change
one Taylor shift by N into several Taylor shifts by 1.
Then, we present two existing Taylor shift algorithms:

• the tabulated difference shift which, starting with
Pt(x) = Rt(x), sequentially iterates a shift of the poly-
nomial Pt+i to obtain Pt+i+1 with only multi-precision
additions [7];

• and the straightforward shift which computes the Pt+i’s
from Rt in parallel but requires multi-precision mul-
tiplications and additions [22].

Finally we propose an hybrid CPU-GPU Taylor shift
algorithm which efficiently combines these two shifts
with the hierarchical method, and which requires only
fixed size multi-precision addition on GPU. More details
on these algorithms and their error propagation can be
found in [7].

5.1 Hierarchical method

We first describe the hierarchical method originally de-
scribed in [23] which transforms one shift by N of a
polynomial Rt(x) of degree δ into δ + 1 shifts by 1.
This is of interest as shifting by 1 can be done with
only additions (see Sect. 5.2). This method requires the
input polynomial to be interpolated in the binomial

basis
(

x
j

)

=
∏j−1

l=0 (x−l)

j! . Therefore, we define the forward
difference operator and its application to interpolate a
polynomial in the binomial basis.

Definition 5. The forward difference operator, denoted ∆h is
defined as ∆h[P ](x) = P (x + h) − P (x). We write ∆j

h the
composition j times of ∆h and ∆ = ∆1.

Using this forward difference operator, one can effi-
ciently interpolate the polynomial Rt of degree δ in the
binomial basis [7], given the values {Rt(x), x ∈ J0, δK} as

Rt(x) =
∑δ

j=0 ∆
j [Rt](0) ·

(

x
j

)

. An example is shown in

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13



11

Fig. 7. This interpolation is computed using the defini-
tion of ∆ and with initial values ∆0[Rt](x) = Rt(x). This
algorithm is similar to the Newton interpolation with the
forward difference operator used instead of the forward
divided difference operator.

Now, we describe the hierarchical method [23]. Given
a polynomial Rt(x), we want to build a scheme to shift
this polynomial in consecutive arguments following an
arithmetic progression with common difference N . Let
us consider the univariate polynomial Rt as a bivariate
polynomial Rt(x + iN) in the variables x and i. By
interpolation in the binomial basis with respect to the
variable x, we obtain a polynomial in the variable x,
with polynomial coefficients rt,j(i) = ∆j [Rt](iN) in the
variable i, defined as follow

Rt(x + iN) =

δ
∑

j=0

rt,j(i)

(

x

j

)

.

Using the hierarchical method, we thus obtain the
polynomials rt,j(i). From these, one can compute the
shifts Pt+i(x) of the polynomial Rt(x) by iN by com-
puting the evaluations rt,j(i) with 0 ≤ j ≤ δ. If we
consider the polynomials rt,j in the binomial basis, these
evaluations rt,j(i) can be obtained with the consecutive
Taylor shifts of rt,j by one – by taking the coefficients of
degree 0 of these shifts, which are the ∆0[rt,j ](i).

5.2 Taylor shift algorithms

Taylor shifts by one can be performed efficiently
with the tabulated difference shift [5], [7]. Accord-
ing to the forward difference operator definition,
∆l[rt,j ](i) = ∆l−1[rt,j ](i+ 1)−∆l−1[rt,j ](i), that is to
say ∆l−1[rt,j ](i+ 1) = ∆l−1[rt,j ](i) + ∆l[rt,j ](i). Further-
more, if deg(rt,j) = γ then ∆γ [rt,j ](i) is constant for any
integer i ≥ 0, as it is the γth discrete derivative of rt,j
times γ! . An illustration of this algorithm can be found
in Fig. 8. Hence, the only needed operations to obtain
the consecutive evaluations of the polynomials rt,j are
multi-precision additions of the coefficients.

Obtaining the consecutive evaluations of rt,j can also
be performed with the straightforward shift. This algo-
rithm multiplies the vector of the rt,j polynomial coeffi-
cients by a matrix constructed using Newton’s binomial
theorem. If we consider the polynomials rt,j expressed
in the binomial basis, this multiplication exactly cor-
responds to applying i times the tabulated difference
algorithm on the polynomial rt,j . This matrix is upper
triangular and Toeplitz, which can be used to speed up
the matrix-vector multiplication for high degree, and is
constructed as











(

i

0

) (

i

1

)

· · ·

(

i

γ

)

0
(

i

0

)

· · ·

(

i

γ−1

)

...
. . .

. . .
...

0 · · · 0
(

i

0

)











.

Therefore, to construct this matrix, only the first
(

i
l

)

with
0 ≤ l < γ + 1 are needed to compute its coefficients.

5.3 Hybrid CPU-GPU deployment

Now, we propose a hybrid CPU-GPU deployment of the
polynomial approximation generation step. The polyno-
mials Rt are Taylor polynomials of degree δ = 2 ap-
proximating the targeted function over τ = 225 domains
Di like in [5]. We interpolate them in the binomial basis
using the hierarchical method with N = 215 as we want
to use the Boolean tests described in Sect. 4 on intervals
containing 215 arguments (this choice of parameters is
motivated by the error analysis of the Boolean test [23]).
More formally, we have

Pt+i(x) = Rt(i2
15 + x) =

2
∑

j=0

rt,j(i)

(

x

j

)

.

As this interpolation in the binomial basis is done once,
it is precomputed on CPU.

Hence, to obtain all the polynomials Pt+i for 0 ≤ i < τ ,
we have to deploy on GPU the computation of the
consecutive evaluations of rt,j(i) for 0 ≤ i < τ and
0 ≤ j ≤ 2.

On one hand, the tabulated difference shift is effi-
cient as it requires only multi-precision additions. This
method is thus used in the reference CPU implementa-
tion [5]. However this is an intrinsically sequential algo-
rithm, which prohibits its direct deployment on GPU. On
the other hand, the straightforward shift is embarrass-
ingly parallel, but requires multi-precision multiplica-
tions and divisions to compute the binomials and multi-
precision multiplications and additions to compute the
matrix-vector products.

In order to benefit from the efficiency of the tabulated
difference shift on GPU, we therefore use an hybrid
strategy that relies on both the CPU and the GPU: we
compute the shifts rt,j,u(i) = rt,j(uν+i) to form µ packets
of size ν such that µν = τ . We vary u from 0 to µ − 1
and construct the polynomials rt,j,u sequentially on CPU
with the straightforward shift3. All the multi-precision
operations on CPU are computed efficiently using the
GMP library [24].

Then the µ polynomials rt,j,u are transferred to GPU.
We run a CUDA kernel of µ threads wherein each thread
of ID u processes the polynomial rt,j,u and computes the
evaluations rt,j,u(i) with 0 ≤ i < ν using the tabulated
difference shift.

Furthermore, as there are δ+1 independent rt,j poly-
nomials (δ = 2 in practice), we can run one kernel per rt,j
polynomial and overlap the GPU tabulated difference
shift for the polynomial rt,j with the CPU straightfor-
ward shift of the polynomial rt,j+1. The only algorithm
deployed on GPU is therefore the tabulated difference
shift which is sequential within each GPU thread, but
performed concurrently by multiple threads on multiple
polynomials rt,j,u.

As the coefficients of the considered polynomials are
large, we need multi-precision addition on GPU. Here

3. This computation on CPU could thus be parallelized but the
corresponding computation times are minority in practice.

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13



12

only fixed size multi-precision additions are required
as bounds on the required precision, depending on the
targeted function and exponent of the targeted domain,
can be computed before compile time [7], [23]. Multi-
precision libraries on GPU [25], [26] have been very
recently developed. However, we preferred to have our
own implementation of this operation for two main
reasons: to use PTX (NVIDIA assembly language) [27]
and the addc instruction in order to have an efficient
carry propagation; and to benefit from the fixed size
of the multi-precision words at compile time in order
to unroll inner loops. As the addc instruction operates
only on 32-bit words, multi-precision words are arrays
of 32-bit chunks. The multi-precision addition function
is implemented as a C++ template with the size of
the multi-precision words given as a parameter, which
enables an automatic generation of addition functions
for each size of fixed multi-precision word required by
each binade. As a consequence, the inner loop on the
number of chunks can easily be unrolled as the number
of loop iterations is known at compile time. Furthermore,
in order to have coalesced memory accesses, the word
chunks are interleaved in global memory and loaded
chunk by chunk in registers.

Finally, it can be noticed that this algorithm is com-
pletely regular: there is therefore no divergence issue
among the GPU threads here.

6 PERFORMANCE RESULTS

In this section we present the performance analysis
of our different deployments. All results are obtained
on a server composed of one Intel Xeon X5650 hex-
core processor running at 2.67 GHz, one NVIDIA Fermi
C2070 GPU and 48 GB of DDR3 memory.

We compare three implementations. The first one is the
sequential implementation (named Seq.) which is Lefèvre
reference code provided by V. Lefèvre. The second one is
the parallel implementation on CPU (referred to as MPI)
which is the sequential implementation with an MPI
layer (OpenMPI version 1.4.3) to distribute equally the
213 intervals composing a binade among the available
CPU cores. We use a cyclic decomposition which offers
a better load balancing than a block decomposition and
run 12 MPI processes to take advantage of the two-way
SMT (Simultaneous Multithreading or Hyper-Threading
for Intel) of each core. The third implementation (named
CPU-GPU) relies on the GPU and CPU-GPU deploy-
ments presented in this paper. The implementations have
been compiled with gcc-4.4.5 for CPU code and nvcc
(CUDA 4.1) for GPU code.

All the following timings are obtained for searching
(53, 2−32) HR-cases of exp function, that is to say double
precision floating-point arguments for which 32 extra
bits of precision during evaluation do not suffice to
guarantee correct rounding. The measures include all
computations and data transfers between the GPU and
the CPU. All the tested implementations return the same
HR-cases in the considered binades.

Seq. MPI CPU-GPU
Seq.
MPI

Seq.
CPU-GPU

Pol.
43300.81 5251.53 788.84 8.25 54.89

approx.
Lefèvre 36816.10 5292.67 2446.27 6.96 15.05
Regular 34039.94 4716.97 711.92 7.22 47.81

Lef. /Reg. 1.08 1.12 3.44 – –

Table 4: Timings comparison (in sec.) of different imple-
mentations of the polynomial approximation generation
and of Lefèvre and regular HR-case searches in [1, 2[.

6.1 HR-case search

We first searched for the optimal block sizes on GPU and
tried to increase the number of intervals computed per
thread in every GPU kernel, in order to optimize occu-
pancy and computation granularity. However increasing
the number of intervals per thread do not improve per-
formances since the occupancy of each kernel is already
high enough.

We show in Table 4 performance results of the HR-
case search over the binade [1, 2[ as it corresponds to
the general case according to [19]. First, we remark that
Lefèvre and the regular HR-case searches take advantage
of the two-way SMT on the multi-core tests as we have a
parallel speedup higher than the number of cores. Then,
the deployment of Lefèvre HR-case search on GPU offers
a good speedup of 15.05x over one CPU core and 2.16x
over six cores. Finally, the new regular HR-case search
delivers over Lefèvre HR-case search a slight gain of 8%
on one CPU core, of 12% over six CPU cores and an
important speedup of 3.44x on GPU. This result in a very
good speedup of 51.71x for the regular HR-case search
on GPU over Lefèvre HR-case search on one CPU core,
and of 7.43x over six CPU cores.

6.2 Polynomial approximation generation

We show in Table 4 performance results of the poly-
nomial approximation generation step over the binade
[1, 2[. We first observe that the polynomial approxima-
tion generation takes great advantage of SMT with a
speedup of 8.25x when using six CPU cores. This is
mainly due to the high latency caused by the carry prop-
agation during the multi-precision addition which can
be partly offset by the SMT execution. Concerning the
CPU-GPU deployment of the polynomial approximation
generation, the times includes the CPU computations,
the data transfers from CPU to GPU and the GPU
computation. This hybrid CPU-GPU deployment greatly
takes advantage of the GPU as all the threads perform
independent computations and as the control flow is
perfectly regular among the GPU threads. It offers thus
a speedup of 54.89x over the one CPU core execution
and of 6.66x over the six core execution.

6.3 Overall performance results

In this subsection, we present detailed performance re-
sults for the overall algorithms on different binades. In
the following tables, one can remark that the total times

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13



13

MPI CPU-GPU MPI Lef./CPU-GPU
[1, 2[ [128, 256[ [1, 2[ [128, 256[ [1, 2[ [128, 256[

Polynomial approximation generation 5336.81 11243.26 785.14 1612.03 6.74 6.97
Lefèvre HR-case search 5292.67 169911.90 2446.78 51530.44 2.16 3.30
Regular HR-case search 4716.96 – 711.8 61581.87 7.44 2.76

Table 5: Timings (in seconds) for binades [1, 2[ and [128, 256[. Timings for the MPI regular HR-case search over
[128, 256[ have been omitted because they are prohibitive.

Lefèvre Regular
Arguments Time (s) Arguments Time (s)

Phase 1 9.01 · 1015 2372.60 9.01 · 1015 583.97
Phase 2 3.19 · 1013 61.31 1.62 · 1014 91.41
Phase 3 7.65 · 1010 11.02 5.14 · 1011 35.17

Table 6: Details on each phase for Lefèvre and regular
HR-case searches on GPU in the binade [1, 2[.

are slightly higher than the sum of the three phases. This
is due to the cost of measuring time for each phase. In
Table 5, the timings are obtained over two binades. The
binade [1, 2[ corresponds to the general case according
to [19], where the exp function is well approximated by
a polynomial of degree one, and the binade [128, 256[
corresponds to the last entire binade before overflow,
where the exp function is hard to approximate by a
polynomial of degree one.

We can first observe that speedups on CPU-GPU
over CPU of the polynomial approximation genera-
tion are similar, even if in the binade [128, 256[ we
use longer multi-precision words (maximum coefficient
sizes are 320 bits for the binade [1, 2[ and 448 for
the binade [128, 256[) and polynomials of higher degree
(maxj (deg rt,j(x)) is 6 for the binade [1, 2[ and 10 for the
binade [128, 256[).

It has to be noticed that the HR-case search is much
slower in the binade [128, 256[ than in the binade
[1, 2[ (22.7x and 86.5x for Lefèvre and regular HR-case
searches respectively on GPU). Moreover, Lefèvre HR-
case search delivers a better speedup on GPU over CPU
in [128, 256[ compared to [1, 2[, and regular HR-case
search delivers a lower speedup. The high computation
times required in the binade [128, 256[ and the disparities
in speedups of Lefèvre and regular HR-case searches can
be explained by the truncation error ǫtrunc introduced by
the Boolean tests used in both filtering strategies.

We therefore present in Table 6 the filtering and timing
details of the Lefèvre and the regular HR-case searches
over the binade [1, 2[. In Table 6, both HR-case searches
split the entering intervals into 8 sub-intervals in phase 2.
In this binade the exp function is well approximated by
a polynomial of degree one. This implies that the error
due to the truncation to degree one is low compared to
the error ǫ we want to test, and the Boolean tests used
in Lefèvre and regular HR-case searches fail rarely.

However, as stated in Sect. 4.3.1, the new regular
HR-case search filters less intervals than Lefèvre HR-
case search. This increases the amount of time spent in
phases 2 and 3 by a factor 1.49 and 3.19 respectively.
Nevertheless, we can observe a good speedup of 4.06x
in phase 1 due to the regularity of the new regular HR-

Lefèvre Regular
Arguments Time (s) Arguments Time (s)

Phase 1 9.01 · 1015 4097.41 9.01 · 1015 1634.67
Phase 2 8.97 · 1015 30003.78 9.01 · 1015 21443.58
Phase 3 4.19 · 1014 17428.16 9.00 · 1014 38480.87

Table 7: Details on each phase for Lefèvre and regular
HR-case searches on GPU in the binade [128, 256[.

case search. As phases 2 and 3 are minority, the new
regular HR-case search offers a total speedup of 3.44x
over Lefèvre HR-case search.

Table 7 details the corresponding results for the binade
[128, 256[ where the exp function is hard to approximate
by a polynomial of degree one. This implies that ǫtrunc
is high compared to ǫ, and the Boolean tests used in
Lefèvre and regular HR-case searches fail very often.
We set the Lefèvre HR-case search to split the entering
intervals into 16 sub-intervals in phase 2 and the regular
HR-case search to split the entering intervals into 32
sub-intervals in phase 2. This is due to the need of
balancing phase 2 and phase 3 in order to obtain the
best performance. Here, the regular HR-case search has
to use parallel prefix sums for the compaction operation
between each phase since the Boolean tests fail very
often (see Sect. 4.3.1).

This very high failure rate of the Boolean tests also
implies that the critical phases for this binade are the
phases 2 and 3. Hence, Lefèvre HR-case search is more
efficient as it filters more than the new regular HR-case
search. In this binade, 10.00% of the initial arguments
are involved in phase 3 with the regular HR-case search
against 4.65% with Lefèvre HR-case search. This results
in Lefèvre HR-case search being 16.3% faster than the
regular HR-case search on GPU for this binade. More-
over, as phase 3 corresponds to the exhaustive search,
which is embarrassingly parallel and which offers a
completely regular control flow, we still have a good
speedup on GPU (up to 3.30x with Lefèvre HR-case
search over a hex-core CPU).

Hence, both HR-case searches can be used depending
on the truncation error. The latter directly depends on
the coefficient of the term of degree two of the ap-
proximation polynomial. A threshold on the truncation
error to switch from one HR-case search to the other
can be precomputed. One can also use the ratio of the
number of intervals in phase 3 over the number of
intervals in phase 1 of the previous interval to select
the appropriate HR-case search algorithm for the current
interval. As shown in Table 5, this let us benefit from
a very good speedup of 7.44x on a GPU over a hex-
core CPU when the function is well approximated by

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13



14

a polynomial of degree one, and from a good speedup
of 3.30x otherwise. For example, with the exponential
function in double precision, out of twenty-two binades
which do not evaluate to overflow or underflow, fifteen
binades are more efficiently computed using the new
regular algorithm.

However, both HR-case searches are slow when the
truncation error is high compared to the targeted error.
The best here should be to consider a Boolean test using
polynomials of higher degree like in the SLZ algorithm.

7 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new algorithm based
on continued fraction expansion for HR-case search
which improves Lefèvre HR-case search algorithm by
strongly reducing loop and branch divergence, which is
a problem inherent to GPU because of their partial SIMD
architecture. We have also proposed an efficient deploy-
ment on GPU of these two HR-case search algorithms
and an hybrid CPU-GPU deployment for the generation
of polynomial approximations.

When searching for HR-cases of the exp function in
double precision, these deployments enable an overall
speedup of up to 53.4x on one GPU over a sequential
execution on one CPU core, and a speedup of up to 7.1x
on one GPU over one hex-core CPU.

In the future, we plan to investigate whether the
regular HR-case search can benefit from other SIMD
architectures like vector units (SSE, AVX, . . . ) on multi-
core CPU and Intel Xeon Phi architectures. This will
require an OpenCL [14] implementation and an effective
automatic vectorization by the OpenCL compiler.

We also plan to provide formal proofs of the deployed
algorithms, and certificates along with the produced
hardness-to-round. This is eased by the continued frac-
tion expansion formalism, and would enable a validated
generation of hardness-to-round, which is necessary to
improve the confidence in the produced results. This is
necessary before computing the hardness-to-round of all
the functions recommended by the IEEE standard 754.

Finally, we hope to tackle the quadruple precision by
deploying on GPU the SLZ algorithm which tests the
existence of HR-cases with higher degree polynomials.
This algorithm heavily relies on the use of the LLL
algorithm. The deployment of this algorithm on GPU
is therefore far from trivial if one wants to obtain good
performance. Porting the LLL algorithm to GPU will be
the next step of this work.

8 ACKNOWLEDGEMENT

This work was supported by the TaMaDi project of the
French ANR (grant ANR 2010 BLAN 0203 01). The au-
thors thank Vincent Lefèvre for helpful discussions, and
Polytech Paris-UPMC for the CPU-GPU server. Finally,
they would like thank the reviewers for helping them to
improve the readability and the quality of the paper.

REFERENCES

[1] IEEE Computer Society, “IEEE Standard for Floating-Point Arith-
metic,” 2008.

[2] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres,
Handbook of Floating-point Arithmetic. Birkhauser, 2009.

[3] A. Ziv, “Fast evaluation of elementary mathematical functions
with correctly rounded last bit,” ACM Trans. Math. Softw., vol. 17,
no. 3, pp. 410–423, 1991.

[4] A.I. Galochkin (originator), “Lindemann theorem.” Encyclopedia
of Mathematics, available at http://www.encyclopediaofmath.
org/index.php?title=Lindemann theorem&oldid=14026.

[5] V. Lefèvre, J.-M. Muller, and A. Tisserand, “Toward correctly
rounded transcendentals,” IEEE Transactions on Computers, vol. 47,
no. 11, pp. 1235–1243, 1998.

[6] D. Stehlé, V. Lefèvre, and P. Zimmermann, “Searching worst
cases of a one-variable function using lattice reduction,” IEEE
Transactions on Computers, vol. 54, pp. 340–346, 2005.

[7] F. de Dinechin, J.-M. Muller, B. Pasca, and A. Plesco, “An FPGA
architecture for solving the Table Maker’s Dilemma,” in Proceed-
ings of the 22nd IEEE International Conference on Application-Specific
Systems, Architectures and Processors, pp. 187–194, 2011.

[8] P. Fortin, M. Gouicem, and S. Graillat, “Towards solving the table
maker’s dilemma on GPU,” in Proceedings of the 20th International
Euromicro Conference on Parallel, Distributed and Network-based Pro-
cessing, pp. 407 – 415, 2012.

[9] N. Brunie, S. Collange, and G. Diamos, “Simultaneous branch
and warp interweaving for sustained GPU performance,” in
International Symposium on Computer Architecture, 2012.

[10] S. Frey, G. Reina, and T. Ertl, “SIMT microscheduling: Reducing
thread stalling in divergent iterative algorithms,” in Proceedings
of the 20th International Euromicro Conference on Parallel, Distributed
and Network-based Processing, pp. 399–406, 2012.

[11] T. D. Han and T. S. Abdelrahman, “Reducing branch divergence
in GPU programs,” in Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, pp. 3:1–3:8, 2011.

[12] V. Lefevre and J.-M. Muller, “Worst cases for correct rounding of
the elementary functions in double precision,” in Proceedings of the
15th IEEE Symposium on Computer Arithmetic, pp. 111–118, 2001.

[13] NVIDIA, CUDA C Best Practices Guide, version 4.1, 2012.
[14] Khronos Group, The OpenCL Specification Version 1.2, 2011.
[15] NVIDIA, CUDA C Programming Guide, version 4.1, 2011.
[16] N. B. Slater, “Gaps and steps for the sequence nθ mod 1,” Math-

ematical Proceedings of the Cambridge Philosophical Society, pp. 1115–
1123, 1967.

[17] N. B. Slater, “The distribution of the integers n for which
{θn} < φ,” Proceedings of the Cambridge Philosophical Society,
vol. 46, pp. 525–534, 1950.

[18] T. Van Ravenstein, “The three gap theorem (Steinhaus conjec-
ture),” Australian Mathematical Society, vol. A, no. 45, pp. 360–370,
1988.

[19] V. Lefèvre, “New results on the distance between a segment and
Z
2. Application to the exact rounding,” in Proceedings of the 17th

IEEE Symposium on Computer Arithmetic, pp. 68–75, 2005.
[20] S. Sengupta, M. Harris, and M. Garland, “Efficient parallel scan

algorithms for GPUs,” Tech. Rep. NVR-2008-003, NVIDIA, 2008.
[21] A. Y. Khinchin, Continued fractions. Dover, 1997.
[22] J. von zur Gathen and J. Gerhard, “Fast algorithms for Taylor

shifts and certain difference equations,” in Proceedings of the
1997 international symposium on Symbolic and algebraic computation,
pp. 40–47, 1997.

[23] V. Lefèvre, Moyens arithmétiques pour un calcul fiable. PhD thesis,
École normale supérieure de Lyon, 2000.

[24] T. Granlund and the GMP development team, GNU MP, 2010.
[25] T. Nakayama and D. Takahashi, “Implementation of multiple-

precision floating-point arithmetic library for GPU computing,” in
Proceedings of the 23rd IASTED International Conference on Parallel
and Distributed Computing and Systems, pp. 343–349, 2011.

[26] M. Lu, B. He, and Q. Luo, “Supporting extended precision
on graphics processors,” in Proceedings of the Sixth International
Workshop on Data Management on New Hardware, pp. 19–26, 2010.

[27] NVIDIA, Parallel thread execution ISA Version 3.0, 2012.

ha
l-0

07
51

44
6,

 v
er

si
on

 2
 - 

5 
Ju

n 
20

13


