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ABSTRACT. In this article, we study the fluctuations of the random variable:

Ta(p) = 5 logdet (23, + o), (o> 0)
where ¥, = nfl/le/zX DL/? + A,, as the dimensions of the matrices to infinit,
n " nDy n, go to infinity
at the same pace. Matrices X,, and A,, are respectively random and deterministic N X n
matrices; matrices Dy, and D,, are deterministic and diagonal, with respective dimensions
N x N and nxn; matrix X, = (Xj;;) has centered, independent and identically distributed
entries with unit variance, either real or complex.

We prove that when centered and properly rescaled, the random variable Z,, (p) satisfies
a Central Limit Theorem and has a Gaussian limit. The variance of Z,(p) depends on
the moment EXEJ- of the variables X;; and also on its fourth cumulant x = E|X;;[* —2 —
[EXZ|2.

The main motivation comes from the field of wireless communications, where Z, (p)
represents the mutual information of a multiple antenna radio channel. This article closely
follows the companion article ” A CLT for Information-theoretic statistics of Gram random
matrices with a given variance profile”, Ann. Appl. Probab. (2008) by Hachem et al.,
however the study of the fluctuations associated to non-centered large random matrices
raises specific issues, which are addressed here.

Key words and phrases: Random Matrix, empirical distribution of the eigenvalues, Stielt-
jes Transform.
AMS 2000 subject classification: Primary 15A52, Secondary 15A18, 60F15.

1. INTRODUCTION

The model, the statistics, and the literature. Consider a N X n random matrix >, =
(&%) which writes:
1 1 L1
Sn=—7=D2 X, D3 + A, , 1.1
7 - (1)

™) is a deterministic N x n matrix with uniformily bounded spectral norm,

ij
D,, and D,, are diagonal deterministic matrices with nonnegative entries, with respective
dimensions N x N and n x n; X,, = (X;;) is a N x n matrix with the entries X;;’s being
centered, independent and identically distributed (i.i.d.) random variables with unit variance
E|X;;|? = 1 and finite 16'® moment.

where A,, = (a

Consider the following linear statistics of the eigenvalues:

N
1 1
Tn(p) = N logdet (X,X; + pIn) = N Z log(Ai +p) »

=1
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where I is the N x N identity matrix, p > 0 is a given parameter and the \;’s are the eigen-
values of matrix X, X% (2% stands for the Hermitian adjoint of 3,,). This functional, known
as the mutual information for multiple antenna radio channels, is fundamental in wireless
communication as it characterizes the performance of a (coherent) communication over a
wireless Multiple-Input Multiple-Output (MIMO) channel with gain matrix ¥,,. Channels
with non-centered gain matrix ¥, = n~="/ 2pY2 X, DY? + A, are known as Rician channels.
The deterministic matrix A, accounts for the so-called line-of-sight component, while D,,
and D,, account for the correlations at the receiving and emitting sides, respectively.

Since the seminal work of Telatar [36], the study of the mutual information Z,(p) of
a MIMO channel (and other performance indicators) in the regime where the dimensions
of the gain matrix grow to infinity at the same pace has turned to be extremely fruitful.
However, Rician channels have been comparatively less studied from this point of view, as
their analysis is more difficult due to the presence of the deterministic matrix A,,. First order
results can be found in Girko [14, 15]; Dozier and Silverstein [10, 11] established convergence
results for the spectral measure; and the systematic study of the convergence of Z,(p) for
a correlated Rician channel has been undertaken by Hachem et al. in [20, 12], etc. The
fluctuations of Z,, are important as well, for the computation of the outage probability of a
MIMO channel for instance. With the help of the replica method, Taricco [34, 35] provided
a closed-form expression for the asymptotic variance of Z,, for the Rician channel.

The purpose of this article is to establish a Central Limit Theorem (CLT) for Z,(p) in
the following regime

N N
N,n—o0o and 0 <liminf — <limsup — < o0 ,
n n

(simply denoted by N,n — oo in the sequel) under mild assumptions for matrices X,,, A,
D,, and D,,.

The contributions of this article are twofold. From a wireless communication perspective,
the fluctuations of Z,, are established, regardless of the gaussianity of the entries and the
CLT conjectured by Tarrico is fully proved. Also, this article concludes a series of studies
devoted to Rician MIMO channels, initiated in [20] where a deterministic equivalent of the
mutual information was provided, and continued in [12] where the computation of the ergodic
capacity was addressed and an iterative algorithm proposed.

From a mathematical point of view, the study of the fluctuations of Z,, is the first attempt
(up to our knowledge) to establish a CLT for a linear statistics of the eigenvalues of a Gram
non-centered matrix (so-called signal plus noise model in [10, 11]). It complements (but does
not supersede) the CLT established in [21] for a centered Gram matrix with a given variance
profile. The fact that matrix %,, is non-centered (EYX,, = A,,) raises specific issues, from a
different nature than those addressed in close-by results [1, 4, 21], etc. These issues arise
from the presence in the computations of bilinear forms u} Q. (z) v, where at least one of the
vectors u, or v, is deterministic. Often, the deterministic vector is related to the columns
of matrix A,,, and has to be dealt with in such a way that the assumption over the spectral
norm of A, is exploited.

Another important contribution of this paper is to establish the CLT regardless of specific
assumptions on the real or complex nature of the underlying random variables. It is in
particular not assumed that the random variables are gaussian, neither that whenever the
random variables X;; are complex, their second moment EX% is zero; nor is assumed that
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the random variables are circular!. As we shall see, all these assumptions, if assumed, would
have resulted in substantial simplifications. As a reward however, we obtain a variance
expression which smoothly depends upon EX% whose value is 1 in the real case, and zero in
the complex case where the real and imaginary parts are not correlated.

Interestingly, the mutual information Z,, has a strong relationship with the Stieltjes trans-
form f,(z) = +Trace(X, % — zIy) ! of ¥, %%

Zn(p) = 10gp+/poo (% - fn(—w)> dw .

Accordingly, the study of the fluctuations of Z,, is also an important step toward the study
of general linear statistics of X, 3}’s eigenvalues which can be expressed via the Stieltjes
transform:

1 1 1
~ Trace h(Sp¥n) = + Zh()\i) = ! h(2) fu(2) dz

for some well-chosen contour C' (see for instance [4]).

Fluctuations for particular linear statistics (and general classes of linear statistics) of large
random matrices have been widely studied: CLTs for Wigner matrices can be traced back
to Girko [13] (see also [16]). Results for this class of matrices have also been obtained by
Khorunzhy et al. [27], Boutet de Monvel and Khorunzhy [6], Johansson [24], Sinai and
Sochnikov [32], Soshnikov [33], Cabanal-Duvillard [7], Guionnet [17], Anderson and Zeitouni
[1], Mingo and Speicher [29], Chatterjee [§], Lytova and Pastur [28], etc. The case of Gram
matrices has been studied in Arharov [2], Jonsson [25], Bai and Silverstein [4], Hachem et
al. [21], and also in [28, 29, 8]. Fluctuation results dedicated to wireless communication
applications have been developed in the centered case (A4, = 0) by Debbah and Miiller [9]
and Tulino and Verdi [37] (based on Bai and Silverstein [4]), Hachem et al. [19] (for gaussian
entries) and [21]. Other fluctuation results either based on the replica method or on saddle-
point analysis have been developed by Moustakas, Sengupta and coauthors [30, 31], and
Tarrico [34, 35].

Presentation of the results. We first introduce the fundamental equations needed to
express the deterministic approximation of the mutual information and the variance in the
CLT.

Fundamental equations, deterministic equivalents. We collect here resuls from [20]. The
following system of equations

on(2) = iTvD, (_Z(JN 4 6,(2) D) + Ap(In + 5n(z)Dn)—1A;;) B

~ ~ ~ —1 z € (O R+
bu(z) = imD, (—z(]n 4 60 (2) D) + A% (In + 6n(z)Dn)*1An)

(1.2)

LA random variable X € C is circular if the distribution of X is equal to the distribution of pX for every
p € C, |p| = 1. This assumption is very often relevant in wireless communication and has an important
consequence; it implies that all the cross moments E|X|*X* (£ > 1) are zero.
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admits a unique solution (4, Sn) in the class of Stieltjes transforms of nonnegative measures?

with support in R*. Matrices T},(z) and T}, (z) defined by

Tn(z)

- - —1
(—Z(IN 4 6,(2)Dy) + A (I + 5nDn)—1A;;)

i ) . (1.3)
(—z(]n 4 6,(2)Dy) + A% (I + 5nDn)*1An)

are approximations of the resolvent Q,,(z) = (£,5* — zIx)~" and the co-resolvent Q,,(z) =
(255, — 2In)~! in the sense that (225 stands for the almost sure convergence):

1 a.s.

N 1t (@u(2) = Tu(2)) o 0
which readily gives a deterministic approximation of the Stieltjes transform N ~'Tr @, (2) of
the spectral measure of ¥, X% in terms of 7, (and similarly for @, and T,,). Also proved in
[22] is the convergence of bilinear forms

a.s

U (@Qn(2) = Tn(2))on ——— 0, (1.4)

where (u,,) and (v,) are sequences of N x 1 deterministic vectors with uniformily bounded
euclidian norm, which complements the picture of T;, approximating @),,.

Matrices T,, = (ti; ;1 < 4,5 < N) and T, = (fij ;1 < 4,7 < n) will play a fundamental
role in the sequel and enable us to express a deterministic equivalent to EZ,, (p). Define V,,(p)
by:

Valp) = %bg det (p(IN +0n D) In + An(In + 5nf)n)‘1A:;)
1 ~ oo~

where 6, and 4, are evaluated at z = —p. Then the difference EZ,(p) — V;,(p) goes to zero
as N,n — oo.

In order to study the fluctuations N(Z,(p) — Vi.(p)) and to establish a CLT, we study
separately the quantity N(Z,(p)—EZ,(p)) from which the fluctuations arise and the quantity
N(EZ,(p) — Vo(p)) which yields a bias.

The fluctuations. In every case where the fluctuations of the mutual information have been
studied, the variance of N (Z,(p) — Vi (p)) always proved to take a (somehow unexpected)
remarkably simple closed-form expression (see for instance [30, 35, 37] and in a more mathe-
matical flavour [19, 21]). The same phenomenon again occurs for the matrix model ¥,, under
consideration. Drop the subscripts N,n and let

1 1, o~~~ 1 — 1 ~
y=-TeDTDT , 4= -Te DIDT , v= ~Tt DTDT , 4 = ~Te DTDT , (1.6)
n n =~ n =~ n
where M stands for the (elementwise) conjugate of matrix M. Let

9 =E(X;;)* and r=E[X;[*-2—[9.

°In fact, 9, is the Stieltjes transform of a measure with total mass equal to n~1TrD,, while Sn is the
Stieltjes transform of a measure with total mass equal to n = TrD,.
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Let

2
0, = —log <<1 — lTrD%TA(I +6D)'D(I + 5D)1A*TD%) - p2’y’~y>
n

2
1 [ ~ ~ ~
—log (’1 —9=Tr D*TA(I +6D)"'D(I + 6D) ' A*TD?| — |19|2p2w>
" 1y
+H—Zd12t1212d§£5j ., (17)
where d; = [Dy]ii, Jj = [Dn] j;» and all the needed quantities are evaluated at z = —p. The

CLT then expresses as:

N D

— (Z, — EZ,,) ——— N (0,1

\/@_n(n n)N,n—M)oN(j)j
where 2 stands for the convergence in distribution. Although complicated at first sight,
variance ©,, encompasses the case of standard real random variables (¢ = 1), standard
complex random variables (¥ = 0) and all the intermediate cases 0 < |9 < 1. Moreover, 6,
often takes simpler forms if the variables are gaussian, real, etc. (see for instance Remark
2.2).

The bias. In the case where the entries are complex gaussian and x = 0, it has already been
proved in [12] that EZ,(p) — V.(p) = O(n=?). In the case where matrices D,, and D,, are
equal to the identity, we establish that there exists a deterministic quantity B, (p) (described
in Theorem 2.3) such that:

N (EZ,(p) = Va(p)) — Bu(p) —— 0.

N,n—o0

Outline of the article. In Section 2, we provide the main assumptions and state the
main results of the paper: Definition of the variance ©,, and asymptotic fluctuations of
N (Z.(p) — EZ,(p)) (Theorem 2.2), asymptotic bias of N (EZ,(p) — V,(p)) (Theorem 2.3).
Notations, important estimates and classical results are provided in Section 3. Sections 4,
5 and 6 are devoted to the proof of Theorem 2.2. In Section 4, the general framework of
the proof is exposed; in Section 5, the central part of the CLT and of the identification of
the variance are established; remaining proofs are provided in Section 6. Finally, proof of
Theorem 2.3 (bias) is provided in Section 7.

Acknowlegment. This work was partially supported by the Agence Nationale de la Recherche
(France), project SESAME n°® ANR-07-MDCO-012-01.

2. THE CENTRAL LIMIT THEOREM FOR Z,(p)

2.1. Notations, assumptions and first-order results. The indicator function of the
set A will be denoted by 14(x), its cardinality by #.A. If z € C, then z, Re(z) and Im(z)
respectively stand for its complex conjugate, real and imaginary part; denote by i = /—1. As
usual, Rt ={z eR : >0}, CT ={z¢€ (C : Im(z) > 0}. Denote by 2, the convergence

in probability of random variables and by L, the convergence in distribution of probability
measures. Denote by diag(a;; 1 < i < k) the k x k diagonal matrix whose diagonal entries
are the a;’s. Element (i, j) of matrix M will be either denoted m;; or [M];; depending on the
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notational context. if M is a n x n square matrix, diag(M) = diag(my;; 1 < i < n). Denote
by M7 the matrix transpose of M, by M* its Hermitian adjoint, by M the (elementwise)
conjugate of matrix M, by Tr(M) its trace and det(M) its determinant (if M is square).
When dealing with vectors, || - || will refer to the Euclidean norm, and || - ||, to the max
(or o) norm. In the case of matrices, || - || will refer to the spectral norm. If (u,) is a
sequence of real numbers, then u,, = O(v,) stands for |u,| < K|v,| where constant K does
not, depend on n.

Recall that )
Yn = —D1/2XnD1/2 + A, 2.1
\/_ n n ’ ( )

denote D,, = diag(d;, 1 <i < N) and D, = diag(cij, 1 < j < n). When no confusion can
occur, we shall often drop subscripts and superscripts n for readability. Recall also that the
asymptotic regime of interest is:

N N
N,n—o00o and 0 < liminf — < limsup — < oo,
n n

and will be simply denoted by N,n — oo in the sequel. We can assume without loss of
generality that there exist nonnegative real numbers £~ and £ such that:

N
0 < £ < = < ¢ < a N,n—oo. (2.2)
n

Assumption A-1. The random variables (X3 ; 1 <i < N,1<j<n,n > 1) are complez,

independent and identically distributed. They satisfy
EX7 =0, EX73*=1 and E[X}|' <oo.

Associated to these variables are the quantities:
9 =E(X11)? and s =FE|X;[* -2 9.

Remark 2.1. (Gaussian distributions) If X is a standard complex or real Gaussian random
variable, then x = 0. More precisely, in the complex case, Re(X71) and Im(X71) are inde-
pendent real Gaussian random variables, then 9 = k = 0; in the real case, then ¥ = 1 while
Kk =0.

Assumption A-2. The family of deterministic N x n complex matrices (An,n > 1) is
uniformily bounded for the spectral norm:

Qmax = SUp || A4, || < oo .
n>1

Assumption A-3. The families of real deterministic N x N and n X n matrices (D,,) and
(D) are diagonal with non-negative diagonal elements, and are bounded for the spectral
norm as N,n — o0o:

dmax = sup ||DnH < oo and Jmax = sup ||DHH <00
n>1 n>1

Moreover,

drin :infleDn >0 and dpyiy :mflﬂbn >0.

n n n -n
Theorem 2.1 (First order results - [20, 12]). Consider the N x n matriz X, given by (2.1)
and assume that A-1, A-2 and A-3 hold true. Then, the system (1.2) admits a unique
solution (0, 6,) in the class of Stieltjes transforms of nonnegative measures.
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2.2. The Central Limit Theorem. In this section, we state the CLT then provide the
asymptotic bias in some particular cases.

Theorem 2.2 (The CLT). Consider the N x n matriz X, given by (2.1) and assume that
A-1, A-2 and A-3 hold true. Recall the definitions of 0 and & given by (1.2), T and T given
by (1.3), v, 4, v and 4 given by (1.6). Let p > 0. All the considered quantities are evaluated
at z = —p. Define A, and A, as

2
A, = (1 1 Tr D2TA(I + 5D)—213A*TD%> — p2yF
n

and ,
1 o ~ -
A, = ’1 —9=Tr D3TA(I + 6D) 2DA*TD?| — |9|*p*v7.
n 17
Then the real numbers
2 N n
_ P 2,2 7272
0, = —logA, —logén—l—/@FZditiiZdjtjj (2.3)
i=1 j=1
are well-defined and satisfy:
0 < liminfe, < limsup®, < oo (2.4)

as N,n — oco. Let

1
Tn(p) = wy log det (EnX5 +pIn)

then the following convergence holds true:

o (1)~ EL,(0) - N(0.1)

Remark 2.2. (Simpler forms for the variance) We consider here special cases where the
variance O, takes a simpler form.

(1)

The standard complex Gaussian case. Assume that the Xj;’s are standard complex
gaussian random variables, i.e. that both the real and imaginary parts of X;; are
independent real gaussian random variables, each with variance 1/2. In this case,
¥ =k =0 and O, is equal to the first term of the right hand side (r.h.s.) of (1.7) -
we in particular recover the variance formula given in [35].

The standard real case. Assume that the X;;’s are standard real random variables,
assume also that A has real entries. Then the two first terms of the r.h.s. of (1.7)
are equal.

The ’signal plus noise’ model. In this case, D, = Iy and Dn = I,,, which already
yields simplifications in (1.7). In the case where ¢ = 0, the variance writes:

e\ 2 np2 ~
T TAA*T 2 2,2 272
0, = —log ((1 BRI ET)E ) A 77) + n2 Zdi tii Zdjtjj :
i J

As one may easily check, the first term of the variance only depends upon the
spectrum of AA*. The second term however also depends on the eigenvectors of
AA* (see for instance [26]).

The asymptotic bias is described in the following theorem in two important cases.
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Theorem 2.3 (The bias). Assume that the setting of Theorem 2.2 holds true. Recall that:
R = E|Xij|4 —2— |IE)(Z2]|2

(i) If the random variables (X7%; 1, j,n) are moreover complex gaussian with Re(X7) and
Im(X}) independent, both with distribution N'(0,1/2), then:

N L) - Vilo) =0 )

(ii) If D,, = In and D, = I, (signal plus noise model), let the quantities 0, 5, T,T,S

and S be evaluated at z = —w and consider:
_AW)
B (w) = KB(w) , (2.5)
where
2 =1 521 2 2 1 21 G2 1 21 &2
Alw) = w*(1+6)—Tr S*—Tr ST* 4w (14+6)—Tr S*—Tr ST* —w—Tr S*—Tr S° ,
n n n n n n
Bw) = 1+w(l4+0)7+w(l+0)y.
Then,

N (EZ,(p) — Vu(p)) — /00 By (w)dw —— 0 .

N,n—o0

Proof of Theorem 2.3-(i) can be found in [12, Theorem 2J; proof of Theorem 2.3-(ii) is
postponed to Section 7.

3. NOTATIONS AND CLASSICAL RESULTS

3.1. Further notations. Denote by Y the N x n matrix n=/2DY2X D2, by (n;), (a;)
and (y;) the columns of matrices ¥, A and Y. Denote by X;, A;, Y; and ﬁj, the matrices
¥, A, Y and D where column j has been removed. The associated resolvent is Qj(z) =
(ZJE; — zIy)~'. We also denote by A;.; and ¥1.,; the N x j matrices Ay.; = [a1,- -+, a;]
and ¥1.; = [m1, -+ ,n;]. Denote by E; the conditional expectation with respect to the o-field
F; generated by the vectors (yg, 1 < ¢ < j). By convention, Ey = E.
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We introduce here intermediate quantities of constant use in the rest of the paper. Let
1 <7 < n, denote by:
~ 1
—z (1 + a;fQj(z)aj + 53 TrDQj(z))
- 1
Cj (Z) = T ) (32)
2 (1 + @ EQ;(2)a; + & TrD]EQ(z))

d.
ej(2) = m;Q;i(2)n; — <ﬁTrDQj(Z)+G§Qj(Z)@j> :

= (nyj(Z)yj - %TYDQJ'(Z)> +a;Q;(2)y; +y;Qj(2)ay , (3.3)
alz) = %TrDIEQ(z), a(z) = %Trf)EQ(z), (3.4)
C(z) = (_Z(IN +a(2)D) + A (In +o¢(z)D)_1A*) . (3.5)

Using the well-known characterization of Stieltjes transforms (see for instance [20, Proposi-
tion 2.2-(2)]), one can easily prove that b; is the Stieltjes transform of a probability measure.
In particular |b;(z)| < (dist(z,RT))~! for z € C — RT. The same estimate holds true for ¢;.

3.2. Important identities. Recall the following classical identities.

- The inverse of a partitionned matrix (see for instance [23, Section 0.7.3]):

A N _ _
A= [ 21211 A;z } ’ then (A1), = (a11 — A12Ag, An) 1 (3:6)
- The inverse of a perturbated matrix (see [23, Section 0.7.4]):
(A+XRY) "= A7 —A'X (R +YA'X)'va . (3.7)

Identities involving the resolvents. The following identity expresses the diagonal elements of
the co-resolvent; the two following ones are obtained from (3.7).

1

qjj(z) = T naEn (3.8)
Qj(2)n;m; Qj(2)
Q(z) = Qj(z) — W
= Q;(2) +2G;;(2)Q;(2)n;n; Q4 (2) (3.9)
B Q(z)n;n; Q(2)
Qi(x) = Q)+ T ar Q0 (3.10)
L Qs (g . (3.11)

1= Q(2)ny
Note that:
djj = bj + 2G;;bje; . (3.12)
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A useful consequence of (3.9) is:

. om)
WjQ(Z) = W = _ZqJJ(Z)WjQJ(Z) . (3.13)

Identities involving the deterministic equivalents T and T. Define the N x N matrix T; as
- - -1
T = (_Z(IN +6D) + Aj(In_1 + 5Dj)_1A;7) , (3.14)

where § and § are defined in (1.2). Notice that matrix 7; is not obtained in general by solving
the analogue of system (1.3) where A is replaced with A;. This matrix naturally pops up
when expressing the diagonal elements of T. Indeed after some algebra (see for instance [18,
Appendix B], we obtain:

- 1
tjj(Z) = — — . (315)
z (1 + a3 T;(2)a; + dj5(z))
Let b be a given N x 1 vector. The following identity holds true:
- a;T(z)b
— 2tp(2)a* To(2)b = —42222 3.16
ee(2)a*Te(2) T di0(2) (3.16)
Thanks to (3.7), we also have
T(z) = —2"YI406(z)D)"t + 2~ YI + 6(2)D) *A*T(2)A(I + 6(z)D) ™ . (3.17)

3.3. Important estimates. We gather in this section matrix estimates which will be of
constant use in the sequel.

Let A and B be two square matrices. Then

|Tr(AB)| < \/Tr(AA*)\/Tr(BB*) (3.18)
When B is Hermitian non negative, then a consequence of Von Neumann’s trace theorem is
| Tr(AB)| < ||A| TrB . (3.19)

The following lemma gives an estimate for a rank-one perturbation of the resolvent.

Lemma 3.1. The resolvents QQ and the perturbed resolvent Q; satisfy:

for any N x N matriz A with bounded spectral norm.

The following results describe the asymptotic behaviour of quadratic forms based on the
resolvent.

Lemma 3.2 (Bai and Silverstein, Lemma 2.7 in [3]). Let © = (21, -+ ,x,) be a n x 1 vector
where the x; are centered i.i.d. complex random wvariables with unit variance. Let M be a
n x n deterministic complex matriz. Then for any p > 2, there exists a constant K, for

which
Elz* Mz — Tt M| < K, ((IE|:U1|4 Te MM*)"? 4 Bz |27 Tr(MM*)P/z)
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Remark 3.1. There are some important consequences of the previous lemma. Let (M,,) be a
sequence of n x n deterministic matrices with bounded spectral norm and (x,,) be a sequence
of random vectors as in the statement of Lemma 3.2. Then for any p > 2,

xzy M,x, TrM, P K
,E|ej|P> < —7 (3.20)

max (E

n

where e; is given by (3.3) (the estimate E|e;|? = O(n~?/2) is proved in [18, Appendix B]).

We gather in the following theorem some of the results proved in [22].

Theorem 3.3. Assume that the setting of Theorem 2.2 holds true. Let (u,) and (v,) be
two sequences of deterministic compler N x 1 vectors bounded in the Fuclidian norm:

supmax ({|unl], [[vn]]) < oo .
n>1

Then,

(1) For every z € C — RT, there exist nonnegative constants K1(z), K2(z) < oo, which
do not depend on N,n, such that:
2

> ElupQja;> < Ki(z) and E Y EjluiQja* | < Ka(2) .
Jj=1 j=1
(2) For every z € C—R™" and for p > 1, there exists a nonnegative constant K(z) < oo,
which does not depend on N, n, such that:
% K(z
E u; (Q(2) ~ T2 < S
(3) For every p € R and every sequence of deterministic matrices (Uy,) with bounded
spectral norms, we have:
1 K
—TrU(T(—p) —EQ(— < —.
LT U((-p) - EQ(-p)| < &
(4) For every z € C—R™" and for p > 1, there exists a nonnegative constant K(z) < oo,
which does not depend on N, n, such that:
X K(z
B 1ui(@s(2) — Tyl < EEL.

npbP

(3.21)

Ttems (3) and (4) of Theorem 3.3 are not direct consequences of results in [22]; therefore
elements of proof are provided in [18, Appendix B].

The following results stem from lemma 3.2 and theorem 3.3 and will be of constant use in
the sequel. Recalling (3.1), (3.3), and (3.8), it is clear that §;; = b; + 2G;;bje;. Using (3.20)
and bounding |¢;;| and |b;| (see for instance [20]), we have

2 K
< —. 3.22
<= (3:22)

E|G; — b

Of course, the counterpart of Theorem 3.3 for the co-resolvent Q and matrix T holds true.
In particular, taking the vectors u, and v, as the jth canonical vector of C™ yields the

following estimate:

- -2 K
E 455 — tjj < E (323)
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The following two lemmas, proved in Appendices A.1 and A.2, provide some important
bounds:

Lemma 3.4. Assume that the setting of theorem 2.2 holds true. Then, the following quan-
tities satisfy:

JAN dni A etd
6 . = lmin < 5 < 5 . = max
mm p+dmaxdmax+a?nax - n - max P ’
3 pa Ao = < VN
. — min < < — max
Omin P+ dmaxdmax+a2 . On = Omax P
d2 . et
min < < max
T (ptdmaxdmaetaZ )2 = n = P
a2 2
n.lin < ~ < max
(p+£+dmaxdmax+a?nax)2 = Tn - p?
diin 1 2,2 od?
< § 212 < dpa
£ (ptdmaxdmax+02,,,)2  — it = 2 0
72 =2
dpy; —12 7272 d,.
min < dst? < max
(p+et dinaxdmax+a2,, )’ — itis = Tp?

Lemma 3.5. Assume that the setting of theorem 2.2 holds true. Then
1 - -
sup — Tr DY?TA(I + 6D)2DA*TD? < 1.
n N
As a consequence, the sequence (A,) as defined in Theorem 2.2 satisfies:

liminf A,, >0 .

3.4. Other important results. The main result we shall rely on to establish the Central
Limit theorem is the following CLT for martingales:

Theorem 3.6 (CLT for martingales, Th. 35.12 in [5]). Let v\, ~{", ... 4™ be a martin-
gale difference sequence with respect to the increasing filtration ]:1 ), e ,]—',(,"). Assume that

there exists a sequence of real positive numbers Y2 such that
%Zn: E; 17\ ﬁ 1. (3.24)
Assume further that the Lyapounov condition ([5, Section 27]) holds true:
36 > 0, ﬁ iE ‘%(_n) 246
n =1

Then Y1 ZJ 1 "y]( m) converges in distribution to N(0,1).

— 0.

n—roo

Remark 3.2. Note that if moreover liminf, Y2 > 0, it is sufficient to prove:
" 2
P T (3.25)
— n— o0

instead of (3.24).
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We now state a covariance identity (the proof of which is straightforward and therefore
omitted) for quadratic forms based on non-centered vectors. This identity explains to some
extent the various terms obtained in the variance.

Let @ = (x1,--- ,2,)7 be an x 1 vector where the z; are centered i.i.d. complex random
variables with unit variance. Let y = n~'/2D'22 where D is a n x n diagonal nonnegative
deterministic matrix. Let M = (m;;) and P = (p;;) be n x n deterministic complex matrices
and let w be a n x 1 deterministic vector.

If M is a n x n matrix, vdiag(M) stands for the n x 1 vector [Myq,- -+, Mp,]T.
Denote by T(M) the random variable:

TM)=(y+u)"My+u).
Then EY(M) = £ Tr DM + w*Mu and the covariance between Y (M) nad Y(P) writes:
E[(C(M) —EY(M)) (T(P) - ET(P))]
~ L n(DPD) + L (wMDPu + w PDMu)
n n

Elzi] E[zf]

E 2
+—5=Tr(MDP" D) + ﬂu*PDMTﬁ—i— u' MTDPu
n n n
El|lz1[*a4] 3/2., 7 * 3/2., 1

+W (u PD>*vdiag(M) + u*MD leag(P))
E[|z1[*74] . T 13/2 : T 13/2
——7 (vd1ag(P) D/ Mu + vdiag(M)* D Pu)

n
+% deimiipii ; (3.26)
i=1

where r = E|z1[* — 2 — |Ea?|2.

Remark 3.3. Identity (3.26) is the cornerstone for the proof of the CLT; it is the counterpart
of Identity (1.15) in [4]. The complexity of Identity (3.26) with respect to [4, Identity (1.15)]
lies in 8 extra terms and stems from two elements:

(1) The fact that matrix ¥ is non-centered.
(2) The fact that the random variables X;;’s are either real and complex with no further
assumption (in particular, EXZ-QJ- # 0 a priori in the complex case).

It is this identity which induces to a large extent all the computations in the present article.

4. PROOF OF THEOREM 2.2 (PART I)

Decomposition of T, — EZ,,, Cumulant and cross-moments terms in the variance

4.1. Decomposition of 7,, — EZ,, as a sum of martingale differences. Denote by

r W;QJTIJ — (% Tr DQJ + G;Qjﬁj)

J 7
1+ % T DQ; + a3Qja;
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With this notation at hand, the decomposition of Z,, — EZ,, as
T, —BI, =) (E; —E;_1)log(1+T;) (4.1)
j=1

follows verbatim from [21, Section 6.2]. Moreover, it is a matter of bookkeeping to establish
the following (cf. [21, Section 6.4]):

n

- ) . 2 ) T2 P
ZEJ% (Ej —Ej-1)log(1+T;)) ;Erl(EJFJ) m 0. (42)

Hence, the details are omitted. In view of Theorem 3.6, Eq. (3.25), (4.1) and (4.2), the CLT
will be established if one proves the following 3 results:

(1) (Lyapounov condition)

36>0, Y EIET,T ——o0,
n—oo

j=1
(2) (Martingale increments and variance)

n

E. (E:T;)? -0, —~ .
Zl j—1(E;T;) © mo
J:

(3) (estimates over the variance)

0 < liminf ©, < limsup®,, < c©

It is straightforward (and hence omitted) to verify Lyapounov condition. The convergence
toward the variance is the cornerstone of the proof of the CLT: The rest of this section
together with much of Section 5 are devoted to establish it. The estimates over the variance
0, also central to apply Theorem 3.6, are established in Section 6.2.

Notice that E;_;(E;T;)? = E;_1(E;jpbje;)?. We prove hereafter that

P
ZlE ]pb 6] Zpt j— 1]E€J) mo (43)
ji=

The triangular inequality together with Estimates (3.22) and (3.23) yield E|b; — 7;;]> =
O(n~1). Now this estimate, together with (3.20), readily implies that:

E|E;1(E;jpbie;)* — p*13 B 1(Bje;)?| = O(n~?/?)

hence (4.3). Let ¢ = E(| X% |X11). Using Identity (3.26), we develop the quantity E;_1(E;e;)?:
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n

> PR 1 (Eje;)?
j=1

K

2 2~2 2
d] jjzd E QJ i

4~ 9 98/2: a’(B;Q;)D*?vdiag(E;Q;)

n
n f—

n 72
+%Zp2¥j <dj ’I‘r(EjQ]) ( JQJ)D+2dJa’ ( ij)D(Eij)aj>

n d’z - )
+%Zp2{g?j <|q9|2nﬂ Tr(E;Q;)D(E;Q;)D + 2 Re (ﬁd aj; “(E;Q,)D (IEij)aj)>

n n n
Zle +ZX2j +ZX3j +ZX4j .
j=1 j=1 j=1 j=1

1>

4.2. Key lemmas for the identification of the variance. The remainder of the proof
of Theorem 2.2 is devoted to find deterministic equivalents for the terms Z?Zl X¢; for £ =
1,2,3,4.

Lemma 4.1. Assume that the setting of Theorem 2.2 holds true, then:

n
2,2 7272
ZIXU 2 leldztudjtﬂ Non—oo 0.
— i1

Proof. Write

N

1 1
- Zd?[Eij]?i - Z dF[E;Q;liiti =
=1

=1
N
- Z & [E;Q;1uE;(1Qji — [Qlii) + % > dE;Q i ([BsQlii — ti) = €15 + €25
=1

The term |e1 ;| = n™!E;[Tr D? diag(E;Q;)(Q; — Q)]| is of order O(n~') thanks to Lemma
3.1. Moreover, E|es ;| = O(n~1/?) by (3.23). Hence,

> =Ly (1l o0
=1

i=1

Iterating the same arguments, we can replace the remaining term E;[Q;]: by ti to obtain
the desired result. (]

Lemma 4.2. Assume that the setting of Theorem 2.2 holds true. Then:

2
ZXJ N,n—o0
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Proof. Recall that

“(E. 0. D3/ 2vdiag(E. O
2 73/2:2 a;(E;Q;) D *vdiag(E;Q;)
ZX%— Z a; tije<< . NG

] 1

Taking the expectation, we obtain:
]E Q D3/2 lea'g(Q])

E X2j — E|a
| < 55 %

*0) . 3/2Vdiag(T) K -
E|ajQ;D*—2= |+ 3 > E

IN

a;j(E;Q;)

A
S=
1[7]= 1

et 1)

a5 (E;Q;)D*? NG

The first term satisfies
1/2
iag(T) ’2

- d
E atQ.D3/2Y

As |[|[n=1/2D3/?vdiag(T)|| = (n~? ZZ L d3t2)1/2 < K, Theorem 3.3-(1) can be applied, and

the first term in the right handside (r.h.s.) of (4.4) is of order n~'/2. We now deal with the
second term of the r.h.s.

vdiag(Q — T ’
D3/2
Vn

y vdiag(T) "
anjD3/2T‘ <vn ZE

Jj=1

<KE

. 1/2
a;(EJQJ) = leag(#“ ( ZE|QH_ it ) <

by (3.23). We now consider the third term. As [|a} (E;Q,)D3/?|| is uniformly bounded,

Si=

n

1 )\ D3/2 vdiag(Q; — Q)
_;E at(E;Q;)D —\/ﬁ’ ‘
_ L zn:E Tr (dia (a3(E;Q;)D*?)(Q; — Q))’ =0 <i)
372 P gla; (Ll J vn
by Lemma 3.1. 0

Lemma 4.3. Assume that the setting of Theorem 2.2 holds true, then:

n—roo

n 1 B B 2
> xsj +log <(1 — —TyD2TA(I + 5D)2DA*TD%> - p2w> 7 0.
, n
Lemma 4.4. Assume that the setting of Theorem 2.2 holds true, then:

n—oo

> xaj +1log Ol _otimy D>TA(I +6D) 2DA*TD>
n

2
— [9?p 2ﬂ> 0.
j=1

The core of the paper is devoted to the proof of Lemma 4.3. This proof is provided in
Section ??. The proof of Lemma 4.4 follows the same canvas with minor differences.
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5. PROOF OF THEOREM 2.2 (PART II)

This section is devoted to the proof of Lemma 4.3. We begin with the following lemma
which implies that E?Zl X3;j can be replaced by its expectation.

Lemma 5.1. For any N X 1 vector a with bounded Fuclidean norm, we have,

maxvar(a*(E;Q)D(E;Q)a) = O(n~') and maxvar (Tr(E;Q)D(E;Q)D) = O(1).

J J

Proof of Lemma 5.1 is postponed to Appendix A.4. Recall that:

> xa = % <n (E;Q;)D(E;Q;)D + 2Jja§(Eij)D(Eij)aj>
=1

2.
Z;ﬁ <n (E;Q)D (]EjQ)DJr2Jja;(Eij)D(Eij)aj> Lom,
]:1

due to Lemma 3.1. Consider the following notations:

1 1
Y = - TE[(EQ)D(EQ)D] = — TE[(E;Q)DQD] ,
Gj = Eax(E;Q)D(E;Q)ax] = E[ay(E;Q)DQax]
Oj = El[ap(E;Qr)D(E;Qr)ar] = E [af(E;Qr) DQrax]
1
vj = Ezp2dktkk9kj'
k=1
Thanks to Lemma 5.1, we only need to show that
1 n
=3 (PPB v + 202 4,0,)  + logA, ——0. (5.1)
j=1

There are structural links between the various quantities v, (x5, 0; and ¢;. The idea be-
hind the proof is to establish the equations between these quantities. Solving these equations

will yield explicit expressions which will enable to identify % Z?:l (pzt?j CZ?U)J- +2p? dJ t] ]9 )

as the deterministic quantity — log A,,.

Proof of (5.1) is broken down into four steps. In the first step, we establish an equation
between (y;, 1; and ¢; (up to O(n~1/2)): Eq. (5.7). In the second step, we establish an
equation between 1; and ¢;: Eq. (5.11). In the third step, we establish an equation between
Ckj» ¥; and Ox;: Eq. (5.12). Gathering these results, we obtain a 2 x 2 linear system (5.15)
whose solutions are 1; and ¢;. In the fourth step, we solve this system and finally establish
(5.1).

5.1. Step 1: Expression of (;; = E[a}(E;Q)DQax]. Writing

Q=T+T(T ' -QHYQ=T+T (pSD +A(I+6D)1AT — 22*) Q, (5.2
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we have:
Gy =E [azlEj [T 4T (pSD +A(I+6D)T A — 22*) Q] DQak] ,
= E[a; TDQay] + p3 E[ai TD(E;Q) DQuy]
+ E[ajTA(I +6D) "' A*(E,;Q)DQay] — E[a;T(E;%*Q)DQay] (5.3)
2 4iTDTay, + pd ElaTD(E;Q)DQay) + X + Z + ¢ , (5.4)

where X and Z are the last two terms at the r.h.s. of (5.3) and where |¢] = O(n~1/2) by
Theorem 3.3-(2). Beginning with X, we have

- Z": Ela}Taca} (IEjQ)DQak]
1+ 6dy

)

=1
_ Z": Ela;Tasa; (E; Q) DQax] Z": Elptecar Taca; (B, Qenen; Qo) DQay] .
— 1+ ody — 1+ ddy
_ z”: Ela;Tasa; (B, Q) DQax] _ z": Elpteca; Tasa; (B, Qean; Qr) DQay] e
— 1+ ddy — 1+ ddy
_ Zn: ElajTaca;(E;Qe)DQay] Z": ElpteeaiTacay Teae(BynjQe) DQax] 61+ entes )
1+ ddy 1+ ddy

~
=
~
Il
—

1>

X1+ Xo+e+extes,
where

Ela;Tac(E; (pGee — plec)a; Qemen; Qe) DQay)

£ = — = 5 5.5
' ; 1+ 0dy (5:5)
ey = — i E[pfuaZTaga} (Engymz‘Qg)DQak]
=1 1+ ddy
G- z": ElptecayTar(Bjar(Qe — Te)aen; Q) DQax]
1+ 5CZg '

~
Il
—

Using (3.8) and (3.13), e; writes:
e1=E [EJ— (a;TA diag (&) (I + 5[))*12*@) DQak} ,

where & = p(Gor — toe)(1 + 15 Qene)a; Qene. Recalling that || X*Q)| is bounded, we obtain
1] < KE|a;TAdiag(é)l| < K(S, 0 TALPEE)Y/? < K/\/i by (3.23). We show
similarly that 5 and e3 (with the help of Theorem 3.3-(4)) are of order O(n~'/2). We now
develop X» as:

)

Xy= i Elpte ayTag a;Tear aj(E;Qe) DQak] i Elptee ajTae a)Teary; (E;Qe) DQay]
1+ d6dy — 1+ ddy

U+ U, .
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The term Us writes:

i Elp*teeqee ajTae af Teae y; (E;Qe) DQume ) Qeak]

3

— 1+ 6dy
_ L E[p2%, ajTag aj Teag yi (B;Qe) DQene 1 Qear] +Om-1?)
— 1+ 5dg

Write nen; = aca) + aey; +yey; +yea;. The term in agaj is zero. Applying Cauchy-Schwarz
inequality to E;, we have:

z”:UEW%GZTaeaZﬁawE(]EjQé)DQWy?Qf“k” Kim*Tad < X
K Ty <
n

IN

=1 1+ dd, =1 v
and
zj: |Elp*7, apTap a; Teae y; (B;Qe) DQuye y; Qear) |
=t 14 ddy
i [E (0?8, ajTacajTeae (7 (B;Q0)DQeye — den™ Tr D(E;Q0)DQe ) i Qua|
— 1+ ode
K J
< = * _ —1/2
s - Z lazTayl O(n ).
=1
The term in y,a; writes
z]: E|p*t5 aTag a;Teae y; (B; Qo) DQeye a7 Qear] _ zjj (p2dt2, afTag a} Teae afQeay) e
1+ ddy 1+ dd,

{=1

where e = O(n™!) by Lemmas 5.1 and 3.1. The remaining term in the r.h.s. can be handled
by the following lemma which is proved in appendix A.3:

Lemma 5.2. Let (u) = (un)nen be a sequence of vectors with uniformly bounded Euclidean
norm. For j <mn, let (aw)1<e<j = (qujn)i<e<; be a triangular array of uniformly bounded
real numbers. Then:

J

aguTaga;Tu “1/2
aru TagElagQeu] = +O(n ).
; ZZ ptee(1+ dz&)

As a consequence of this lemma, Us writes:

pdgtu aiTaga;Teaea;Tay, ~1/2
U. 4+ O(n .
)= %Z TENTAL (n=1/2)

Gathering these results, and using the identity (1 — pteea;Tear) = ptee(1 + dgd) (see (3.15)),
we obtain

wTaga;Teaea;Tay
(1+ de5)

X = 30 phuc i Tou o (B0 D@+, 3 2271 +O(Mm ). (5.6)

(=1 (=1
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We now turn to the term Z in (5.4).

n

Z == Ela;T(E;pienen; Qe)DQay] = ZPWE [ap T(Ejnen; Qe) DQay] +
=1 =1

where
n
e =Y Ela;T (E; p(dec — te)nem; Qe) DQax]
=1
satisfies ¢ = O(n™1/2) (same arguments as for &1 in (5.5)). Writing nen; = asa} + yey; +
agy; + yea;, we obtain:

Z == ptua;Ta;Elaj (E;Qr) DQay]
(=1

J

1 -
— [ D plecElaiTye i (B;Q0) DQay] +- > plueds Bla; TD(E;Qr) DQua]
=1 e}

J J
— > pleeaiTarEly; (B;Qe)DQax] = plor Elay Tye aj (B;Qe) DQax] + O(n~1/?)
=1 =1

: Z1 + Z2 + Z3 + Z4 + O(nil/z).

The term Z; cancels with the first term in the decomposition of X (first term at the r.h.s. of
(5.6)). The term Z, writes:

J n
- 1 S
Zy = - ZptulE[aZTyeyz(lEer)DQeak]+5 > pled Ela;TD(E;Q¢) DQay)
=1 (=j+1

J
+ Y PPt BlapTye y; (B;Qe) DQene i Qear] + €
=1
Wl + W2 +e )

where ¢ follows from the substitution of pge, with ptse and satisfies ¢ = O(n~'/?) as in (5.5).
Consider first Wi:

1>

J n
Wy =— %ZpfuCZgE[aZTD(Eng)Dank] + % Z pgggCZgE[aZTD(Eng)DQak]
/=1 l=j+1
Write:
(E;Qe)DQr — (E;Q)DQ = (E;Qe)D(Qe — Q) + (E; Qe — E;Q)DQ .
Using (3.10) and (3.11),

=

J J
LS phaedy [Efai TD(E;QOD(Qe ~ Qail| < S (B + i Qun)) ' (Bl Qai?)
=1

n
(=1

< (EG’ZQEI:jET;ank)l/2 = (9(7~f1/2)7

§\M

and the same arguments apply to the term (E;Q¢ — E;Q)DQ. Hence,
Wy = —pd E[a;TD(E;Q)DQay] + O(n~1/?).
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We now develop the term Wy writing 1y = ye + a¢. We have:
J
> P° T Elaj Tye y; (B;Qe) DQuye aj Qeay]
=1
J Czl
=" P E[aiTye (v (B;Q0DQeye — = Tr D(E;Q0) DQ: )} Qe
=1

whose module is of order O(n~'/2). The term

<.

> PP Elar Tyey; (B Qo) DQeary; Qray]
=1

can be handled similarly.

The term

J 1 J
> P Elai Tye; (B;Qe) DQrara; Qeax] = - > p*15,diEla; T D(E;Qr) DQrara; Qrax]
=1 =1

is bounded by Kn~1'/2. Finally,
J
Wo = Y p*Ely; QuaraiTye y; (B;Qo) DQeye] + O(n~'/?) |
=1

@ 1< -
W Yja;TDTay, — E P>, d2 + O(n=1?%)
n
=1

where (a) follows by standard arguments as those already developed.

The term Z3 satisfies

J
= pPaiTally; (E;Qe) DQene n; Qeak] + O(n~'?),
=1
Writing nem; = yey; + aey; + acay + yea; and relying arguments as those already developed,
one can check that the only non-negligible contribution stems from the term containing y.aj.
Hence,

J
(o Z thNfzdmZTagE[aZka] + O(n_1/2) 7
(=1

Z3

i~ =
ptecdea;Tapa;T ay, ~1/2
; = +O(n ;
Vi Z 1+ ded ( )

by Lemma (5.2). Similarly,

J
Zy = Y P Elaj Tye ai (E;Qe) DQene nj Qear) + O(n /)
=1

1< -
= a;TDTa—~ > pPdet; Ela; (B;Qe)DQear) + O(n~'/?)
=1

= aiTDTapp; +On"1?).
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Gathering these results, we obtain

== plua;TagEla; (E;Qr) DQax] — pd Ela; T D(E; Q) DQay]
=1
ayTaga;Tay,

= +aiTDTay @; + O(n~12).
1+ dyo k k¥ ( )

. 1< = ! plecdy
4y afTDTax — >~ p*Budf + 15 )
(=1 (=1

Plugging this and Eq. (5.6) into (5.4), and noticing that ploc(acToae(1 4+ ded)™ ' +1) =
(1+ dy8)~1, we obtain:

J it J
o ayTagdea;Tay . 1 979
ij = CLkTDTak + 1/)j <EE . W + akTDTak E Zi . P tudé

+a;TDTay pj + O~ %) . (5.7)

5.2. Step 2: Expression of ¢; = n~! TrE[(E;Q)DQD]. Using Identity (5.2), we obtain:

Py = % TrE[TDQD] + p—5 TrE[TD(E;Q)DQD)]
+ % TrE[TA(I + 6D)’1A*(IEJ-Q)DQD] - % TrE[T(E;35*Q)DQD] , (5.8)
= % Tr DTDT + %5 TrE[TD(E;Q)DQD] + X + Z + ¢ , (5.9)

where X and Z are the last two terms of the r.h.s. of (5.8), and where e = O(n~1!) by
Theorem 3.3-(3). Due to the presence of the multiplying factor n=!, the treatment of X and
Z is simpler here than the treatment of their analogues for (j;. We skip hereafter the details
related to the bounds over the €’s. The term X satisfies

n

1 Ela; (E;Q)DQDTay]
n = 1+ 5dg
_1 i Ela; (E;Qe)DQDTas 1 zn: Elptec (Bja;Qene n; Qo) DQDTay] e
n 1+ 8dy n 14 6dy ’
1 Z": Ela; (E;Qe)DQDTas) 1 z": E[ptee a}Toae aj(E; Q) DQDTay)
n 1+ 6(ig n 1+ 6Jé

~
~
Il

1

=1
i Elpte i Teac yi (B;Q) DQDTar]
- 1+ 5dg

1
n
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where max(|e], [¢/]) = O(n=2). As 1 — piyea;Toar = ptee(1 + did),
E[ptu ay %ag Yo (E QE)DQDTCL[]
1+ ddg

E[p*t2, a; Teacy; (EjQe) DQeme n; Qe DT ay)
1+ ddy

+0(n~1?),

S|
Mm

Im e o
== > Elpte aj (E;Qe)DQDTay) —
/=1

~
Il
—

+0(n"1?),

S|
MQ.

1 7 *
~ > Elpte aj (E;Q))DQDTa,) +
(=1

<\

=1
J
= > Blpfueaj (B;Q0)DQDTal + 2y

=1 /=1

dg a;Taga;TDTay,

n=1/2 .
1+ 5dz) + O( ), (5.10)

where (3.16) is used to obtain the last equation. The term Z writes:

1 — -
Z = _E ZTI' ]E[ptllT(EJnanQf)DQD] + O(nfl/Q) 7
(=1

1~ =
= —=> Elplua;(E;Q))DQDTay
nl:l
I~ - ., 11 .
= | 5 2 Eloleeyi (B;Q)DQDTyd + - 3 = TrElpdete TD(E; Q) QD]
/=1 l=j+1
1~
- ZE[PtMyé( Qi) DQDTay) —
=1

S Zy 4 Zo+ Zs+ Zy +O(n~1/?).

§I>—‘

J
> Elptea; (E;Qe) DQDTy + O(n~/?) |
=1

The term Z; cancels with the first term in the r.h.s. of X’s decomposition (5.10). The terms
Zo, Z3 and Z4 satisty:

Zy = —p—5 TrE[TD(E;Q)DQD] +

S

J
> Ep* i (B Q) DQunem; Qe DTy + O(n™/?)
=1

5 1 1~ -
- _%5 Tr E[TD(E;Q) DQD] + 14— Tr DT DT— > pdity +0m?)
=1
1 272 % * —1/2
Zs = > E[p*#w; (E;Qe) DQumem; QeDTas) + O(n~'/?)
=1

- a}TDTa
Zpue L d5€+0(n_1/2)7

J

> E[p*t3,a; (B;Qe)DQune i QeDTye] + O(n™"/?)
=1

S|

1 1~ ,- i _
= —Tr DTDT—~ > pPdetEla; (B;Qe)DQear] + O(n~'/?).
=1
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Plugging these terms in (5.9), we obtain:

1 J CZga*Tag p(igfgg Yy J ~ _
=7+ [ =Y a;TDTa o T |+ 2 PP, | e + O
Vi =7+9; ("g—l ¢ é((1+6d4)3 1+ dw TLZZIP elee VPj ( )

1 K dealTDTay 4 <~ o
=y (=S L INT 2828, ) e + O 5.11
Y+ Y (n; (1+8dy)? n;ﬂ a7 VEj ( ) ( )

using (3.15) and (3.16).

5.3. Step 3: Relation between (;; and 0;; for k < j. The term (;,; writes
Crj = ElayEj(Qr — pdrk Qrminy, Qr) D(Qr — pdrk QrninQr )ak]
= O — ptinE[aE; (Quneni Qr) DQrak — pter ElajE; (Qr)DQyni 0 Qrax]
+ P82, Elai B (Qunkn;iQr) DQuni mi Qrax] + O(n~1/?)
é ij + X1 + XQ + X3 + O(n71/2) .

Using similar arguments as those developed previously, we get:

X1 = —phwa}Tear ElaiE;(Qr)DQrar] + O(n™Y?) = —piyraj Tear O + O(n=1?),
Xy = —pfkkGZEGk ij + O(n_l/Q) .
As k <],

X5 = p*t (a7 Trar)? EMiE;(Qr) DQuii] + O(n/?)

Pt (i Trar)? (%‘ + CZWJ‘) +O0(n~1?%).
Using (3.15) and (3.16), we finally obtain:

ayTay
1+ dgé

2
Chj = pPEep (1 + did)? Oy + dy, < ) Wi + O~ (5.12)

5.4. Step 4: A system of perturbed linear equations in (1, ¢;). Expression of the
r.h.s. of (5.1). Combining (5.12) with (5.7), we obtain

~ ~ a;TDTa
PPt Oy = et
(1 + dk5)2
J 7% 7 % 7 % J *
Z dp. a,iTag dy aﬂjak i d. CLkTNZ)TCLk l pzt%éd% B Ji (akT?k)2 1/;].
L1+ d0)2(1+dd) | (1+dgo)? n = (1 + dpo)"
dy atTDT
S 2+ O ) (5.13)
(1 + dk(S)z

which implies that ¢; = 1 1| pPdyt3, Oy; satisfies

(1—Fj)p; —(Gj+ FjM;); = F; + O(n—l/z)
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where
. 1 & aiTDTay dy,
io= ) Ty
n.- (1 + dk(S)z
1< .
v o= LS pea 511
=1
1 ] J Cikcig |CL*TCL[|2
Gj A Z Z 7 Qk 782 °
n— = (1 +did)? (1 + ded)
£k
With these new notations, equation (5.11) is rewritten

—vp; + (1= Fj = yMj)g; = v+ O(n~'/?),
and we end up with a system of two perturbed linear equations in (¢;,;):

{ (1= Fjg; — (G + FiMy)¢; = Fj+0(n"'/?)

5.15
i+ (1= Fj =My, = y+0n"/?) (5.15)

The determinant of this system is A; = (1 — F;)? — yM; — vG,. The following lemma
establishes the link between the A;’s and A,, as defined in Theorem 2.2.

Lemma 5.3. Recall the definition of A, :
1 R . 2
A, = <1 — —TrDTA(I + 5D)2DA*TD%) — P27 .
n
The determinants A; decrease as j goes from 1 to n; moreover, A,, coincides with A,.

Proof of Lemma 5.3 is postponed to Appendix A.5.

Solving this system of equations and using the lemma in conjunction with the fact
liminf A,, > 0, established in Lemma 3.5, we obtain:

ei| _ 1 (1= F)+1G,
= — + e, ,
I R~1 R R
where ||e;|| = O(n~'/2). Replacing into (5.13), we obtain
20%d;12,0,;
% = 2(Fj—Fj-1) + (G = Gjo1 + 2M;(F; = Fj1)); + 2(F; = Fj_1)@; + O(n™*?)
G; —Gj_1)+2yM,;(F; — F;_
ZQ(Fj—Fj_l)-i-% J i-1) A7 i (F) i-1)
J
n 2(F) — f*ﬂj—l)(f*ﬂj(‘1 — 5 +9G)) | O(n—/2)

A
which leads to

1 - -
- > (ﬁ%d?% + 202611@2791;')

n
J=1

—~2(Fj — Fj1)(1 = Fj) + V(J\A/A’g“ — M;—1) +7(Gj — Gj-1) +Om1?),
= J

Jj=1
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On the other hand, Ajfl—Aj = Z(Fj—ijl)(1—Fj)+”y(Mj—Mj71)+”Y(Gj—Gj71)+0(n72),
hence, due to lemma 5.3 and to liminf A, > 0,

% i ( ffjdiwj + 2p2djffje ) = zn: Aj-1- 4y +OnY?)

j=1 j=1 A,
_ J 1 J -1/2
g ( A, ) +O0(n )
-2 o5 2 A O ) = —log(an) + O ~2)

which proves (5.1). Lemma 4.3 is proved.

6. PROOF OF THEOREM 2.2 (PART IIT)

In this section, we complete the proof of Theorem 2.2. Proof of Lemma 4.4 is very close to
the proof of Lemma 4.3; we therefore only provide its main landmarks. We finally establish
the main estimates over (0,,).

6.1. Elements of proof for Lemma 4.4. Proof of Lemma 4.4 relies on the following
counterpart Lemma 3.2:

Lemma 6.1. Assume that the setting of Lemma 3.2 holds true; and let Ex? = . Then for
any p = 2,

Ela” Mz — 9 Tr M]P < K, ((E|:1:1|4 Te MM*)"* 4 Bl |27 Tr(MM*)”/2) :

Proof. The result is obtained upon noticing that

3
T _l ok (ok = * ok —
:cMw—4k5201 (1 :I:—l—w) M(l :I:—l—m)

and using Lemma 3.2. 0

Here are the main steps of the proof. Introducing the notations

Y, = ~TrE[(,QDQD] .
0r; = E[ap(E;Qr)DQray] ,
1~ .-

b, = n Zp2dk£/2ckﬁkj )

k=1

and adapting Lemma 5.1, we only need to prove that:

i 7733 n— 0o

lz( AP + 2p°d;T5; Re (08 )) + logd, ——0.
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Similar derivations as those performed in Steps 1-3 in Section 5 yield the perturbed system:

(1- ﬁEj)fj - (1§QJ + |19|2EijMj = Ej + (’)(n_l/2)
—ﬁmﬁu—@j—lwﬁm)% = y+0Mn1%
where
*TDTay d 1 & dede (aiT
p - 1y dlPbec g o lyty I g
= (14 dyd)? ni— = 1+dk5 )2(1 + ded)
£k
1 J
M; = gZPZtude-

The determinant of this system is:
2
Ay =[1=9E;|" —[0]*y (M; + G;) .

By (3.18), 0 < v < #; furthermore, [J| < 1, [F;| < Fj, and [G,| < G;. As a result,
A, > Aj. Hence, by Lemma 5.3, the perturbation remains of order O(n~'/?) after solving

the system. Performing the same derivations as in Step 4 in Section 5, it can be established
that A, = A,,. We finally end up with:

n

LS (P lory, 20 e (00,) = 30 AR oo,
=1 A,

=1
= —log(a,) +0(n"?),

3
w

which is the desired result.

6.2. Estimates over O,,. In order to conclude the proof of Theorem 2.2, it remains to
prove that 0 < liminf, ©, <limsup,, ©, < oco.

Consider first the upper bound. By Lemma 3.5, sup,,(—logA,) < co. As A, > A,,
logA,, is defined and sup, (—logA,) < oo. By Lemma 3.4, the cumulant term in the
expression of ©,, is bounded, hence limsup,, O, < co.

We now prove that liminf ©,, > 0. To this end, write:

- Ajfl — Aj AJ 1 242 272 —1/2
@n_;< A + Aj + K 2Zdzt”2dt +0(nY?y,
— Zn: <7(Gj —Gj-y) 912G, _Qj1)>
j=1 Aj 4,
N Z": 2(F; — Fy-1)(1 — Fj) | 2Re (V(E; - E;1)(1 - VE)))
i=1 Aj 4,

P = = -
NS (rW N zdm) W)

L Lyt Lo+ Zap + On~1?) |
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We prove in the sequel that Z; , > 0, Z5,, > 0, and that liminf, Z3, > 0. It has already
been noticed that A; > Aj;; moreover, it can be proved by direct computation that |Qj —
Qj—l| S Gj - Gj*l; hence Zl,n Z 0. As

1(M; + Gy)
1-F,

9]y (M; + G))

=F5)- T-0E[

< [1=dEy] -
this implies that Aj_1|1 — I < Aj_l(l — Ij). Noticing in addition that [F; — F; | <

Fj — Fj_1, we get Za, > 0. The cumulant k = E|X11|* — 2 — |[J|? satisfies k > —1 — |9|?,
hence

2 n N 1
Zsn 2 % > dE, ((K - 1) + |9]? <— - 1)) deti
= J

j=1
P2 . 7252 1 2
+;Zdjtjj(nA. Z di ftwl” + A k (ti) )
j=1 I k=1 na; k,f=1
k£l |
P2 . 7272 1 2 Y P2 - 72 2,2
> 5> 4t <(A—] —1) + Y] (— —1)> dodit =5 > diE pJZdlt“ .
j=1 —J i=1 j=1 i=1

As the term p; is linear in 9| € [0,1], p; > min (A;l(l —4j), A;l —|—A;1 —2). We have
AjA; < (A= F)?—y(M; +Gy) (A + F)* +v(M; + Gj))
= (1-F})?=?(M; +G))? =~y F(M; +G;) < 1.

Hence A71 + A71 -2 > A71 +A4A; -2 = A;l(l — A% As1—A; > yM;, we get
p; > M wh1ch implies that

S

ZS,n 2

2 z 2E

3

P72 1
= T Z i Vg Zdigfj +O(n_1) ’
i=1

whose liminf is positive by Lemma 3.4.

The estimates over the variance are therefore established. This completes the proof of
Theorem 2.2.

7. PROOF OF THEOREM 2.3 (BIAS)

The same arguments as in the companon article [21] allow to write the bias term as:
Bu(p) = [ Tr(T(-w) - BQ(-w)) d
P

We shall prove that:

(7.1)
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where,
2 w1 ol 2, 2 1 21 &2 1 ol 0 &2
Alw) = w(14+06)—Tr S*=Tr ST* +w*(14+0)— Tr S*—Tr ST* —w—Tr S*—Tr 5=,
n n n n n n
Bw) = 14+w(l+0)y+w(l+d)y.

Outline of the proof. The proof of (7.1) will be carried out in two steps:

N
e We first introduce the following matrix: R(—w) = (w (I+a)Iy + %) , where
o= % TrEQ and & = %Tr EQ, and we prove that:
Tr(R — EQ)

T (T -EQ) = 1T T TAAR 1 - (7.2)
1— EW + wz TrTR
and then we prove that the denominator verify,
1 TrTAA*R 1 T+w(l+8)F+wl+6
-+ w—TrTR = o+ MTW( + )74_57 (7.3)
n(l+4)(1+a) n 1496

where, € converges to zero in probability.
e We deal with the term Tr(R — EQ) and we show that it verify:

<1 ~o 1
Tr(R—-EQ) = kw?(1+6)—Tr S*~Tr ST?
n n
1 1 = 1 1 -
Fw?(1+0)=Tr S?=Tr ST? —w—Tr S?=Tr 5? +¢,(7.4)
n n n n
where € is a random variable which converges to zero in probability.

7.1. Proof of 7.2. We have,
Tr (T —-EQ)=Tr (T — R) + Tr (R — EQ).
On the other hand, with the help of the resolvent identity, we can prove easily that:

- N1 1 Tr RAA*T
T (T - R) = wTr (EQ - T) ~Tr RT + T (T — EQ) ﬁ%
In appendix A, we prove the following identity:
Tr(T—Q):Tr(T—Q). (7.5)
We then have,
Tr(R - EQ)
Tr (T —EQ) = —3 AT ol T TR (7.6)
n (1+ 5 T T) (1+ 5 TrEQ) Y
Results of [20] allow us to make the following approximations:
1 TrTAA*R 1 1 Tr AA*T?
1—— T - T —i—w—TrTR:l——riQ—i—ww—i—a,
n(l—i—;TrT) (l—I—ETrIEQ) n n (1+46)

where € converges to zero in probability.

To prove equality (7.3) we use Woodbury’s identity which gives:

- =2
A*TQA B A* (w(l—i—é)hH—%) A B 1 T_ 1+5T2
1+5 (14 6)2 I e
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The proof of the first step is done.

7.2. Proof of 7.4. We shall develop Tr (EQ — R) as

Tr(EQ-R)=x1+tx2+tx3+ x4 (7.7)
where the expressions of x;, for i = 1 : 4, will be given when requered.
In all this section, b; and e; will refer, respectively, to b; = (w (1 + %Tr Q;+ a;fQjaj))fl
and e; = nj’fanj — %Ter — a;‘Qjaj.
Let us begin by using the resolvent identity to develop the term in the left hand side of (7.7).
We have,

Tt(EQ-R) = ETrR(R'-Q1)Q
AA*
1+a

= ETrR(w(l—i—d)IN—i- —wIN—EE*)Q
1
= <deETr RQ + Toa Tr RAA*EQ> — Tr REXYX*Q = X1 + Xa.
@
X5 can be handled as,

X, = —Tr RESYX*'Q=-E» n/QRn;
j=1

= -E

M:

(1;QjRnj — wsgm; Qmin; Q;Rny)

<.
Il
—

Il
€
&=

((f?jj - Bj)n;QjoW;Qjan)

<
Il
—

+

-

1 * PR 1 *
E <—ﬁ Tr Q; R — a;Q;Ra; + wb;n; Q;m;m; QJ‘RWJ‘)
Jj=1

X1

4

Xs.

and we have,

ngzn:E

e[
&

=1

rQ;R — a;Q;Ra; + ijanjnjanjan}

<.

1 * * 1 *
<77g Qjn; — - Tr@; - anaﬂj) (Wan‘Raj - TrQ;R— anjRajﬂ

<.

_|_

ZE[ < TrQ; +a; QJCLJ) (% TerR—i-a;QjRaj) - <%TerR+a;QjRaj>}

Jj=1

- 1 1
= ZIE { <77J Qjn; — Ter - a;Qjaj) (U;QjRaj - TrQ;R — a;QjRaj>}

=1

<.

= - (1

_ZE [wbj <—TI‘QJ‘R+CL;QJ‘RCLJ'>:|
i=1 "

= X2+ Xu
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X1 + X4 can be decomposed as:

n

~ 1 * 7 1 *
X1+ Xy = (WCYETI“ RQ + Tra Tr RAA EQ) — ZE [wbj (E TrQ;R + anjRaj)]

n N 1 n N
— |waETr RO - %’ S Eh Tr QiR | + T T RAAEQ - 3 waEh;Q;Ra; | = vs + xa.

=1 j=1
Hence, Tr (EQ — R) is given by:
Tr (EQ — R) = x1 + X2 + X3 + X4 (7.8)

In order to prove formula (7.4), we shall study separately terms in the right hand side of
(7.8). Lemma ?7?-2 will be of constant use in this study and, up to arguments in subsection
(?7), terms on ¢ = E|X;1]|?>X1; will be considred as € — 0 in probability.

We begin by the treatment of y;. We have,

n

X1 = wZE(q” mQ;me;Rm)

- 1 1
= WZE< Gj; — bj ( TrQ; + a; Qjaj> <77;‘QjR77j — ETerR_ a;QjRaj>)

J=1

<.
—

[wZE (@5 — 773 FQ4nj — l Ter - G;Qjaj) (% TrQ;R+ G;QjRaj)>

+wZE(qﬂ— ( TrQ]—i-a Q]a]> (%’I‘I’QjR'i‘a;QjRaj)) +¢

= X111+ X12t+e€r-

where,
Ele:| < Z w(qjj — mQyn; — — TrQj — a5Qja;5 | ( 1jQiRn; — —Tr QR — ajQ;Ra; || <

Treatment of x11. Recall that: ¢;; — l;j = —wl;ﬁej + ¢;, where, Elg;| < % Let f; =
%Tr Qj +ajQja; and g; = %Tr QR+ a;QjRaj, x11 becomes:

xu=-> E (w25§fjej (n;Q;Rn; — En}‘Qjan)) +et,

j=1

with Eleyp| < \/— by lemma (?7-(1)).
Using lemma (?7-(2)), with M = Q; and P = Q); R, we obtain,

1 n
X1 = —EZE( 2b2fj< Tr Q7R+ a}Q,;RQja; + a}Q; Ra,

2
+|—T QthQt +19a QJRQta’J +19a Q QJRG’] + — Z QJ i QJ ] )) + €11,

=1

S|



hal-00829214, version 1 - 3 Jun 2013

32 HACHEM ET AL.

where, €11 converges to zero in probability.
We turn now to the treatment of x12. We have,

E ((‘L‘j —b;)g; (n;Qym; — fj)) + zn:]E (w?’i’feffjgj)
1 j=1
E (wQI;?e?gj) + iE (wgl;?e?fjgj) +er

1 j=1

X12 = W

-

J

I

J

-

Il
-

E (wgl;;’e?gj) + €12,
J

where (a) follows from the fact that wzl;?fj = whj(1 — wb;) and e}, converges to zero in
probability. Lemma (??-(2)) imply,

1 & - 1 . [? . L Ee
X1z = ZE(w%?gj <ETI‘Q?+2CLJ'Q?QJ'+%TerQ§+2Re(l9anjQ§aj)+EZ[Qi]?i)) + €12
j=1 i=1
Then, x1 becomes
_ 1"E 252 1Tl” 2R * R *QR 353 1TI’2 2*2
X1 o= —gz wbjfj |~ Tr QiR+ a;Q;RQja; + a;Q5Ra; | +wbjg; | — TrQj + 2a;Qja;
j=1
P R 1Y
- > E <‘“2b?fjﬁ > 1Q)1:[Q; Rl +w3b?gjﬁ Z[Qa‘]ﬁ) +x1(9) + 1,
j=1 i=1 i=1
where,
1 S 272 |19|2 t Mt * t 9. tNt
@) = —=> E(w0f; (- TrQ;RQj +9ajQ; RQja; + VajQjQ; Ray
j=1

|92

1 & - ¥ . B
- Z E (w3b§?gj (T TerQ;- + 2 Re(ﬁaj QjQz-aj)>) .
j=1
Treatment of x2. We use again lemma (?77-(2)),

1 & - (1 al
X2 = E ZE {wbj (E Tr Q?R + a;QjRQjaj + a;Q?Raj + % Z[QJ]”[QJR]”> } + X2(19) + €92

j=1 i=1

where,

1 & ik _
x2(9) = —ZE(wbj(| | TerRtQE»+19a;‘QjRQ§»aj+19a§Q§QjRaj>).

n
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Treatment of ys:

n

w ~
- Y IE(IEN--TR — 0T )
X3 nJ:Zl qj; 11 Q j rRQJ
W — . . . ~
= B (Bay (Tr RQ; — wiy; Tr RQynm; Q;) — by Tr RQ;)
j=1
w

n 2 n
- 5 w ~ 7%
= - ZIE ((quj —b;) Tr RQj) - ZqujE (bjﬁj QjRanj) +és
j=1 Jj=1
We have,
E((jjj —Bj) = E(bs 2) +0(n=*?)
v 1 . ? _
= WE (bf (773' Qjnj — - TrQ; - %‘Qjaj) ) +0(n3?)

|19|

= ME{§<1 TQ2+2 ~a;Qja TrQJQt—I—ZRe( ~a;Q;Q50;)

nii_v:cg] >}+sj.

we then obtain,

n 373 N
X3 = %ZE nbj Tr RQ, {% Tr Q3 + 20} Q3a; + - Z[Qﬂ%”
j=1 i=1
1 ¢ 2721 *
—~> E (w bi—TrQ;RQ; + anjRQjaj) +x3(9) +¢,
=1
where, J
- —ZIE J Tr RQ; (' i TrQ;Q" + 2Re(Va’Q;Q" aj))] .
We turn now to 4. We have,
X4 = 1—1—% Tr RAA*EQ — iwa;E(l;ij)Raj
j=

= ZE<1+a QjRaj—wtijjainﬁm;*QjRaj)—ija}fQjRaj)
7j=1

using identity G;; = b; — wb? Gej+ w2b362 + O(n®/?), we obtain,

X4 = ZE
=1

1 . . 1
e B (e Qi Qi) = 2 B (0 Qi Q) + 64
7j=1 Jj=1

= Wi+Wy+Ws+ Wy +ey,

n

% —wbjanjaj ~ 1 T w2
a;Q;Ra (H—a =y || = ey 2B (b QS Ray)

J=1

n
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where Eley| < %
Let us begin by the treatment of W;. We have,

1 -whaiQa; 5 - L1THQ-EQ)  ; 1TEQ-Q) . . 1T(Q ~EQ)
——— —wb; =wb; t——— L = wb; = - wb; ,
14+« 1+« 14+« 1+«

then,
- T x ~ * 1 - 7 % 1
W = 1 Ta) ;E (ijanjRaj) E (wdym; Q5m) + 155 ;E (ijanjRaj; Tr(Q; — EQj))
- 12 * * 1
— 1 = ZE (wafanjRaj (anfaj +— TrQ?)) +e
j=1
where € 7.
Let us now deal with W3. We have,
1 " 2792 % * * *
Wi = Y E (w biej (n;Q;Raja;Q;n; — En; QjRajanmj))

1—1—04],:1

1 = 7 1 * 1 * * 1 * *
= 3 T 2 E <w2b3 <ﬁan?Raj + EanjRajan?aj + Ean?Rajanjaj
[9|? t pt At t- v, * t - t
—i—?ajR QijQjaj + EanjRajanijaj —a Q QJR(IJ@JQJ% n2 Z[Q]]“ [QJRG’JG’ Q]]

i=1
1 . 7 * * * * * * - 93 *
= m ZE [w%? (an?Rajanjaj + anjRajaniaj + ﬁanjRajanjQzaj + ﬁa;Q;QjRajanjaj)} +e.
j=1

Treatment of W4. We have,

1 < : . *
D
Jj=1
| 2

— _m ZE <w35§a;QjRaja;Qjaj <1 TrQF +2aQ5a; + — Tr Q;Q% + 2 Re(Va}Q;Q5 aj)))
Jj=1

1 N
WZE< 303a%Q; Raja’Qja;— Z[QJ]M>

Jj=1 =1

We put terms toghether, we get,

7 1 " -
272 % * 2 2 * 2
1 n ~ * * * * * * _ = %
+7(1 T a) ZE |:w2b? (CLjQ_?Rajanjaj + CLijRajan?CLj + ﬁanjRajanjQéaj + ﬁa;Q;QjRajanjaj)]
J=1
1 - 373 x * 1 2 2 | 2 t
Tnlt o ZE w bja;Q;jRaja;Qja; TrQ +2a;Qja; + —TrQJQ + 2Re(Va;Q;Q%a;)
Jj=1
n(l+ «) = wibja; lva;a; Jajni:1 Jlii €
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Straightforward computations based on the identity: wb; (1 + Q’ “ ) =(1+a) '+O(n1/?)
yield,

1 - 73 x 1 * 72 %
Xxa = = ZE {w?’b?anjRaj <E Tr Q? + 2an§aj> - w2b§an?Raj}
j=1
K - ~ 1Y
) > E (wgb?a;QjRaja}fQjajﬁ Z[Qj]?i) + xa(¥) +e,
j=1 i=1
where,
g = e Lye (el T Q;QLa’Q; R
xa(¥) = |9 _EZ Tta a; Qja.] Qj janj a;
j=1
1 w21~)2 . n ~3
+v EZE 1+anQJRa]a Q;Qja, Z e ;Qjaza; Q]RaJaJQJQ a;
=1 =1
_ 1 n w262 1 - Bb‘? * * t—
+19 E;E e 1Qja;05Q5Q  Ray | — E;E o a5Qja;a5Q; Raja’Q;Q%a;

Final expression for Tr (T — EQ). The aim of this part is to prove that:

S N | 1 1, = 1 1. -
Tr(EQ — R) = k | w?(1 4+ 6)—= Tr S*— Tr ST? + w?*(1 + )= Tr S?= Tr ST? —w—Tr S*=Tr S? ) +¢
n n n n n n

(7.9)
where € converges to zero in probability.
For this end, two steps will be verified:

e The first step consists to prove that:

- 2 1 & a;QjRa; 1 al 5
Tr(EQ — R) Z bi |\ Z QjlilQiRlii | — T+a n Z[Qj]n
Jj=1 1=1 =1

e By using standard approximations, especially the asymptotic behavior of the entries
of the resolvent matrices @, @Q; and R, we get the desired formula for Tr (EQ — R).
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Let us begin by the first step. By using the identity: ijfj =1- wlN)j, it is easily to see that
terms which not depend on ¢ nor on  vanish. Let us now deal with terms on . We have,

x1(7) + x2(?) + x3(?) + xa (V)

9> < 272, L t At 373 1 t ;1 t wgb? t
= - E-w bjijTerRij—w bjngTerQj—i-wbjETerR Q; + TrRQJ TrQ;Q;
j=1
w3b?
_1+7 a;Qja in TFQJ ;a;QjRaj>

n 3p3

) 7 * 7 * — 7 * — w *
+- Z <—w2b§fjanjRQ§'aj — wblg;a;Q;Q%a; + wbja;Q;RQa; + —+ Tr RQ;a; Q;Q50;

=1
272 373
J

e *Q;Raja;Q;Q%a; — ;a;Qjaja;QjRaja;QjQzaj)

1
333

~ ~ ~ w
- ZE ( w?b}1,05Q5Q; Ra; — w*blg;0;Q5Q a5 + wb;ajQ5Q; Ra; + —= Tr RQ;ajQ;Qja;

Qo I

TL

2b 353

2
a’ Qja.]a’ Q Q]Ra’] a Q;aj(l Q RaJaJQJQ (L]) = €..

We therfore obtain,

a*QjRaj 1

N
Tr(EQ —R) = —Z 2b2 l( Z[Q;]u[@; RJ; )‘leﬁ [Q;1

i=1

where € converges to zero in probability. Standard approximations yield,

K n 1 N w3t?.q *TT(L] N
T (EQ-R) = — > Wi, - > T | - 7”1 i — > 1% +e.
=1 1=

j=1
Furthermore, we have the following identities,

- a;Ta, A*T?A 1 - 1+6-
a;’lja; = ———= an = =1 —
T wt(1+6) (1+6)? 149 146

We then obtain,

Q’?I
S|

i=1 i=1 j=1 i=1

<.

1 — 1 o= -

v (EQ — R) = ( EZ% Ztii[T]fi+w2(1+6)52tﬁ[T]§thi
n N

Z ”Zti +e.

Jj=1 i=1
Gathering this last identity into (7.6) we get,

W (1 +0) L Tr S2L Tr ST2 +w?(1+6)L Tr S2L Tr ST? — wi Tr §21 Tr S?
Tr(T_EQ) — K n n ~n n~ n n ,
I1+w(l+0)F+w(ld+06)y

which ends the proof of the bias theorem.
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APPENDIX A. PROOFS OF SOME LEMMAS

A.1. Proof of Lemma 3.4. The two first upper bounds are easy to obtain, given that d,
and 4, are Stieltjes transforms of nonnegative measures with respective total mass n~tTrD
and n~! Tr D. Now Tr DT DT < d2, TrT? by applying twice (3.19), which in turn is lower

than N dilaxp_2, hence the third upper bound, and the fourth which can be proved similarly.
Let us now prove the first lower bound.

(a)
TtD = Te(T:DT:T~) < Te(DT)x |T7},
< Tx(DT) x (p(l'i‘gndmaX) +a12nax||(l+5nb)il|‘) )

(b) 5
TI‘(DT) X (P + dmaxAmax + ar2nax) )

where (a) follows from (3.19) and (b) from é,’s upper bound. This readily yields d,’s lower
bound and §,,’s lower bound which can be proved similarly. The lower bound for ~,, follows
from the same ideas:

L b i < Lopr o Lo (T2 D*T>T"")

N S e )

1 1
< NTr(T%DQT%)xHT’lﬂ = NTr(T%DT%T*T%DT%)><|\T*1||,

IN

1
N Te(TDTD) x | T7*,

and one readily obtains 7,,’s lower bound (and similarly %,’s lower bound) using assumption
A-3 and the upper estimate previously obtained for |71

The two last series of inequalities related to n~! Zﬁl d?t? and n~! ?:1 Jfffj can be
proved with similar arguments (lower bounds are in fact easier to obtain as one can directly

get lower bounds for ¢;; and #;; - using (3.15) for instance).

A.2. Proof of Lemma 3.5. From (1.3), TA(I + 6D)"'A* = I — pT'(I + 6D). Moreover,
(I+6D)'D =671 —6"YI+ D)~ . Hence

lTrDl/QTA(I+6D)’2DA*TD% < %TrDTA(IjLzS[))*lA*T
n n
P pre_ 0
L= 5T DT — p=y (A.1)

which proves the first assertion with the help of the results of Lemma 3.4. Similarly,

L D12 A% (1 + §D)2DATDY <1 - L1y D - pga (A.2)
n T

We now show that the left hand sides of (A.1) and (A.2) are equal. Using the well known
matrix identity (I +UV)~'U =U(I +VU)™ !,

~ ~ ~ ~ -1 ~
TA(I +6D)~' = p~ Y (I +éD)! (1 4 p VA(I + 5D) T AT (I + 5D)—1) A(I +6D)~

=p (I +3D) AL +8D) " (1+p7 A (I +6D) A1 +6D) )
= (I +6D)" AT,
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and similarly, (I + 6D) ' A*T = TA*(I + 6D)~'. Plugging these identities in the Lh.s. of
(A.1), we obtain the result. As a consequence, we have

, ~
(1 ~Inpveraay 5D)—2DA*TD%) > (ﬁ Tr DT? + p§7> (i Tr DT? + p%)

> p2yA + % Tr DTQH% Tr DT?

hence, liminf A,, > 0 by Lemma 3.4. Lemma 3.5 is proved.

A.3. Proof of Lemma 5.2. Recalling the expression (3.15) of tes, we mnotice that (1 —
pfuajﬁag) = ploe(1 + dgd) is bounded below. It results from theorem 3.3-(2) that
J J
*TayE| *Taga;T
Z agu*TarEla;Qul Z aeulagaplu +O(n_1/2)
1-— ptggalﬁag = ptu 1 + dgé)

=1

Moreover,

> _acuTay (M E [GZQN) Zaeu TaE [angu (M — 1)}
=1

pleealTeay = 1 — pteeayTeag

J ~
E * *
~ 3" apu'Tas [PQMGZQMf y; Qe
1 — pteea; Toae

=1+ &2

We have e = Zi,l apu*TaE [afQeu&y] where E[|P < Kn=P/% for p > 2. Tt results that
‘ 1/2 , 1/2
o] < ( i oze|u*Tag|2E§§) ( ;:1E|a;;cgw|2) < K//n by theorem 3.3-(1). By

writing

7 ~ ~
E * _ E * *
=S apu'Ta; [(pGeca; Qene ~[pqifzae Qere]) y; Qeul
1 — pteea;Toay

and proceeding similarly to €1, we obtain |es| < K/+/n, which completes the proof of lemma
5.2.

A.4. Proof of Lemma 5.1. Let us show that max; var(a*E;QDE;Qa) = O(n~'). We have

Mu.

a*IEjQDEan = (E Ez 1)(CL*EJ‘QDEJ‘QCL)

@
Il
A

2
(E; —Ei—1) HD1/2EJ‘(Q1' - P@iiQmmei)@H

|
'Mu.

@
Il
A

(E; —Ei_1) [—Qp Re (a™(E;Qi)D(E;Gii Qinin; Qi)a)

|
'Mu.

@
Il
A

+IE; (pdis 0} Qsa D2 Qimi) |12

S 92Re(X)+ Z | (A.3)
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and the variance of a*[E;Q DE;Qa is the sum of the variances of these martingale increments.
Consider the term X. Recalling that ¢;; = b — pqub €i,

J J

X =—p (B —Ei1)(bim} Qiaa® (E;Q:)DQims) + p* _(Bi — Bi1) (hiduesn; Qiaa™ (E; Qi) DQin)
i=1 i=1

A

=X+ Xs.
Let M; = Q;aa*(E;Q;)DQ;. The term X, satisfies

J ~ 1 2
E[Xi* =p* ) E[Eb; (yMy — =T M; + yf Ma; + a;‘Miyi) (A.4)
n
i=1

As M; is a rank one matrix, > 7_, Ely* M,y; — Tr M, /n|* < K/n. Moreover,

ZE|ylMal - ZIE( a |a*(E;Q:)DQ;ail ) < —Z]Em E;Q:)DQail? .
The summand at the r.h.s. of the inequality satisfies:
0" (B, Q) DQiail” < 4 (Ja" (,Q)DQai[* +|a” (E;(Q: — Q))D(Qs — QJaif’ +
0" (£,Q)D(Q: = Q)aif* + |a” (B5(Q: — ) DQai)

é 4(Wi)1 + Wi,g + Wi,S + Wi74)'

Recalling that A;.; = [a1,- - ,a;], we have

J
> Win = a*(B;Q)DQA; A7 ;QD(E;Q)a < K .

i=1
Recalling (3.10) and (3.11), and writing & = 1 + n;Q,n;, we have:

a; Qmin; Qai ; an*@ .
2T T —mQmi i (& Quiny @) Dy 7Qnn ; (& Quin; Q)
As [|(1 = ;@Qni) "' QuimiQll = |Q = Qill < K and [|QE] < K, we have 1, EW,, <

_ E[la*@Qnil?|&1)?]. Writing & = (pb;) ™' + €;, and noticing that (pb;)~! is bounded, we
obtain:

J J
> EWi < 2Ba* Q%1 diag((pb1) ..., (pb) )5}, Qa + K Y Elei* <K,
i=1 i=1
where X1.; = [m1,---,n;]. The terms W; 3 and W; 4 can be handled by similar derivations.
It results that > 7_, E|ly; M;a;|* < K/n. The terms a}M;y; at the right hand side of (A.4)
satisfy S7_ E|af Myy;|> < Kn='S)_ ElafQ,al? < K/n, which proves that E|X,|*> < K/n.

We now consider Xo, which satisfies IE|X2|2 < 2p* Z E|I~)icjiiem;‘Mmi|2. We have

ZIE

2
< KZ]EE@ lesai Miag|?

Zq'Lle'La M aZ

K < K< K
— Y Ela; Mia;|* < = Ela;Qial* < —
n n n

=1 i=1
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where E® = E[|y1, ..., %i—1,Yit1s---»Yn]. Moreover,
J

> E

1=1 i=1

<.

o K
biGiieiy; Mia; -

2
< ZEIGI )2 (Ely; Miai|)'? <

and similarly for the terms in a}M;y; and in y M;y;. It results that E|X5|> = O(n™1t). We
now turn to the term Z of equation (A.3). To control the variance of Z, we only need to
control the variances of the terms:
J
Zy = Z(Ei —Ei—1)(E;Giia™ Qiyin; Qi) D(E;Gii Qinia; Qia),
i=1
J
Zy =Y (Bs — By 1)||Ej (Giuy; Qia DY*Qimy)|1,
i=1
J
Zy =Y (Ei — Ei-1)||E; (Gisa; Qia D/2Qiny)||*.
i=1

The first term satisfies

J
E|Zi < 2) E|(B;Gua*Qiyin; Qi) D(E;G:iQimiat Qia)|?
=1
! 2
< 2Z]E|(Eja*Qiymei)DQimanM
=1
J
= 2 E [0 Qual*EY |(Bja" Quyin; Q) DQunil”
=1
K J
< — Ela*Q;al? = Omn!
< n; la; Q;al (n™),

where the second inequality comes from E|E; (X)E;(Y)|* = E|E;(XE;(Y))]? <E|XE;(Y)|*.
The terms Z, and Z3 can be handled similarly; details are omitted. The result is E|Z]? <

Hence, var (a*(E;Q)%a) = O(n™'). The estimate var (Tr(E;Q)D(E;Q)) = O(1) can be
established similarly.

A.5. Proof of Lemma 5.3. The Fj increase to F,, = n~! Tr DV/2TA(14-6D)2DA*TD'/? <
1 by lemma 3.5. As v > 0 and M; and G are increasing, A; is decreasing. In order to show
that A, = A,, we only need to show that M, + G,, = p?>5. We have

n . 2
G =+ Tr D(I +6D)"2A*TAD(I + 6D) 2 A*T A — 1 > Ay Tar
K n (14 ddy,)?

Recall from (3.15) and (3.16) that (1 + ddg)~2aiTay = (1 + ddy,) " — ptpr. Hence

n

dp. a;pTay 9 9 - pd tkk Ji CL;;TCLk
— dit —
Z<1+5dk ) Zp e Z (1 + ody) nzl(uadkp
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which results in
M, + G, = 5 Tr DTD(I +6D)~" — % Tr D2(I +6D) AT A
+ % Tr D(I +6D) 2A*TAD(I + 6D) 2A*T A.

Now, one can check with the help of (3.17) that p*y = p?n~! Tr DTDT is equal to the
r.h.s. of this equation. Lemma 5.3 is proved.

APPENDIX B. ADDITIONAL PROOFS (EXTENDED VERSION)

In this section, we gather the proofs of many results mentionend without proofs in the
short version of the paper.

B.1. Proofs of Eq. (3.15) and Eq. (3.16). Proof of Eq. (3.15) mainly relies on ma-
trix identities (3.6) and (3.7). To lighten the computations, let us introduce the following
notations:

7-— (In+5D)_1, 7 (IN,1+5D1)_1 .

In order to express a diagonal element of T, say t11 (without loss of generality), let us
first write:

j:, _ —Z(l + 5d~1) + aTIal B a*{IAl !
A*{Ial —2I7 4 ATIAl

Hence, according to (3.6):
1

T = —2(1+6dy) +ajZay — alTA {—zf_l + ATIAl} B AiTay

= —2(1+6dy) +ajZay — aiTA [—%i + %fAI’TlAlf} AiZay

) —2(1+0dy) + aiZay + %(f{ (7' +277Y) Iy
—%a’{IAlfA’{ [In + 2T Zay

D (1 +6dy) + 24 Tay + %ajzﬂ‘llal

—%a}‘l [T+ 2271 [In + 2T Tas
= —2(1+ddy) —ajThas ,
where (a) follows from (?7?), (b) from equalities
TAZA; =In + 227" and AZA; =T, ' 4227}
which follow from the mere definition of 7;. Finally, (3.15) is established.
Let us now turn to the proof of (3.16). Notice first that T writes:

aja;

1+ 6dy

T =|—2z(In+0D)+ A (I,_1 +6D;) * A% +
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Applying (?7?) readily yields:
T=T1—-Tia (1 +6d; + a}‘ﬂm) aiTh .
It remains to multiply by aj (left), b (right) and to use (3.15) to establish (3.16).

B.2. Proof of Inequality (3.20). We provide here some elements to establish that E|e;|? =
O(n~?/2). Recall the definition (3.3) of e; and write:
~ P

_ * d * *
Ele;|? <271 (E ijjya‘—gJTrDQj +E|a;Q;y5]" + E |y} Qja5]"

The first term of the r.h.s. can be directly estimated with the help of Lemma 3.2. The two
remaining terms are similar and can be estimated in the following way:

* p * )k * p/2
Ela;Qiy|” = E(yjQjaja;Q,y;)

d2 p/2 1 p/2

< 217—1 E y;fQ;-‘aja;ijj — #TI’Q;G]‘G;Q]‘ +E ‘ETI'Q;GJ(I;Q]

The first term of the r.h.s. can be handled with the help of Lemma 3.2 (notice that
Tr(Q;chja;Qj)p/2 is of order 1), and the second term is directly of the right order.

B.3. Proofs of Theorem 3.3-(3). The estimate established in [22] is:

Lnur-p) —EQ(—p))‘ <

The speed O(n~!) stated in the theorem is higher and therefore does not directly follow
from [22]. We provide here the needed extra arguments.

B.4. Proof of Theorem 3.3-(4). s
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