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Abstract

We prove that a Lagrangian torus in T ∗T n Hamiltonianly isotopic
to the zero section and contained in the unit disc bundle has bounded
γ-capacity, where γ(L) is the norm on Lagrangian submanifolds de-
fined in [Vit1]. On one hand this gives new obstructions to Lagrangian
embeddings or isotopies, of a quantitative kind. On the other hand,
it gives a certain control on the γ topology in terms of the Hausdorff
topology. Finally this result is a crucial ingredient in establishing
symplectic homogenization theory in [Vit5].
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1 Introduction

The goal of this paper is to gain a better understanding of a symplectically
invariant metric on the set L(T ∗N) of Lagrange submanifolds hamiltonianly
isotopic to the zero section in a cotangent bundle T ∗N .

The metric is the metric γ defined using generating functions (see [Vit1],
and also [C-V]) on T ∗N . We shall show that if g is some Riemannian metric
on N , and

DgT
∗N = {(x, p) ∈ T ∗N | |p|g ≤ 1}

there γ(L) ≤ C(g) for any L contained in DgT
∗N .

The case where N is simply connected will be dealt with in [Vit4] and we
shall here study the case where N is a torus.

Our main result is:

Theorem 1.1. Let g be a metric on T n. There is a constant C(g) such that
if L is any element of L(T ∗T n) contained in DgT

∗T n, then

γ(L) ≤ C(g) .

In other words, let L be a Lagrangian L(T ∗T n).
Then

γ(L) ≤ C(g)‖L‖

where ‖L‖ is defined as

‖L‖ = sup{|p|g | (q, p) ∈ L}

Corollary 1.2. Let f be a function with oscillation larger than C(g). Then
there is no Hamiltonian isotopy preserving the zero section and sending the
graph of df , Γf = {(x, df(x)) | x ∈ T n} in the unit disc bundle of T ∗T n

Proof. Indeed, according to [Vit1], γ(Γf) = osc(f).
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Another consequence is as follows. Let dH(L0, L1) be the Hausdorff dis-
tance between L0 and L1, that is:

dH(L0, L1) = min{ε | ∀z0 ∈ L0, z1 ∈ L1, d(z0, L1) ≤ ε, d(z1, L0) ≤ ε}

Similarly, we could consider for two symplectomorphisms φ0, φ1 the distance
dH(Γ(φ0),Γ(φ1). It turns out that this is equal to the C0 distance

dC0(φ0, φ1) = sup{max(d(φ0(x), φ1(x)), d(φ
−1
0 (x), φ−1

1 (x))), | x ∈M}

Corollary 1.3. The distance γ is bounded by a multiple of the Hausdorff
distance. Therefore for all L0, L1 ∈ L(T ∗T n), we have

γ(L0, L1) ≤ C(L0) · dH(L0, L1)

Thus if Lν is a sequence in L(T ∗T n), converging for the Hausdorff distance
to L, then it converges for γ. Similarly, if φν converges C0 to φ in H(T ∗T n),
the set of time one maps of a Hamiltonian flow, then φν converges to φ for
γ.

Proof. Indeed, let ψ be such that ψ(L0) = 0T n. We have γ(L0, L1) = γ(0T n)
and dH(ψ(L0), ψ(L1)) ≤ C(L0)dH(L0, L1). Hence we can restrict ourselves
to the case L0 = 0T n in which case it is just our main theorem.

Remark 1.4. 1. The main theorem has some important applications to
the so-called symplectic homogenization that can be found in [Vit5].

2. It would be important to better understand the metric γ. A long
term goal should be to obtain a characterization of compact sets for
γ. Examples of compact sets are already very interesting. Our main
theorem gives an example of bounded subsets. We conjecture that a
bounded subset of L(T ∗N) are of the form

ΩC = {H(T ∗N,N) · L | ‖L‖ ≤ C}

where H(T ∗N,N) is the set of Hamiltonian isotopies preserving the
zero section, L is a Lagrangian submanifold, so that

H(T ∗N,N) · L = {ϕ(L) | ϕ ∈ H(T ∗N)}

Of course, one could make a bolder conjecture, and replace L by Γf

the graph of df with osc(f) ≤ C.
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3. We defined in [C-V] a metric on DH (T ∗N), the set of time one maps
of Hamiltonian isotopies in T ∗N , by

γ̃(ϕ) = sup{γ(ϕ(L), L)|L ∈ L(T ∗N)}

It does not follow from Theorem 1.1 that if the support of the isotopy
(ϕt)t∈[0,1] is contained in DgT

∗T n we have γ̃(ϕ) ≤ C̃(g). Indeed, this
is false as would follow from Polterovich’s book [Pol]proposition 7.1.A
(even though this is stated for the Hofer norm, the same result holds
for γ), or from the main theorem in [Vit5].

4. One may define the Hofer metric on Lagrangians in L(T ∗N) as

dH(L) = inf

{∫ 1

0

[max
x

H(t, x) − min
x
H(t, x)]dt | φ1

H(0N) = L

}

An interesting open question (even in the case of N = T n) is whether
for Lagrangians satisfying the assumption of our theorem, the quantity
dH(L) is bounded.
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2 Reformulation of the problem

First of all it is enough to prove our theorem for some given metric g0 since
there exists λ(g, g0) such that

DgT
∗T n ⊂ λ(g, g0)D

∗
g0
T ∗T n

We shall take for g0 the Finsler metric given by

|p|g0 = max{|pj| | j = 1, · · · , n}

Thus Dg0T
∗T n = T ∗

1 T
n = (S1 × [−1, 1])n.

Let Λ1 be the exact Lagrangian in T ∗S1 given by figure 1.

Since γ(Λ1) equals some integral
∫

c
pdq where c : S1 −→ T ∗S1 is a path in

Λ1 connecting two intersection points of Λ1∩0T n (cf. [Vit1]), we may conclude
that γ(Λ1) is of the order of 2π + 2δ. We can always arrange the data on
figure 1 so that γ(Λ1) ≤ 2π+4δ. Let us now consider Λ = Λn

1 ⊂ T ∗T n. Since
γ(L1 × L2) = γ(L1) + γ(L2), we get

Lemma 2.1.

γ(Λ) ≤ (2π + 4δ)n

Let us now denote by V0 the fiber of T ∗T n over (0, · · · , 0) and for ε ∈
{−1, 1}n, we denote by Vε(δ) the fiber over (ε1δ, · · · , εnδ).

The main property of Λ is that

Λ ∩ T ∗
1 T

n =


 ⋃

ε∈{−1,1}n

Vε(δ)


 ∩ T ∗

1 T
n.

This will enable us to compute γ(Λ, L) where L is in L and contained in
T ∗

1 T
n. We must then prove

Proposition 2.2. For any L in L contained in T ∗
1 T

n we have

γ(L,Λ) ≤ (2π + 4δ)n .

Since γ(L) ≤ γ(L,Λ) + γ(Λ) (see [Vit3]) proposition 2.2 implies theorem
1.1 Moreover this yields that the constant C(g0) is bounded by 4πn.

We are now going to sketch the proof of proposition 2.2

Let V (δ) =
⋃

ε∈{−1,1}n

Vε(δ)
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Figure 1: The curve Λ1
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Figure 2: L and Λ
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We shall first remind the reader about the identification of generating
function cohomology and Floer cohomology as follows.

The notation f b will designate the sublevel set

f b = {x|f(x) ≤ b} .

Let SL (resp. SΛ) be a generating function quadratic at infinity for L
(resp. Λ). Lisa Traynor defined in [Tr], the groups GH∗(L,Λ; a, b) as follows:

Definition 2.3. Let SL ⊖ SΛ(x, ξ, η) = SL(x, ξ) − SΛ(x, η). We define
GH∗(L,Λ; a, b) as H∗((SL ⊖ SΛ)b, (SL ⊖ SΛ)a).

Remarks 2.4. 1. A similar group FH∗(L,Λ; a, b) is defined using Floer
cohomology. We refer to [Viterbo - FCFH2] or section 3 for the precise
definition.

2. In defining FH∗(L,Λ; a, b) or GH∗(L,Λ; a, b) we need a normalizing
constant for the action on the generating function. One way to define
this normalization, is to specify the value of the action (or the g.f.q.i.)
at an intersection point of L ∩ Λ.

According to [Vit2],

Proposition 2.5. We have an isomorphism

GH∗(L,Λ; a, b) ≃ FH∗(L,Λ; a, b)

As a result, if we defineGH∗(L,Λ) and FH∗(L,Λ) asGH∗(L,Λ;−∞,+∞)
and (FH∗(L,Λ;−∞,+∞), both are isomorphic, according to Floer, toH∗(T n).
Indeed for any Hamiltonian diffeomorphism ϕ, we have

FH∗(L,Λ) = FH∗(ϕ(L), ϕ(Λ)) .

If ϕ(Λ) = OT n, we get

FH∗(ϕ(L), ON) ≃ FH∗(ϕ(L))
≃ H∗(T n)

according to Floer’s main theorems of [Fl1, Fl2].
Of course we have maps

σc
G : GH∗(L,Λ;−∞, c) −→ GH∗(L,Λ;−∞,+∞)

and

σc
F : FH∗(L,Λ;−∞, c) −→ FH∗(L,Λ;−∞,+∞)

We may thus define for α ∈ H∗(T n) the number c(α, L,Λ) as

8



Definition 2.6.

c(α;L,Λ) = inf{c | α is in the image of σc
G} =

inf{c | α is in the image of σc
F}

Now µ and 1 being the respective generators of Hn(T n) and H0(T n),

Definition 2.7. We set γ(L,Λ) = c(µ, L,Λ) − c(1, L,Λ).

Once we know that γ can be defined using Floer cohomology, we may
notice that Λ and V (δ) have the same intersection with T ∗

1 T
n, and we may

hope that there is an isomorphism between FH∗(L,Λ) and

(⋆) FH∗(L, V (δ)) ≃
⊕

ε∈{−1,1}n

FH∗(L, Vε(δ)) .

This isomorphism obviously holds at the chain level, and we have to show
that the coboundary maps are isomorphic. Of course, Vε(δ) is not isotopic to
the zero section, so that the above Floer cohomology, although well defined,
is not given by the cohomology of one of the manifolds. It can nonetheless be
computed, by isotoping L to the zero section. Since 0T n ∩ V0 = {(0, ..., 0)},
FC∗(0T n , V ) ≃ Z, hence FH∗(L, V ) ≃ FH∗(0T n , V ) ≃ Z.

However the isomorphism (⋆) does not respect the action filtration, as
we already see for n = 1 : on figure 1, the two points of Λ ∪ ON , that is
(−δ, 0) and (0, δ) have action difference approximately given by (2π + 2δ).
Considered as intersection points of Λ ∩ V−1(δ) and Λ ∩ V+1(δ), their action
would depending on the choice of the normalizing constants on Λ ∩ V−1(δ)
and Λ ∩ V+1(δ) and since these are independent, nothing can be said at this
point. Indeed, we see that for generic L, the intersection points of L with Λ
appear in families of cardinal 2n. Indeed each point x in L∩V0 yields a point
in L∩Vε(δ), that we denote by xε. Thus to a normalization of the action for
L ∩ Λ corresponds a normalization of each of the terms L ∩ Vε(δ).

We will denote by |ε| the sum
n∑

j=1

εj.

Proposition 2.8. We have an isomorphism

FH∗(L,Λ;−∞, c) ≃

⊕

ε∈{−1,1}n

FH∗− (n+|ε|)
2 (L, Vε(δ);−∞, c+ c(ε))

where c(ε) is approximately given by

c(ε) ≃ (n+ |ε|)(π + δ)
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As explained earlier, the isomorphism of proposition 2.8 assumes we asso-
ciate to a normalization of the action of the points in L∩ Λ a normalization
of the action of the points in L ∩ Vε(δ). Moreover for δ small enough, there
is a natural bijection between L ∩ Vε(δ) and L ∩ V0.

We thus choose a point x0(−1, · · · ,−1) in Λ∩L contained in V(−1,··· ,−1)(δ)
and decide its action has value 0. We then decide that the corresponding
point x0(−1, · · · ,−1) in V(−1,··· ,−1)(δ) has also value 0 as a point in L ∩
V(−1,··· ,−1)(δ).

It is however obvious that as a point in L ∩ Λ, the difference in action

between x0(ε) and x0(−1, · · · ,−1) is given by c(ε)− c ≃ (n+
n∑

j=1

εj)(π + δ).

A similar argument holds for the grading of the cohomology via the Maslov
index.

Since for c = +∞ each term of the right hand side corresponds to a
generator of H∗(T n), and FH∗(L, Vε(δ)) ≃ Z we have the following result:

Corollary 2.9. If α ∈ H∗(T n) corresponds to an element in FH∗(L, Vε(δ))
then

c(α, L,Λ) = c(1, L, Vε(δ)) − c(ε)

In particular, since µ corresponds to ε = (+1, · · · ,+1) and 1 to
ε = (−1, · · · ,−1), we have:

γ(L,Λ) = c(µ, L,Λ) − c(1, L,Λ) = c(1, L, V(1,··· ,1)(δ)) − c(1, L, V(−1,··· ,−1)(δ)) =

c(1, · · · , 1) − c(−1, · · · ,−1) ≃ 2n(π + δ) .

Proof of corollary assuming proposition 2.8: Since degree (µ) = n and de-
gree (1) = 0, the class µ is associated to some Vε(δ) such that n + |ε| = 2n
i.e. ε = (+1, · · · ,+1) while 1 is associated to ε such that n + |ε| = 0 i.e.
ε = (−1, · · · ,−1).

The computation of the critical values is then obvious.

Clearly corollary 2.9 implies proposition 2.2, thus concluding our proof of
the theorem 1.1

3 Sketch of the proof of Proposition 2.8. First

steps

Let us now sketch the proof of proposition 2.8. First of all we denote from now
on by FC∗(L, V (δ)) the normalized chain complex associated to (L, V (δ)),

i.e. the complex with grading shifted by (n+|ε|)
2

and filtration shifted by c(ε):
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F̃C
∗
(L, V (δ); a, b) =

⊕

ε∈{−1,1}n

FC∗− (n+|ε|)
2 (L, Vε(δ); a+ c(ε), b+ c(ε))

since Λ ∩ L = L ∩ V (δ), the chain complexes FC∗(L,Λ) and F̃C
∗
(L, V (δ))

are obviously isomorphic. Moreover F̃C
∗

is defined so that the isomorphism
preserves grading and filtration. We are thus left to consider the coboundary
maps, δΛ and δV . As is well known since Floer’s work ([Fl1, Fl2]), these
maps “count” the number of holomorphic strips, i.e. holomorphic maps
u : [−1, 1] × R → (T ∗T n, J) where J is some almost complex structure on
T ∗T n, and u(−1, t) ∈ L , u(1, t) ∈ Λ (resp. V ). In fact given x, y in L∪Λ the
set of such holomorphic maps MΛ(x, y) (resp. MV (x, y)) has the obvious

R-action τ ∗u(s, t) = u(s, t+ τ). The quotient space M̂Λ(x, y) = M(x, y)/R

(resp. M̂V (x, y) = MV (x, y)/R) is discrete if x and y have (Maslov) index
difference one. We shall content ourselves with counting the number of points
mod 2 (we could get an integer at some extra cost, but this will not be
necessary). We thus have

♯2M̂Λ(x, y) = 〈δΛx, y〉 .

♯2M̂V (x, y) = 〈δV x, y〉 .

Our proposition follows from

Proposition 3.1. For a suitable choice of J , we have

♯2M̂Λ(x, y) = ♯2M̂V (x, y) .

The idea of the proof is to choose J so that on one hand T ∗
1 T

n is pseudo
convex and on the other hand Vε(δ) is totally real i.e. it is locally the fixed
point set of a anti-holomorphic map.

With such a choice of J , the proposition being obvious for 0N , we show
in section 4 that as we isotope 0N to ϕ(0N) through ϕt(0N), the holomorphic
strips contained in T ∗

1 T
n do not interact with those not contained in this

pseudo convex set.

Obviously those contained in T ∗
1 T

n contribute in the same way to ♯2M̂Λ(x, y)

and ♯2M̂V (x, y), since a holomorphic strip contained in T ∗
1 T

n bounding L and
Λ is the same as a holomorphic strip bounding L and V .

Our last step is to prove that the strips exiting from T ∗
1 T

n do not con-

tribute to ♯2M̂Λ(x, y) or ♯2M̂V (x, y). This is completed in section 5.
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4 Holomorphic strips in T ∗
1 T

n

Let J be an almost complex structure on T ∗T n satisfying the following prop-
erties

(a) T ∗
ν T

n = {(q, p) ∈ T ∗T n| |p|1 ≤ ν}

is J-pseudo convex for ν ≥ 1

(b) the verticals Vε(δ) are fixed points of a locally defined anti-holomorphic
involution.

Any almost complex structure will be implicitly assumed to satisfy the
above assumptions. Our first goal is to prove

Proposition 4.1. Let u : [−1, 1] × R → T ∗T n be a J-pseudo holomorphic
with boundary in L ∪ Vε(δ) i.e. u(−1, t) ∈ L , u(1, t) ∈ Vε(δ).

Assume J satisfies (a) and (b), and L is contained in T ∗
1 T

n. Then
u([−1, 1] × R) is contained in T ∗

1 T
n.

Proof : Consider the function f = |p ◦ u|1 on [−1, 1] × R. Arguing by
contradiction, we assume the supremum of f is > 1. Since

lim
t→±∞

u(s, t) ∈ L ∩ V ⊂ T ∗
1 T

n

the supremum is not achieved as t goes to ±∞, hence it is a maximum
achieved either at an interior point (i.e. in ]−1, 1[×R) but this is impossible
due to the maximum principle, or at boundary point.

Since u({−1} × R) ⊂ L ⊂ T ∗
1 T

n, the boundary point must be (1, t0) and
by translation we may assume it is (1, 0).

Now let τ be the anti holomorphic involution fixing Vε(δ), and consider
the map w defined in a neighbourhood of (−1, 0) in R

2 by

• w(s, t) = u(s, t) for s ≥ −1

• w(s, t) = τ · u(−2 − s, t) for s ≤ −1

Clearly w is continuous, J-holomorphic and |p ◦w|1 has a local maximum at
(−1, 0). This is a contradiction, hence our proposition follows. �

As a consequence of proposition 4.1, we see that a holomorphic strip with
boundary in L ∪ Λ is

- either contained in T ∗
1 T

n and therefore has boundary in L ∪ Vε(δ) for
some ε ∈ {−1, 1}n

- is not contained in T ∗
(1+α)T

n for some positive α depending only on Λ.
For example

1 + α = sup{|p| | (x, p) ∈ Λ ⇐⇒ (x, p) ∈ Vε(δ)}
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5 The complex (FC∗(L,Λ), δΛ)

Our goal in this section is to prove that if x in FC∗(L,Λ) ≃ FC∗(L, V (δ)) sat-
isfies δΛ(x) = 0 then δV (x) = 0. In fact for a suitable filtration of FC∗(L,Λ),
denoted FC∗

t (L,Λ) we have

Proposition 5.1. There is a filtration FC∗
t (L,Λ) such that δΛ increases the

filtration (i.e. δΛ : FC∗
t (L,Λ) → FC∗

t (L,Λ)) and the induced map

δ̄Λ : FC∗
t /FC

∗
t−1 → FC∗

t /FC
∗
t−1

coincides with the map δ̄V induced by δV .
Moreover FC∗

t /FC
∗
t−1 ≃ FH∗(L, Vε(δ)) for some ε = ε(t).

Remark 5.2. This result is in fact a vanishing theorem for a spectral sequence
(essentially the one in [F-S-S1]). According to [Seidel] this is essentially in-
cluded in the wonderful paper [F-S-S1] (see also [F-S-S2], and for an alter-
native approach to [N, N-Z]) since this is a case where the spectral sequence
discussed there degenerates at E1. As pointed out by Paul Seidel this is a
case where the identification of the E2 term is still conjectural.

Proof. The idea of the proof is based on a modification of the symplectic
form, so that holomorphic strips inside T ∗

1 T
n will have much smaller area

than those exiting from T ∗
1 T

n. This new area yields a filtration by levels of
the action on FC∗(L,Λ) which has the required properties.

Indeed let rν be the map defined on T ∗S1 by :

rν(x, p) = (x, Pν(p)) where

Pν(p) =
1

ν
· p for |p| ≤ 1

= p for |p| ≥ 1 + α

and moreover p→ Pν(p) is monotone
Note that rν(Λ) = Λ, rν(Vε) = Vε. Denoting by Rν the product map

Rν(x1, p1, · · · , xn, pn) = (rν(x1, p1), · · · , rν(xn, pn))

we have again Rν(Λ) = Λ , Rν(Vε) = Vε and Rν(L) ⊂ T ∗
1/cT

n.

Let σn = σ1 ⊕ . . . ⊕ σ1 be the standard symplectic form on T ∗T n, J0 =
J0 ⊕ . . .⊕ J0 the standard complex structure.

The J-holomorphic strips are mapped by Rν to (R∗
νJ)-holomorphic strips.
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Figure 3: The function Pν
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If such a strip is contained in T ∗
1 T

n, and has area A, its image by Rν has
area 1

ν
A.

On the other hand if such a strip exits from T ∗
1 T

n, we claim its area is
bounded from below independently from ν.

Lemma 5.3. There is a constant β0 > 0 such that any R∗
ν(J0)-holomorphic

strip with boundary in Rν(L) ∪ Λ exiting T ∗
1 T

n has area greater than β0.

Proof. Even though the lemma holds for any J and Λ (see Appendix of
[Vit2]) we shall take advantage of the special structure.

Indeed, a holomorphic strip for (R∗
νJ0) is given by n maps (u1, · · · , un)

uj :] − 1, 1[×R → T ∗S1 is r∗ν(J0)-holomorphic uj(1, t) ∈ Λ1 uj(−1, t) ∈ T ∗
1S

1

(since (u1, · · · , un)(−1, t) ∈ Rν(L) ⊂ T ∗
1 T

n).

If the holomorphic strip is not contained in T ∗
1 T

n, one of the uj, for
example u1, will exit from T ∗

1S
1. If is then clear that

∫
[−1,1]×R

u∗1σ1 must be

greater than the area of the upper or lower loop of figure 2, i.e. greater than
2π.

Since
∫
[−1,1]×R

u∗jσ1 > 0 and

∫

[−1,1]×R

u∗σ =
n∑

j=1

∫

[−1,1]×R

u∗jσ1

we get that this integral is greater than 2π. �

On the other hand, (R∗
νJ0)-holomorphic strips contained in T ∗

1 T
n have

area 0( 1
ν
) and for ν large enough (since there are only finitely many strips)

they all have area less than π
2
.

Proof of proposition 2.8. Let us summarize our findings. Consider δν
Λ the

coboundary map associated to (R∗
νJ0) for c large enough. Then δν

Λ is the
sum of the contributions corresponding to holomorphic strips inside T ∗

1 T
n,

denoted by δint
Λ , and holomorphic strips exiting T ∗

1 , T
n, denoted by δext

Λ .

Of course δΛ = δint
Λ + δext

Λ , and if A(x) is the value of the action at x, we
have

−〈δint
Λ x, y〉 6= 0 =⇒ A(y) − A(x) ≤ 0

(
1

ν

)

−〈δext
Λ x, y〉 6= 0 =⇒ A(y) − A(x) ≥ 2π

Moreover δint
Λ = δV .
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Therefore let us choose x0(ε) in Vε(δ) so that for c large enough,

A(x0(ε)) −A(x0(ε
′)) ≃ π

n∑

j=1

(εj − ε′j)

so that A(x0(ε)) ≃ π(
∑n

j=1 εj).

We then set y ∈ FCt\FCt−1 if and only if A(y) ≃ A(x0(ε)) with t =
n∑

j=1

εj.

It is now clear that δint
Λ sends FCt to FCt, and δext

Λ sends FCt to
∑

δ≥t+1

FCs.

As a result, the cohomology of (FC∗, δΛ) can be computed by a spectral
sequence associated to the level filtration. The computation of this spec-
tral sequence is done by first taking the cohomology of (FC∗, δint

Λ ), that is⊕
ε∈{−1,1}n

FH∗(L, Vε(δ)) and then computing the cohomology induced by δext
Λ .

But FH∗(L,Λ) has rank 2k and so has
⊕

ε∈{−1,1}n FH∗(L, Vε(δ)) therefore

the map induced by δext
Λ must vanish.

This proves proposition 2.8.

6 Appendix: extension to more general cotan-

gent bundles

We shall here assume M is a compact manifold admitting a perfect Morse
function, i.e. a Morse function for which Morse inequalities are in fact equal-
ities.

We claim that the above proof works exactly in the same way. The crucial
steps are

1. Construct the analogue of Λ. To obtain this, we start from a perfect
Morse function f , and consider the graph of df . We then dilate this to
c · df for c going to infinity. Then the intersection of the unit tube and
this graph will be close to the vertical fibres over critical points of f .
We may then isotope this graph inside the tube of radius 2 to make it
equal to the vertical over such points. We denote by Λ this manifold.
The minimal possible value of γ(Λ) is a constant depending only on
(M, g).

2. The inflation of the symplectic form so that the integral of ω over a
J-holomorphic curve outside the unit tube is arbitrarily large. Now
we may assume that Λ is essentially the union of two copies of a
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vertical Lagrangian and a closed Lagrangian outside the tube. Let
h be a plurisubharmonic function such that ω = dJ∗dh. We may take
h(q, p) = |p|2. We are going to replace h by φ ◦ h where φ : R → R

is an increasing convex function. It is then well-known that φ ◦ h is
again plurisubharmonic. Then the Liouville form J∗df = λ = pdq is
replaced by λφ = φ′(f)λ. Then any vertical Lagrangian (i.e. q = q0)
is again Lagrangian. Assume that φ(t) = a · t for t greater than 2 and
for a large enough. Then a Lagrangian outside the tube of radius 2 is
still Lagrangian (since ωφ = aω ) and a vertical Lagrangian remains
Lagrangian since λφ = φ′(f)λ and λ = pdq vanishes on vertical La-
grangians. From this it follows that Λ is Lagrangian for ωφ, but the
area of the portion of a holomorphic curve contained outside the tube
of radius 2 is multiplied by a.

3. For a large enough we may then proceed as in the proof of proposition
5.1. The vanishing of the spectral sequence is derived in the same way
as in the torus case, since the number of vertical parts is twice the
number of critical points of h.

We thus proved

Theorem 6.1. Let M be a manifold such that M carries a perfect Morse
function. Then here exists a constant CM(g) such that any Lagrangian L in
DgT

∗M satisfies
γ(L) ≤ CM(g)

Remark 6.2. Note that we do not need M to carry a perfect Morse function.
If a fiber bundle F → P →M carries a perfect Morse function, then the lift
L̃ of L to T ∗P is also contained in the unit tube and thus satisfies

γ(L) ≤ γ(L̃) ≤ CP (g̃)
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