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Abstract. Building on the work of Martinetz, Schulten and de Silva,
Carlsson, we introduce a 2-parameter family of witness complexes and
algorithms for constructing them. This family can be used to determine
the gross topology of point cloud data in R

d or other metric spaces. The
2-parameter family is sensitive to differences in sampling density and thus
amenable to detecting patterns within the data set. It also lends itself to
theoretical analysis. For example, we can prove that in the limit, when
the witnesses cover the entire domain, witness complexes in the family
that share the first, scale parameter have the same homotopy type.

1 Introduction

The analysis of large data sets is a paradigm of growing importance in the sci-
ences. Broad advances in technology are leading to ever larger data sets capturing
information in unprecedented detail. Examples are micro-arrays that probe gene
activity for entire genomes and sensor networks that challenge our ability to
integrate time-series of distributed measurements. After distilling such data and
giving it a geometric interpretation as a point cloud in possibly high-dimensional
ambient space, we are faced with the problem of extracting properties of that
cloud, such as its gross topology, various patterns within it, or its geometric
shape. We see the study of these point clouds as an extension of the reconstruc-
tion of surfaces from point clouds in R

3; see [1].
In this paper we adopt the point of view that the goal is not the reconstruction

of a unique shape but rather a hierarchy that captures the data at different scale
levels. In this we are inspired by the work on alpha shapes where scale is captured
by the radius of the spherical neighborhoods defined around the data points [2].
Our point of departure is in the method of reconstruction. Instead of appealing
to the metric of the ambient space we use the data itself to drive the formation
of the family of complexes. Specifically, we distinguish data points by the way
we use them: the landmarks form the vertices of the complexes we build and the
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Alpha-Beta Witness Complexes 387

witnesses provide support for simplices we add to connect the vertices. This idea
can be traced back to the topology adapting networks of Martinetz and Schulten
[3], who draw an edge between two landmarks if there is a witness for which
they are the two nearest. We may interpret the witness as a proof for the edge
to belong to the Delaunay triangulation of the landmark points. Unfortunately,
a witness is not proof for its three nearest landmarks forming a triangle in
the Delaunay triangulation. The resulting impasse was overcome for ordinary
Delaunay triangulations by de Silva [4]. He proved that if for every subset of
p+1 landmarks there is a witness for which the points in the subset are at least
as close as any other landmarks, then this is a proof for the p + 1 landmarks to
form a p-simplex in the Delaunay triangulation. This insight motivated de Silva
and Carlsson to introduce a generalization of the Martinetz-Schulten networks
to two- and higher-dimensional complexes [5]. They used their new tool to study
the picture collection of van Hateren and van der Schaaf [6], also considered
by Lee, Pedersen and Mumford [7]. The main insight from their work is that a
majority of small pixel subarrays can be parametrized on a (two-dimensional)
Klein bottle in 7-dimensional ambient space [8].

If the witness complex is patterned after the Delaunay triangulation, why do
we not just construct the latter? There is a variety of reasons, including

– the size of the complex can be controlled by choosing the landmarks while
not ignoring the information provided by the possibly many more sample
points;

– distances are easier to compute than the primitives required to construct
Delaunay triangulations;

– extending the definition of witness complexes to metric spaces different from
Euclidean spaces is comparatively straightforward;

all already mentioned in [5]. There are also significant drawbacks, such as the
locally imperfect reconstruction caused by the finiteness of the witness set. The
main purpose of this paper is to present methods that cope with the mentioned
drawback of witness complexes. Our main contributions are theoretical, in un-
derstanding the family of witness complexes and its algorithms. Specifically,

(i) we introduce a 2-parameter family that contains prior witness complexes as
sub-families;

(ii) we generalize de Silva’s result for Delaunay triangulations to witness com-
plexes in the limit;

(iii) we analyze the structure of the family of witness complexes by subdividing
its parameter plane;

(iv) we give algorithms to construct this subdivision, compute homology within
it, and visualize the result.

Outline. Section 2 presents the complexes after which we model our witness
complexes. Section 3 introduces the 2-parameter family of witness complexes.
Section 4 studies the family through subdivisions of the parameter plane. Sec-
tion 5 describes algorithms constructing alpha-beta witness complexes. Section
6 concludes the paper.
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388 D. Attali et al.

2 Complexes

In this section, we introduce the family of complexes that provide the intuition
for our witness complexes. The family contains the 1-parameter families of Čech
and alpha complexes and uses a second parameter to interpolate between them.
We begin with definitions from algebraic topology.

Simplicial Complexes. The geometric notion of a simplex, σ, is the convex hull
of a collection of affinely independent points in R

d. We say the points span the
simplex. If there are p + 1 points in the collection, we call σ a p-simplex and
p = dim σ its dimension. Any subset of the p+1 points defines another simplex,
τ ≤ σ, and we call τ a face of σ and σ a coface of τ . A simplicial complex
is a finite collection of simplices, K, that is closed under the face relation and
satisfies the extra condition that any two of its simplices are either disjoint or
their intersection is a face of both. A subcomplex is a simplicial complex K ′ ⊆ K.
It is full if it contains all simplices in K exclusively spanned by vertices in K ′.
We often favor the abstract view in which a p-simplex is just a collection of
p+1 points, a face is simply a subset, and a simplicial complex is a finite system
of such collections closed under the subset relation. For every finite abstract
simplicial complex, there is a large enough finite dimension, d, such that the
complex can be realized as a simplicial complex in R

d. For example, d equal
to one plus twice the largest dimension of any simplex is always sufficient. The
primary use of a simplicial complex is to construct or represent a topological
space. Its underlying space is the subset of R

d covered by the simplices, together
with the topology inherited from R

d. Finally, K triangulates a topological space
if its underlying space is homeomorphic to that topological space.

A computationally efficient approach to classifying topological spaces is based
on homology groups [9]. For a given space, there is one group for each dimension
p capturing, in some sense, the holes with p-dimensional boundaries. We use
modulo-2 arithmetic and thus get homology groups isomorphic to Z/2Z to some
non-negative integer power. That power is the rank of the group and the p-th
Betti number of the topological space. The classification of spaces by homology
groups is strictly coarser than by homotopy type. It follows that two spaces with
the same homotopy type have isomorphic homology groups, of all dimensions.
Building a simplicial complex incrementally and writing down the result at every
stage, we get a nested sequence of complexes, ∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn = K,
which we refer to as a filtration of K. The inclusion Ki ⊂ Kj induces a ho-
momorphism from the p-th homology group of Ki to the p-th homology group
of Kj , for every p ≥ 0. We refer to the image of the homomorphism as a per-
sistent homology group and to its rank as a persistent Betti number. For more
information on these groups we refer to [10, 11].

Čech and Alpha Complexes. There are but a few complexes that have been used
to turn a finite set of points into a multi-scale representation of the space from
which the points are sampled. Perhaps the oldest construction is the nerve of a
collection of spherical neighborhoods, one about each data point. To formalize
this idea, let L ⊆ R

d be a finite set of points.
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Alpha-Beta Witness Complexes 389

Definition. For any real number α ≥ 0, the Čech complex of L, Čech(α), con-
sists of all simplices σ ⊆ L for which there exists a point x ∈ R

d such that
‖x − k‖ ≤ α, for all vertices k ∈ σ.

The Nerve Lemma implies that Čech(α) has the same homotopy type as the
union of the balls with radius α and centered at points in L [12]. A similar
construction requires, in addition, that x be closest to and equally far from the
relevant data points [2].

Definition. For any real number α ≥ 0, the alpha complex of L, Alpha(α),
consists of all simplices σ ⊆ L for which there exists a point x ∈ R

d such that
‖x − k‖ ≤ α and ‖x − k‖ ≤ ‖x − �‖, for all k ∈ σ and all � ∈ L.

Equivalently, Alpha(α) is the nerve of the collection of balls of radius α, each
clipped to within the Voronoi cell of its center. The Nerve Lemma implies that
Alpha(α) also has the homotopy type of the union of balls. In summary, Alpha(α)
is a subcomplex of Čech(α) and the two have the same homotopy type, for every
α ≥ 0. Alpha complexes are more efficient than Čech complexes but require the
evaluation of a more complicated geometric primitive. For α = ∞, we have the
nerve of the collection of Voronoi cells, also known as the Delaunay complex of
L, Delaunay = Alpha(∞) [13].

Almost Alpha Complexes. We interpolate between Čech and alpha complexes
using a second parameter, β.

Definition. For any real numbers α, β ≥ 0, the almost alpha complex, AA(α, β),
consists of the simplices σ ⊆ L for which there exists a point x ∈ R

d such that
‖x − k‖ ≤ α and ‖x − k‖2 ≤ ‖x − �‖2 + β2, for all k ∈ σ and all � ∈ L.

As suggested by the name, these complexes are similar to but different from the
almost Delaunay complexes introduced in [14]. For β ≥ α, the second constraint
is redundant, and for β = 0, it requires that x be equidistant from all k ∈ σ. In
other words, AA(α, α) = Čech(α) and AA(α, 0) = Alpha(α).

Let ak(α) be the closed ball with center k and radius α, and write aσ(α) for
the common intersection of the balls ak(α), for k ∈ σ. Similarly, let bk,�(β) be the
closed half-space of points whose square distance to k exceeds that to � by at most
β2, and write bσ,υ(β) for the common intersection of the half-spaces bk,�(β), for
k ∈ σ and � ∈ υ. Then σ belongs to AA(α, β) iff regionσ(α, β) = aσ(α) ∩ bσ,L(β)
is non-empty. But this region is the intersection of the regions of its vertices,
regionσ(α, β) =

⋂
k∈σ regionk(α, β). Hence, AA(α, β) is the nerve of the regions

of the vertices. Independent of β, the union of these regions is the union of balls of
radius α, same as for the Čech and the alpha complexes. Indeed, β only controls
the amount of overlap between the regions, which increases with increasing β.
Since the regions are convex, the Nerve Lemma implies that the homotopy type
of AA(α, β) is the same as that of the union of balls. We summarize,

Alpha(α) ⊆ AA(α, β) ⊆ Čech(α), (1)
Alpha(α) � AA(α, β) � Čech(α), (2)

for all α, β ≥ 0.
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390 D. Attali et al.

3 Alpha-Beta Witness Complexes

The almost alpha complexes have witness versions obtained by collecting all
simplices whose regions contain at least one of a finite set of sampled points.
This construction is problematic for small values of β, for which the regions of
the vertices have only small overlap. Following de Silva [4], we introduce the
concept of a weak witness and show that the resulting witness complexes are
better approximations of the complexes than the mentioned witness versions.

Weak and Strong Witnesses. The general set-up consists of a finite set X ⊆
R

d of witnesses and another, usually smaller finite set L ⊆ R
d of landmarks.

We consider complexes over L consisting of simplices that have the backing of
witnesses in X . Specifically, we call x ∈ X a weak (α, β)-witness of σ ⊆ L if

[I] ‖x − k‖ ≤ α, for all k ∈ σ, and
[II] ‖x − k‖2 ≤ ‖x − �‖2 + β2, for all k ∈ σ and all � ∈ L − σ.

Equivalently, x belongs to aσ(α) ∩ bσ,L−σ(β). We call a weak (α, β)-witness a
strong (α, β)-witness if the inequality in Condition [II] holds for all k ∈ σ and
all � ∈ L or, equivalently, if x ∈ aσ(α) ∩ bσ,L(β). The difference is in the set
of landmarks that compete with the vertices of σ. For a weak witness this set
excludes the vertices of σ which therefore do not compete with each other. This
subtle difference has important consequences.

Definition. For any real numbers α, β ≥ 0, the alpha-beta witness complex,
Witness(α, β), consists of the simplices σ ⊆ L such that every face τ ≤ σ has a
weak (α, β)-witness in X .

Condition [II] is redundant unless α exceeds β so we restrict the 2-parameter
family to 0 ≤ β ≤ α ≤ ∞. With increasing value of α and, independently, of
β, the requirements for being a weak witness get more tolerant, which implies
Witness(α, β) ⊆ Witness(α′, β′) whenever α ≤ α′ and β ≤ β′.

Witness Complexes in the Limit. Similar to almost alpha complexes, the alpha-
beta witness complexes have a nice geometric interpretation. We describe it in
the full version of the paper, where we also show how to extend de Silva’s result
on Delaunay triangulations to almost alpha complexes. In particular, we prove
that the existence of a weak (α, β)-witness for each face implies the existence
of a strong (α, β)-witness for the simplex. In other words, if X = R

d then the
alpha-beta witness complex is the same as the almost alpha complex.

Weak Almost Alpha Theorem. If X = R
d then Witness(α, β) = AA(α, β).

For finite sets X , the alpha-beta witness complex can only be smaller than
for X = R

d, which implies Witness(α, β) ⊆ AA(α, β). This should be con-
trasted with the fact that a strong witness for a simplex is a weak witness for
all faces of the simplex. Hence, the witness version of the almost alpha complex,
which collects all simplices with strong (α, β)-witnesses in X , is a subcomplex
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Alpha-Beta Witness Complexes 391

of Witness(α, β). By (2), the homotopy type of the almost alpha complex does
not depend on β. Any variation in the homotopy type of the alpha-beta witness
complex for fixed value of α must therefore be attributed to insufficient sampling.

4 2-Parameter Family

In this section, we focus on the family of witness complexes, describing properties
in terms of subdivisions of the parameter plane. In this plane of points (α, β)
the balls grow from left to right and the Voronoi cells grow from bottom to top.
Potentially interesting sub-families arise as horizontal and vertical lines but also
as 45-degree lines along which the balls and cells grow at the same rate.

Comparison with Prior Notions. Several versions of witness complexes have been
defined in [5]. We compare them with the 2-parameter family, limiting ourselves
to Čech-like constructions. We start with the first version introduced by de Silva
and Carlsson.

Definition. The strict witness complex, W∞, consists of the simplices σ ⊆ L
whose faces belong to W∞ and for which there exists a witness x ∈ X such that

[S] ‖x − k‖ ≤ ‖x − �‖, for all k ∈ σ and all � ∈ L − σ.

Condition [S] is the same as Condition [II] for β = 0. There is no counterpart
to [I] but we can make this condition redundant by setting α = ∞. In other
words, W∞ = Witness(∞, 0) in our family, as indicated in Fig.1. To introduce
the other three constructions in [5], let p be the dimension of σ and distj(x)
the distance of x ∈ X from its j-nearest landmark point. Using a non-negative
real parameter R, we get three 1-parameter families of witness complexes, each
obtained by substituting one of

[0] ‖x − k‖ ≤ R, for all vertices k ∈ σ;
[1] ‖x − k‖ ≤ R + dist1(x), for all vertices k ∈ σ;
[Δ] ‖x − k‖ ≤ R + distp+1(x), for all vertices k ∈ σ;

for Condition [S] in the definition of W∞. Following [5], we denote the members
of the three families as W (R, 0), W (R, 1), and W (R, Δ). The members of the first
family are the witness versions of the Čech complex, W (R, 0) = Witness(R, R).
For R = 0 in the second family, we get a p-simplex σ iff there is a witness in the
intersection of the p + 1 Voronoi cells of its vertices, which happens with proba-
bility 0 unless p = 0. As R increases, we get more tolerant about the precise loca-
tion of the witness. Equivalently, we can think of growing the Voronoi cells and
adding a simplex whenever we find a witness in the common intersection of the
enlarged cells. The effect of increasing R is therefore similar to that of increasing
β in Condition [II], although the enlarged cells have different shape. Condition
[Δ] is less restrictive than Condition [1] so we have W (R, 1) ⊆ W (R, Δ). We
can interpret [Δ] in terms of growing order-(p+1) Voronoi cells. This makes the
complexes in the third family rather similar to alpha-beta witness complexes
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392 D. Attali et al.

for α = ∞, although the geometric details are again different. The growth pre-
scribed by Condition [II] is milder and more controlled than that prescribed by
Condition [Δ]. Indeed, we have Witness(∞, R) ⊆ W (R, Δ) , for all R ≥ 0. To
see this, consider Conditions [II] and [Δ] for a witness x and a p-simplex σ. If
the p + 1 vertices of σ are the p + 1 closest landmarks then x and σ satisfy
both conditions for all values of β and R. Otherwise, the smallest distance from
x to a landmark � not in σ is at most distp+1(x). For β = R, Condition [II]
is equivalent to ‖x − k‖2 ≤ R2 + ‖x − �‖2 for all � ∈ L − σ. It follows that
‖x − k‖2 ≤ R2 + dist2p+1(x) which implies Condition [Δ]. The containment re-
lation cannot be reversed, meaning there is no positive constant c such that
W (R, Δ) is necessarily a subcomplex of Witness(∞, cR).

DelaunayWitness(α, 0)

W
it

ne
ss

(∞
,β

)
⊆

W
(β

,Δ
)

W
itn

es
s(α

, α
) =

W
(α

, 0
)

A
A

(∞
,β

)

W∞

α = ∞
β = 0

β = ∞

α = 0 AA(α, 0) = Alpha(α)

AA(α
, α

) =
Čec

h(
α)

Fig. 1. The parameter plane of alpha-
beta witness complexes. We find the
Čech and alpha complexes and the wit-
ness complexes of de Silva and Carlsson
along the edges of the triangle.

k

�

k�

α = ∞α = 0

β = 0

β = ∞

Fig. 2. Since vertices have no proper
faces, Q(k, X) and Q(�, X) are unions
of quadrants. For the edge, Q(k�, X) is
the portion of its union of quadrants
inside Q(k, X) and Q(�,X).

Birthline Subdivision. We decompose the parameter plane into maximal regions
within which the alpha-beta witness complexes are the same. For this purpose,
we introduce two collections of functions, Aσ, Bσ,υ : R

d → R, defined by

Aσ(x) = max
k∈σ

‖x − k‖2;

Bσ,υ(x) = max
k∈σ

‖x − k‖2 − min
�∈υ

‖x − �‖2
.

Both are convex. It follows that their sublevel sets are convex regions, namely
the intersections of balls and half-spaces used earlier, A−1

σ (−∞, α2] = aσ(α) and
B−1

σ,υ(−∞, β2] = bσ,υ(β). Hence, a point x ∈ X is a weak (α, β)-witness for σ iff
Aσ(x) ≤ α2 and Bσ,L−σ(x) ≤ β2. The two conditions are independent implying
the set of points (α2, β2) whose coordinates satisfy them form an upper right
quadrant which we denote Q(σ, x). Since σ can have more than one weak witness,
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Alpha-Beta Witness Complexes 393

we consider the union of quadrants they define, and since we require all faces of
σ to have weak witnesses, we take the intersection of these unions,

Q(σ, X) =
⋂

τ≤σ

(
⋃

x∈X

Q(τ, x)

)

,

calling its boundary the birthline of σ. It decomposes the parameter plane into
two regions such that σ belongs to Witness(α, β) iff the point (α2, β2) lies on or
to the upper right of the birthline; see Fig.2.

The birthlines decompose the parameter plane into the birthline subdivision
consisting of maximal regions within which the alpha-beta witness complexes are
the same. Neighboring regions are separated by curves, each belonging to one
or more birthlines. Curves meet at common endpoints where birthlines merge
or cross. Curves that belong to two or more birthlines are common, even in the
generic case. In a typical example, the witness complexes in two neighboring
regions differ by a collapse, which consists of all faces of a simplex that are
cofaces of a proper face of that simplex. A collapse does not affect the homotopy
type of the complex, implying that we get isomorphic homology groups in the
two regions, for all dimensions.

5 Algorithms

We focus on algorithms that construct the family rather than individual alpha-
beta witness complexes. We begin by constructing the birthline subdivision of
the parameter plane, which we use as a representation of the family. We then
discuss an algorithm for computing the homology of the complexes in the fam-
ily. To extract patterns we consider classes that persist while we vary the two
parameters.

Constructing Birthlines. Recall that a p-simplex σ and a witness x define a
quadrant above and to the right of its corner point. The first coordinate of
the corner is Aσ(x) = maxk∈σ ‖x − k‖2. To get the second coordinate, we find
the set of p + 1 landmarks closest to x and distinguish between two cases. If
this set is σ then x is a weak witness of σ for all values of β so the second
coordinate of the corner is zero. Else this set contains a closest landmark � not
in σ and we get the second coordinate as Bσ,L−σ(x) = Aσ(x)−‖x − �‖2. Clearly
these computations benefit from a data structure that provides fast access to the
landmarks near a query point. There are many data structures available for this
task and we refer to Indyk [15] for a recent survey of this literature. The union of
the quadrants Q(σ, x), over all witnesses x, is the lower staircase of their corner
points. Constructing this staircase is another classic problem in computational
geometry [16]. There are many fast methods including a plane-sweep algorithm
that constructs the staircase from left to right. This algorithm is convenient
for our purposes since it can be reused to compute the birthline of σ as the
upper envelope of the staircases of all faces of σ. Finally, we use the plane-sweep
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394 D. Attali et al.

algorithm a third time to convert the collection of birthlines into the birthline
subdivision. Alternatively, we can do all three plane-sweeps in one, constructing
the birthline subdivision directly from the corner points of the quadrants.

What we described is hardly the most efficient method to construct the birth-
line subdivision. In particular, we expect that most of the quadrants are redun-
dant. It would be interesting to prove bounds on the output size, the number of
edges in the birthline subdivision, and to find an algorithm that avoids looking
at redundant quadrants and achieves a running time sensitive to the output size.

Computing Homology. We now describe an algorithm that computes the p-th
Betti number for each region in the subdivision. It does this for all values of
p. The main idea is to explore the parameter plane in a topological sweep that
advances a directed path connecting the start-point, (0, 0), with the end-point,
(∞, ∞), while remaining monotonically non-decreasing in both parameters at
all times. Initially, the path follows the lower edge of the parameter plane, from
(0, 0) to (∞, 0), and then the right edge, from (∞, 0) to (∞, ∞). We represent
this combinatorially by the sequence of simplices labeling the birthlines the path
crosses. If m denotes the number of landmarks, we go from the empty complex
at (0, 0) to the m-simplex at (∞, ∞), which implies that the sequence contains
all M = 2m simplices spanned by the landmark points. An elementary move
pushes the path locally across a vertex of the subdivision. This corresponds
to locally reordering the simplices, which we do one transposition at a time.
After processing all transpositions, we arrive at the final path, which follows
the diagonal from (0, 0) to (∞, ∞). The purpose of the sweep is to compute the
Betti numbers of the regions, which we do using the algorithm in [10] for the
initial sequence and the algorithm in [17] to update the information for each
transposition. In the worst case, the initialization takes time cubic in M and
each transposition takes time linear in M .

The algorithm’s biggest impediment is the large size of the complex at (∞, ∞).
To make it feasible for landmark sets that are not very small, we choose an upper
bound b for β. Shrinking the parameter domain this way seems appropriate since
α and β play fundamentally different roles. The first parameter, α, controls the
resolution of the reconstruction, allowing small features to form for small α and
letting gross features take over for large α. The second parameter, β, controls how
tolerantly we interpret witnesses. The strict interpretation at β = 0 combined
with occasional gaps in the distribution of witnesses leads to holes caused by
sporadically missing simplices. The findings in [5] suggest that small non-zero
values of β suffice to repair these holes. Although our mathematical formulation
of tolerance is different from that paper, we expect the same holds for alpha-beta
witness complexes.

Persistence. We now address the question of how to read the Betti numbers of
the family represented by the birthline subdivision. We are not after finding the
“best” complex since we cannot expect that a single complex would contain all
interesting patterns in the data. Since these patterns are expressed at different
scale levels a simultaneous representation may indeed be impossible. Instead,
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Alpha-Beta Witness Complexes 395

we are looking for homology classes that persist while α and β vary. Ideally, we
would like to define a notion of two-parameter persistence but there are algebraic
difficulties [18]. We therefore fall back on the one-parameter notion introduced in
[10] which measures the length of the interval in a path along which a homology
class persists. Since the scale level is controlled solely by α it makes sense to draw
the path horizontally in the parameter plane so that persistence captures scale.
In other words, the directed path used in the computation of homology sweeps
the parameter plane from bottom to top. More precisely, we gradually increase
β from 0 to b and restrict the path to two turns, one at (β2, β2) and the other at
(∞, β2), with a horizontal line in between. To simulate monotonicity, which is
necessary to reduce the sweep to transpositions, we advance the horizontal line
by processing the simultaneous elementary moves from right to left. For each
value of β we can visualize the persistence information in a two-dimensional
diagram as defined in [19]. Each homology class is represented by a point whose
first coordinate marks its birth and whose second coordinate marks its death.
Since birth occurs before death this point lies above the diagonal and its vertical
distance from the diagonal is its persistence.

As proved by Cohen-Steiner et al. [19], small changes in the function cause
only small changes in the diagram. In the case at hand, the function is the value
of α at which a simplex is added to the witness complex. As β increases the
value of α at which the simplex enters stays the same or decreases. The changes
correspond to the steps in the birthlines and are therefore not continuous. Most
of the time the steps are small but not always. In particular the first step at
which a simplex is introduced can be large. Nevertheless it is useful to stack
up the persistence diagrams and to describe the evolution of a homology class
as a possibly discontinuous curve in three-dimensional space. In a context in
which these curves are continuous they have been referred to as vines forming
a collection called a vineyard [17]. The vineyard of the family of alpha-beta
complexes enhances the visualization of persistent homology classes by showing
how the persistence changes with varying β, the amount of tolerance with which
we recognize a witness of a simplex.

6 Questions and Extensions

We conclude this paper with a list of open questions and suggestions for further
research motivated by our desire to improve the algorithms.

Can we take advantage of the hole repairing quality of β without paying
the high price of exploding numbers of simplices? Evidence in support of this
possibility is that an overwhelming majority of changes caused by increasing β
are collapses, which preserve the homotopy type. This is consistent with our
observation that in the limit, for X = R

d, the homotopy type of Witness(α, β)
is independent of β.

Under reasonable assumptions on the distribution of witnesses and landmarks,
what is the expected size of the alpha-beta witness complex as a function of α
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and β? Similarly, what is the expected number of corners per birthline and what
is the expected size of the birthline subdivision?

There are strong parallels between work on witness complexes and on surface
and shape reconstruction. Are there versions of witness complexes analogous to
the Wrap complex [20], which may be viewed as following Forman’s theory of
discrete Morse functions [21]? Similarly, are there relaxations of the alpha-beta
witness complexes akin to the independent complexes studied in [22]?

Data sets are often contained in subspace of Euclidean space. Recent work
in this direction proves that every smoothly embedded compact manifold of di-
mension 1 or 2 in R

d has sufficiently fine samplings of landmarks and witnesses
such that Witness(∞, 0) is homeomorphic to the manifold [23]. A counterexam-
ple to extending this result to manifolds of dimension 3 or higher is described
in [24]. The counterexample is based on slivers, very flat tetrahedra in the De-
launay triangulation, suggesting the use of sliver exudation methods to remedy
the situation [25]. It would be interesting to extend these results to samplings of
submanifolds in which density variations encode important information about
the data.
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