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LP—solution of Backward Stochastic Differential

Equation with Barrier

Auguste Aman and Modeste N’Zi
UFR de Mathématiques et Informatique,
22 BP 582 Abidjan 22, Cote d’Ivoire

Abstract

In this paper, we are interested in solving generalized backward stochastic differential
equation with one barrier (RGBSDE for short). We deal with the case of fixed terminal and
also the random terminal case. The study use some new technical aspects of the stochastic
calculus related to the reflected Generalized BSDE, (see |5] for the case of BSDE) to derive
a priori estimates and prove existence and uniqueness of solution in LP,p > 1. The result
extended the one of Aman et al [1]. The need for this type of extension comes from
the desire to prove a probabilistic representation of LP— solution of semi-linear partial
differential equation with nonlinear Neumann boundary condition when p € (1,2).

MSC Subject Classification: 60F25; 60H20.
Key Words: Backward stochastic differential equation; Monotone generator; p—integrable

data.

1 Introduction

A linear version of backward stochastic differential equations (BSDE’s in short) was first con-
sidered by Bismut (|2], [3]) in the framework of optimal stochastic control. In 1990, Pardoux
and Peng [12] have introduced a nonlinear version of BSDE’s. Since, this kind of equations
found several fields of applications. For instance, in mathematical finance (El Karoui et al
[7], Cvitanic and Ma [6]), in stochastic control and stochastic game (Hamadéne and Lepeltier
[9],[10]). It also provided probabilistic interpretation of semi-linear PDE (Pardoux and Peng
[11]). However in most of the previous works, solutions are taken in L? space or in LP,p > 2.
The first work where they were in L”,p € (1,2) is the one done by El Karoui et al [7] when
the generator is Lipschitz continuous. Pardoux et al [5| generalized this result. They provided
the existence and uniqueness of solution of BSDE when the data £ and f(t,O,O)te[QT] are in
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LP p € (1,2) with a monotone generator, both for equation on a fixed and random time interval.
On other hand the so-called generalized BSDE have been considered by Pardoux and Zhang
[13]. This equation involves the integral with respect to an increasing process and provide a
probabilistic representation for solution of parabolic or elliptic semi-linear PDE with Neumann
boundary condition. The reflected case in the domain of a convex function or above a given
stochastic process have been investigate respectively by Essaky et al [8] and Aman et al [1]
in the case that solution is in L2. In this paper we generalize the above result dealing with a
class of reflected generalized BSDE and searching for solution in L”,p € (1,2). The paper is
organized as follows: the next section contains all the notations and assumptions, while section
3 give essential estimates. Section 4 is devoted to existence and uniqueness result in the case
where the data were in LP,p € (1,2) on the fixed time interval. Finally in section 5 we deal
with the same problem but on random time interval.

2  Preliminaries

Let B = {B,}~0 be a standard Brownian motion with values in IR? defined on some complete
probability space (2, F,IP) and {F;}:>o augmented natural filtration of B which satisfies the
usual conditions.

For any real p > 0, let us define the following spaces:

SP(IR¥), denote set of IR"— valued, adapted cadlag processes {Xi}eepo,m such that

1AL
p
|1 X]|sr = [E < sup \Xt]p) < +00;
0<t<T

and MP(IR¥)) is the set of predictable processes {X,}scpo.r) such that

P

HXHMP:IE[(/ |Xt|2dt>] < F00.
0

If p > 1, then ||.||s» (resp ||X||are) is a norm on SP(IRF) (resp. MP(IRF)) and these spaces
are banach spaces. But if pe (0,1), (X, X') — || X — X,HSP(Rk) (resp || X — X'|| \») define

a distance on SP(IR¥), (resp. MP(IR"))ands under this metric, SP(IR*) (resp. MP(IRF) is
complete.

Now let us give the following assumptions:

(A1) (Gy), is a continuous real valued increasing JF;—progressively measurable process

(A2) f and g are IR—values measurable functions defined respectively on Q x IR, x IR x IR?
and Q x IRy x IR such that there are constants u € IR, < 0, A > 0 and [1,+00)—
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valued process {¢:, ¥:}i<o verifying
(1) Vt,Yz,y — (f(t,y,2),9(t,y)) is continuous

(19)Vy, z, (W, t) — (f(w,t,y, 2),9(w,t,y)) is F; — progressively measurable
(iid) VE,Vy,V (2,2"), [f(ty,2) = f(t,y,2)] < Az = 2|

(iv) V6, Y2,¥(y.), (y—y) (f(ty.2) = [(ty,2) < ply — ¢

(0) Vt.Y2,5(y,y), (y—y) (9(t,y) — 9(t.y) < Bly — /'

(vi) Vi, vy, V2, |f(t,y, 2)] < @+ K(ly[ +[2]), gt 9)| < ¢ + Ky

(vii) TE [(fOT @(s)ds)p + (fOTw(s)dGs)p] < 0.

(A3) For any r > 0, we define the processes 7, and ¢, in L' ([0,7] x Q,m ® P) such that
(Z) 71—7“(15) = Sup\y|§r |f(ta Y, 0) - f(t> 07 0)|7

(ZZ) ¢7"(t> = SUPy|<r |g(t7 y) - g(tv 0)‘
(A4)¢ is a Fr—measurable variable such that IE(|{?) < 400

(A5) (Si);>0 is a continuous progressively measurable real-valued process satisfying:
(2) IE (supg<i<r(S;)?) < 400

(i7) Sr <EPas.
Before of all let us give meanning of a L”— solution of reflected BSDE.

Definition 2.1 A LP— solution of reflected generalized BSDE associated to the data (€, f, g, S)
is a triplet (Y, Zy, Ki)o<i<r of progressively measurable processes taking values in IR x R IR
and satisfying:

(1) Y is a continuous process
(i) Y, = €+ [ f(s.Ys, Zy)ds + [, f(s.Ys, Z)dGs — [ Z,dW, + Kp — K,
(i3) Y; > S,
‘ T 5, \P/?
(iv) IE | supg<i<r | V2| + (fo | Z] ds) < 400,
(v) K is an increasing process such that Ky =0 and fOT(YS — S)P K, =0 a.s.
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Let us now introduced the notation Z = || ' z1 o) in order to give basic inequality which
is analogue of corollary 2.3 in [5].

3 A priori estimates

Lemma 3.2 If (Y, Z, K) is a solution of reflected generalized BSDE associated to (&, f,q,5),
p>1,¢cp)=pllp—1)A1]/2.Then

T
Y + c(p) / VoL gy, sy |2 s
t

T T
< |§|+p/ v,y f(s,Ys,zs)de/ YT, g (s, Y2) dG,
t

t

T T
+p/ |Y:9|p_1Yts sz _p/ |}/s|p_1Y; stWs~
t t

Now we state some estimate for solution of the reflected generalized BSDE associated to
(&, f,9,S) in LP. Indeed, let p > 1, and &, f, g given above. In view of (A2), we assume the
following: V (t,y,2) € [0,7] x R x R?

yfty,z) < @+ plyl+ Azl
7g(ty) < ¥+ 0yl, P—as. (3.1)

First of all we give an estimate which permit to control the process Z with the data and
the process Y.

Lemma 3.3 Assume (A1) — (A5) and (3.1). Moreover let (Y, Z, K) be the solution of gener-
alized reflected BSDE associated to (€, f,g,S). If Y € SP then Z belong to MP and there ezist
a>0, constant C, depending only on p such that for any a > p+ A2,

T p/2 T 8
E [ (/ €2a(T+Gr) |Zr |2d7’) ] S Cp.lE { sup eap(t—i-G(t)) th |P + (/ ea(T+G7‘)§0(T)dr)
0 0<t<T 0

n (/OT ea(?”-l-Gr)qp(T)dGT)p}.

Proof. Let us fix a > pu+ A2 and define Y; = ¢*t+G0)Y, 7, = ¢®(t+CG0) 7, and K, = e® GO [,
Then ()N/t, Zt, f(t) solves the reflected generalized BSDE

T T T
fft:u/ f(s,Ys,Zs)der/ g(s,mdas—/ ZudW, + Kr— R0 <t <T,
t t t
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where £ = edT+G(T)¢, f(s,y, 2) = f(t, e tHCW)y c=alt+CW) ) _qy  5(s,y) = g(t, e atTCO)y)—
ay which satisfied assumption (3.1) with @, = e~ @G, 4), = e=0HGO) ), X =\ i = p—a
and B = [ — a. Since we are working on the compact time interval, integrability conditions are
equivalent with or without the superscript = Thus, with this change of variable we reduce to
the case a = 0 and p + \? < 0 and we forget superscript ~for notational convenience. For each
integer n > 1 let us introduce the stopping time

t
T, =inf {t € [O,T],/ | Z,|dr > n} AT.
0
It0’s formula yields
Yl + [ 12 ar
0

- |YTn|2+2/ Y7«f<r,YT,Zr)dr+2/ Y, g(r, Y,)dG,
0 0

+2/ Y, dK, —2/ Y, Z,dW,. (3.2)
0 0
In view of assumption (3.1),we have

1
y f(ty.z) < 2ylee+2(n+ MN)yl> + §|Z|2,

yg(ty) < 2yl + 28yl
So inequality 3.2 leads to

Yol + / 2, Pdr
0

IN

T T
|Ym|2+2/ v |sor|dr+2/ V| [y ]dG
0 0

T T
23 [ WiPar+ 28 [ vdG,
0

0

1 n 9 T
= | |Z)kdr+2 | YdE,
2 0 0

T
—2 / Y, Z,dW,. (3.3)
0

Since u+ A?> <0, 3<0, 7, <T, we deduce from (3.3) that

1

Tn T
! / ZPdr < Y4217 / orldr
2 0 0

T
Loy? / [ ldG,
0

Y

+2Y2 Kr + 2sup

/ o, Z,dW)
0
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with Y? = supg;<p |V3|? for p > 1.

Therefore
Tn T
/ |Z.2dr < C {Y*2 + (/ gprdr)
0 0

| o zaw)
0

T 2 T 2 Tn
rKTPSc{n2+(/ gordr) +(/ wrder) -/ !Zrl%ﬁ}-
0 0 0

By choosing v = 2%: we obtain

(/OTn|Zr‘2d7’>p/2 < Cp{Y3+ (/OTsonr)p+ (/OTwrdGTY (3.4)
/0 Tnm, Z,dW,) p/z} . (3.5)

On the other hand it follows by using Burlkélder-Davis-Gundy and Young inequalities that

p/2 Tn p/4
CLE < dp]E(/ |YT|2|ZT|2dr>
0

2 2

([ )

+sup } + | Kr .

We have

+

/ Y, Z,aw,)
0

Tn p/4
< d,E |vP? (/ |Zr|zdr)
0
d2 1 Tn p/2
< ?”IE(Yf)JrilE( / |ZT\2dr> | (3.6)
0

Now putting (3.6) in (3.5) we have for each n > 1

Tn p/2 T P T p
2 2
E (/0 | Z.| dr) < G, {Y* + (/0 gordr) + (/0 zﬂrdGr) }

Finally Fatou’s Lemma implies that
T p/2 T P T P
E (/ |Zr\2dr> < G, {Yf+ (/ gordr) + (/ Wza) }
0 0 0

The second estimation gives a necessary condition for existence and uniqueness of solution
of the reflected generalized BSDE associated to the data (&, f, g,.5).
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Lemma 3.4 Suppose (3.1) hold and assume (A1) — (A5). Let (Y, Z,K)) be a solution of the
reflected BDSE associated to the data (€, f,q,S) where Y belong to SP. Then there exist a
constant C,, depending only on p such that for any a > pu+ N/[1 A (p —1)]

T p/2
IE sup eap(t+G(t)) ’Y; ’p + (/ eQa(s+G(s)) ‘Zs |2d5>
0<t<T 0

T p
< E{eap(T+G(T))|§|p + (/ 6a(s+G(s))¢Sd8>
0

T p
+ (/ 6a(s-i-G(s))deCTvS) + sup eap(t-i—G(t))(S:-)p}.
0

0<t<T

Proof. Let us fix a > p+ A?/[1L A (p — 1)]. The same argument as the previous proof reduce
to the case a = 0 and u + A?/[1 A (p—1)] < 0. So we have to prove without the superscript

T p/2
E{sup v+ ([ 12.pas) }
0<t<T 0
T p
< IE{|5V’+(/ sosds)
0

T P
+ (/ @bsdGs) + sup (S;r)p}.
0 0<t<T

By virtue of Lemma 3.2 and (3.1) we get

T
Y+ clp) / AT ACYS
t

IN

T T
|§|”+p/ (|Ys|p‘1sos+u|Ys|”)ds+p/ (IYalP~ s + BIYL[P) G
0 0
T T
A / Vi Zds + p / (Y, — S, 1dK, (3.7)
0 t

T T
+p / (SHPLdK, — p / VY 2,
t 0

IN

T T
\€|p+p/ (!K|plsos+u!Ys\p)ds+p/ (Va5 + BIY:I")dG,
0 0

T T T
o\ [ Zds 4y (80K < [ Y zaw.
0 t 0

From the previous inequality it not difficult to check that, IP — a.s.,

T
/ |Y5|p_21{y57,50}|Z5|2ds < Q.
t
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Moreover, by the Young inequality we show easily that

T 2 T T
A
pA / Vi Z) < — P / v pds + <2 / DA T AL
0 IA (P - 1) 0 2 0

and since p+ A?/[1 A (p—1)] <0 and 3 < 0 it follows from (3.7) that
T
c
N o AL LA
¢
T T
<l [ VPRl p [V lG,
0 0
T T .
+p/ (SHyP1dK, —p/ YL [P1Y, Z,dW,. (3.8)
¢ 0
Let us denote
T T T
Xl +p [ IV eds +p [ VPG [ (s an
0 0 ¢
So inequality (3.8) become

v+ <P Dy Z,2ds < X v vz 3.9
t|+7t Y| {Ys7é0}| s[7ds < _po Y| s4sAWs. (3.9)

Let us define M, = ftT |Y;|p_1}~/sstW8. Then {M,}o<i<r is a uniformly integrable martin-
gale. Indeed, by young’s inequality we have

p—1 1 T p/2
[ 007 < P tmo 4 ([ jzbas)
p p 0

the last term being finite since Y belongs to S? and then by Lemma 3.2 Z is in MP.
Coming back to inequality (3.9) and taking the expectation for ¢ = 0, we get both

c(p) ’ 2 2
S [ IV |2 s < B(Y) (3.0)
t
and
E(Y?) < E(X) + kB [<M, M)lT/Q} . (3.11)
But
1/2 1 ks g 2 2
B [(M D] < SEOP) + 2 [ V11500 | 2 s, (3.12)
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Combining the inequalities (3.10), (3.11) and (3.12) we obtain
E(Y?) < d,E(X).

Using once again Young’s inequality, we have

T T
pdp]E{/ ]Ys|”1gosds+/ \Ys|p1¢sdGs}
0 0
1 T p T p
<o ([[os) ([ w00}
0 0
According to definition of X we have
T P T P T
E(Y?) < CJE {lflp+ ( / sosds) + ( / zbsdGs) + / (SJ)p‘lsz}
0 0 0
T p T P 1
C/IE {\§|p + (/ gosdfs) + (/ wsdGs> + sup (Sj)p} + —|Kr[P. (3.13)
0 0 t<s<T v

We now give an estimation of IE (|Kr|?) of the form

T p T p
E(K ) < cpﬂa{mu( / gosds) +( / wsdas)

+ sup (Sj)p}. (3.14)

0<t<T

IA

Recalling inequality (3.13) and in view of (3.14) we get

T p T p
E(YP) < Cp]E{|§|p+</0 g05d3> +(/0 wsdGs>

+ sup (S?)p}-

0<t<T

The result follows from Lemma 3.2 =m

4 Existence and uniqueness of a solution

In this section we prove existence and uniqueness result for the reflected generalized BSDE
associated to data (&, f,g,S) in LP, with the help of priori estimates given above.

Theorem 4.5 Assume (Al) — (A5), the reflected generalized BSDE with data (€, f,g,S) has
a unique solution (Y, Z,K) € S? x MP x SP.
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Proof. Uniqueness

Let us consider (Y, Z, K) and (Y',Z’, K') two solutions of our reflected generalized BSDE in
the appropriate space. We denote by (Y,Z,K) = (Y —Y' Z — Z', K — K') solution to the
following reflected generalized BSDE

¢ ¢ ¢
Yt:/ f1(87Y7Z)dS—|—/ gl(s,Y)dGs—/ ZdW,+ Kp — K,,0 <t < T;
¢ ¢

t

where f; and ¢; are defined by

fl(taga 5)

f(tay+K/aZ+Z£) _f<t7Y/aZ/>

91(157@) = g(tvy+}/;/)_g(t7yl>

In virtue of assumption (A2) we note that f; and ¢y satisfied (3.3) with f; =0 and ¢; = 0; and
by Lemma 3.4 it follows that (Y, Z, K) = 0.

Existence It will be split into two steps

Step 1. In this part & sup ¢, sup ¢y, sup S, are supposed bounded random variables and r a
positive real such that

1€llce + Tllelloe + 1GTllool[¥ ]l + 1S floe < 7
We consider 6, a smooth function such that 0 < 6, < 1, and define by

1for |yl <r

0,(y) =
0 for |y| > r+1;

denote for each n € IN¥, ¢,(z) = 2 Let us set

z|Vn "
nlts2) = 0 (60,00() = D)o+ ]
I(t,y) = 9r(y)(g(t,y)—g?)m+gf,

where f = f(¢,0,0); g7 = ¢ (¢,0) .

It not difficult to prove that there exist two constants x and 7 depending to n such that

(v — ) (ha(t,y,2) — ha(t,y,2)) < kly =y

(=) Ualty) — ha(t,y) < nly =y

10
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Then data (&, hy, [, S) satisfied condition in Aman et al [1]; hence equation associated has a
unique solution (Y™, Z", K™) belong in space §? x M? x S§2.
In the other hand since

Y ha(ty,2) < Jyl 10l + Alyl I2]

ylty) < |yl 1%

and ¢ bounded, the same computation of Lemma 2.2 of [4] adapted to reflected generalized
BSDE show that the process Y satisfies the inequality [|[Y"|l < 7 and in view of Lemma 3.3,
| Z™]| a2 < 7" where ' is another constant. As a byproduct (Y, Z", K™) is a solution to the
reflected generalized BSDE associated to (&, fy, gn, S) where

faltoy,2) = (f(ty.qu(2) — £7) — 47

Tr+1 (t) V

gn(t,y) = (9(t,y) —g7) —~+/

¢r+1 (t> \%

that satisfied assumption (A2iv) and (A2v).
Now let denote (Y™ Z™' K™') by

Yn,i _ Yn—l—i i Yn7 Zn,i — Zn+i - Zn) Kn,z’ — Kn—i-i _ KTL’ i,n c IN*

and ®(t) = exp[2(\? + u)t]. )
Applying It6’s formula to the function ®(¢)|Y™|?, we have

T T
B+ 204 p) [ )T Pds + [ as)|Z s
t t

IN

T
2 [ RO (sl VI 20 = (Y7 2))ds
42 [ BT gl V) = g5, V)G
+2 / O(s)Y M dR™ — 2 / O(s) YW,

t t

T T
= A+ Ay + 2/ O(s)Y " dK™ — 2/ O(s)Y " dW. (4.15)
t t

11
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It follows by virtue of (A2iv) and (A2v) that
T
Al < 2/ (I)(S)Kn7i(fn+i(s7 }/tanri? Zg+z> - fn+i(87 Y;n) Zg+z>)d5

#2 [ RO ol VI 25— fua(s, Y7 22
tT o

42 [ BT o, Y2, 22) — fols VI, 22))ds
' T o 1 T o

< 2 p) [ e s [ ez s
¢ ¢

T
2 / ()T frupal(s, YT Z7) — fu(s, Y7, Z7))ds,
t

T
A < 2 / B(5) VP gy (8, YIH) — guaa(5, Y))dG,
t

T
1 / () (gups(5, YT) — gals, Y))dG,

T
< 20 / §)[V2dG, + 2 / ()77 (gura(5, Y7) — galis, V")) G,
t

Pluging (4.16) and (4.17) in (4.15) and since 3 < 0, we obtain
N, |2 1 T 7n.,t|2
2O+ [ s\ Zp s
t
T p— B
< 2 / ()T foals, Y2 Z0) — fuls, YT, Z7))ds
t - . |
2 / ()7 (Goys (5, YT) — gals, Y))dGs
t

T T
+2 / O(s) Y dK" — 2 / O(s)Y M dW.
t t

But since ||V, < 2r, it follows
1 [T _
SO+ [0z
T
< o [ B sl Y2 22 = s VL2
T
+/ D(5)|gnyi(s, YS) — gnls, YS)|dGs
T T o
+2/ B(s) VAR —2/ B(s) VAW,
t

12
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Showing IE fOT YmidK™ <0 1P —a.s., Burkdlder-Davis-Gundy inequality yields that there
exist C' (depending only on A, p and T') such that

_ 1 (T
i (sup W7 [z as)
0<t<T 2 Jo
T
S OTE{/ |fn+i(37}/sn7Z;L)_fn(‘S’}/Sn’Z;lHdS
0

T
+/ |gn+i(s, YJ) — gn(s,Y;”)|dGs} : (4.18)
0
Moreover recalling ||Y™" || < r, we prove that

|fn+i(5> st7 Zg) - fn(Sa Ytsn7 Zg)| < 2)\’Zn|]_{|Zn‘ >n} T 2>“an1{7&+1>”} + 27TT+11{7FT+1>71}

|Gnri(5,YS") = (8, V)| < 200116,005m)

from which we deduce according assumption (A3) and inequality (4.18) that (Y™, Z") is a
cauchy sequence in 8% x M?x, then it converge to the limit (Y, Z) in 8% x M? satisfied
Vi > S5; VO<i<T.

Let us define

¢ ¢ ¢
K'=Y,-Y —/ f(s, Y], Z")ds —/ g(s,Y]")dG, +/ ZrdWs.
0 0 0
Then it follows from Aman and al [1] that:

IE ( sup |K}' —Kf|2> — 0,as n,p — o0,
0<t<T
hence there exist a non decreasing process K (K, = 0) such that
IE ( sup |K} —Kt]2) — 0,as n — o0
0<t<T

and
T
/ (Y, — S)P'dK, = 0, for every T > 0.
0

Passing to the limit in the reflected generalized BSDE with data (&, f,,, gn, S) it follows that
(Y, Z, K) is solution of reflected generalized BSDE associated to data (&, f, g, .5).
Step 2. we now treat the general case. For each n € IN*, let us define

n lpe Vi e Vin 0 no
n t? ) = t7 ) -
f( yZ) |g0t\\/n{f( n Yy n z ft +|80t|\/nt
n || Vi ) 0} n 0
n t’ = t? - +
it = i o (05 0) |+
Sio= qu(Sh).

13
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The data (&, fn, gn, S™) satisfies the condition of stepl and reflected generalized BSDE asso-
ciated to it has a unique solution (Y,,, Z,, K,,) € L? thanks to the first step of this proof; but
according to Lemma 3.3, (Y, Z,, K,,) is also in L”, p > 1. Further applying Lemma 3.4, for
(7,n) € IN x IN*, there exist constant depending on T, A such that

4 T ‘ p/2
IE{ sop e v ([ i zpas) }
0<t<T 0

T
S CE {|§n+z - §n|p + / |Qn+i(§05> - qn(gas)|pd8
0

T
" / G (02) — an(B)PAG, + sup |quss(S7) — qn<5:>|p}

0<t<T

We show that the right-hand side of the last inequality converge uniformly on i to 0 as n — oo,
so we conclude that (Y™, Z™) is a cauchy sequence in S? x MP? and

E ( sup |Kt"—Kt|p> — 0,a8 n — o0.

0<t<T

Passing to the limit in equation associated to (&, fn, gn, S™), the triplet (Y, Z, K) is a LP—solution
to the reflected generalized BSDE with determinist time associated to (£, f,¢,5). m

5 LP—solution of reflected generalized BSDE with random
terminal time

Now let us assume that T is a {F; }1>0—stopping time. For instance hypothesis (A2vii), (A4) will
be replaced respectively by (A6), (A7) and in (A3) processes 7, ¢, are in L' ((0,n) x ,m @ P).

(A6) For some p > a = |u| + 2(;—:) and v > 0 = || (u, 5 and A are constants appearing in

assumption (A2)) IE (foT ePlostvGs)) (| |Pds + |psi5|pdGs)> < 0.

(A7) £ is Fr—measurable and
T
B { / eI HG)| f(5 ~(OHIGE)E, ~(03+0G) 1 VP s
0
T
+ / ep(ps+VG(s)) |g($, e—(as+9G(s))§s)|pdGs} < 00.
0

where & = e(@THGEM) ¢ ¢ — [F(eTHGT)¢ | F) and 7 a predictable process such that

_ _ 0o 00 p/2
E=IB(E) + /0 ﬁdes,lE</0 Iﬁs|2d5> |

14
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Definition 5.6 A triplet (Y,Z, K) of progressively measurable processes with values in IR x
IR? x IR is a solution of the reflected generalized BSDE with random terminal time T and data
& f.9,S)ifontheset {t <T} Y, =¢, Zy =0, Ky = Kp IP—a.s; t — 1y f(8, Y, Z4), t—
1<9(t,Y:) belong to Ly, (0,00), t — Z; belong to L} (0,00) and IP—a.s, forall 0 <t < u,

(@) Vi = Yopu + [ f(5, Y, Zo)ds + [0 g(s,Y2)dGy — [T ZdW, + Kppy — Kinr

(i1) Y; > S,

(13i) Kis an non-decreasing process such that Ky =0 and fTAu — S)P1dK; =0

A solution is said to be in LP if we have moreover

T
]E( sup ep(pt+1/G ‘Y‘p / ep(szruG UY ’p 2(|Y ‘2 ’Zs‘2)d8 + ‘Y;’pdGs}) < Q.
0<t<T 0

Now let us give essential result of this section.

Theorem 5.7 Assume (Al) — (A2) and (A5) — (A6). Then the reflected BSDE with random

terminal time associated to data (€, f,g,S) has a unique solution satisfying

T T
" { O L / PG|, [P-2| 7, [2ds + / PG|y, ‘pdGS}
0 0

0<t<T

T T
< CIE{ p(pT+vG(T)) |£‘p / eP p(ps+rG(s) |§0 ‘pds +/ eP p(ps+rG(s) W)s’pdG
0 0

+ sup eP(PtHrG(D) (S+) }

0<t<T

with C' some constant depending upon p, A\, p and p.

Proof. The proof follows the steps of the proof of the deterministic case. But to reduce
the terminal condition £ which belong to LP, we firstly make the change of variables X; =
e t0G() X, Now let us derive a priori estimate in LP with p € (1,2), which is the only

15
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difference with the above case. By virtue of Lemma 3.1, we get

TAu

eP(P(TA)+vG(TAY)) ’YT/\t|p + c(p) / ep(ps+uG(s))|Y;’p72‘ZS|2dS
TAt
TAu
+/ Pt GOy P (pds + vdG)
TAt
TAu
< 6p(p(T/\u)+z/G(T/\u))’YTAu’p _|_p/ eP p(ps+vG(s) ‘Y ’p IY f(S Yjs, 7 )d
TNt
TAu R TAu ~
+p / PG |y, 1T g (5. Y.)AG + p / (PG |y 1Y K.
TAt Tat

TAu
—p/ ep(pS+VG(S))|}{S|p—1zZSdWS

TAt
TAu
Then since IE (/ (Y — Ss)pldKS) = 0, assumptions on f and g with Young’s inequality
0
together and choosing 0 < § < (p — 1)/2 small enough so that 0 < p— (|u| + 8§+ \?/(2(p— 1 —
20))) = pand 0 < v — (|| — §) = v we have the following

TAu
ep(p(T/\t)+zzG(T/\t))‘Y—T/\t‘p +p5/ eP p(ps+vG(s) ‘Y ’p 2|Z ‘ ds
TNt

TAu
_,_/ ep(’)“l’g(s))]}/;\p(pds+1/dGS)

TNt

IA

TAu
C’(p 5) ( p(p(TAu)+vG(TAu)) ’Y ‘p_|_/ eP p(ps+vG(s) ‘()0 \pds
0

TAu TAu
_|_/ ep(pst(S))Ws’pdGs_i_/ ep(p8+l/G(8))’SS|pldKS)
0

TNt

TAu
—p / ePles TGOy, Py, 7 dW. (5.19)

TNt

Using the same estimation as in the proof of Lemma 3.3 we get

T
IE ( sup ep(pt+vG(t))|y;|p) +p5]E/ ep(p8+”G(S))|Y5|p_2|Z8|2ds
0

0<t<T
T
+pIE / PTG Y, P (5ds + pdG)
0
T
< Cay{enmemgp s [ el pa,
0
T
+/ 6p(ps+sz s)) ’w ’pdG + sup ep(szruG <S+) }
0

0<t<T

which end the proof. m
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Remark 5.8 In the case p = 2, the condilion p > pu+ reduce to p > p+ ’\72 which 1s the

AQ
2(p—1)
condition in Aman et al [1]

No result for the case p =1 can be deduce from the above.
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