
ha
l-

00
19

91
07

, v
er

si
on

 1
 -

 1
8 

D
ec

 2
00

7
Decay of scalar variance in isotropic turbulence in a bounded domain
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Abstract. The decay of scalar variance in isotropic turbulence in a bounded domain is investi-
gated. Extending the study of Touil, Bertoglio and Shao [J. Turbul. 03:49 2002] to the case of a
passive scalar, the effect of the finite size of the domain on the lengthscales of turbulent eddies and
scalar structures is studied by truncating the infrared range of the wavenumber spectra. Analytical
arguments based on a simple model for the spectral distributions show that the decay exponent
for the variance of scalar fluctuations is proportional to the ratio of the Kolmogorov constant to
the Corrsin-Obukhov constant. This result is verified by closure calculations in which the Corrsin-
Obukhov constant is artificially varied. Large-Eddy Simulations provide support to the results and
give an estimation of the value of the decay exponent and of the scalar to velocity time scale ratio.

I. INTRODUCTION

Most turbulent flows on earth are bounded by walls.
An important part of theoretical studies of turbulence is
however devoted to homogeneous fields, ruling out the ex-
istence of boundaries that are present in most situations
of practical interest or laboratory experiments. Even in
nearly homogeneous flows, such as decaying grid turbu-
lence, the integral lengthscale will grow indefinitely so
that, if the turbulence was initially strong enough, this
lengthscale will sooner or later become comparable to
the size of the domain. Evidently, the understanding of
spatially bounded turbulence is of primary importance
in a wide range of academic and engineering problems
and remains one of the major challenges in turbulence
research.

Indeed, the presence of walls adds an enormous com-
plexity to the description of turbulence. Without taking
into account the zoology of structures and phenomena
associated with the existence of a strong shear near the
boundaries present in most wall bounded flows, there is a
simple academic case where global predictions can easily
be performed. This is the case of an isotropic turbulence
freely evolving in a bounded domain. Following Tennekes
and Lumley [1] it can be predicted that, after a period of
free decay, in which the kinetic energy evolves classically,
as soon as the integral lengthscale becomes limited by
the size of the domain, the turbulent kinetic energy k de-
cays as t−2 (and therefore that the dissipation ǫ and rms
vorticity decay as t−3 and as t−3/2 respectively). This
prediction was confirmed experimentally by Skrbek and
Stalp [2] in confined superfluid grid turbulence. After the
lengthscale saturation occured, they measured a t−3/2

decay for the rms vorticity and performed an analysis of
the results based on a simple model spectrum with an
infrared cut-off. It was already anticipated by Bertoglio
and Jeandel [3], that the scale limitation in spectral stud-
ies of turbulence could be roughly taken into account by
imposing an infrared cut-off in the energy spectrum, rep-
resenting the fact that eddies larger than the domain size
cannot exist. Direct numerical simulations (DNS), Large-

Eddy Simulations (LES) and two-point closure calcula-
tions [4] confirmed the result for isotropic turbulence.
The effect of a bounded domain on anisotropic turbu-
lence was similarly investigated by Biferale et al.[5] by
DNS. The present work continues this line of research
by investigating the decay of passive scalar fluctuations
in a confined turbulent flow. This effort contributes to
a better understanding of turbulent mixing in bounded
domains.

As stated above, the decay exponent of the kinetic en-
ergy can be estimated by using the relation (Tennekes
and Lumley [1])

ǫ ∼
k3/2

d
(1)

with d the size of the domain that determines the integral
lengthscale. Assuming self-similar decay of the turbulent
energy spectrum, power law decay can be expected for k
and ǫ:

k ∼ (t − t0)
−n ǫ ∼ n(t − t0)

−(n+1) (2)

with t0 a virtual origin. Using (1) and the relation

k,t = −ǫ, (3)

one obtains

(t − t0)
−(n+1)

∼ d−1(t − t0)
−

3

2
n (4)

so that the equality of the exponents leads to the already
mentioned result n = 2.

The equation for the variance of passive scalar fluc-
tuations θ2 in isotropic turbulence without mean scalar
gradients is

1

2
θ2

,t = −ǫθ. (5)

in which ǫθ is the dissipation of scalar fluctuations ǫθ.
It is tempting to apply the above reasoning for the

kinetic energy to the decay of the passive scalar. The
equivalent of (1) for scalar decay is:

ǫθ ∼
θ2k1/2

d
(6)
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FIG. 1: Model spectrum used to predict selfsimilar decay of
turbulence.

assuming power laws for k, ǫθ and θ2 yields:

(t − t0)
−(nθ+1)

∼ d−1(t − t0)
−(nθ+n/2) (7)

which yields by substituting n = 2 and using the equality
of the exponents

−(nθ + 1) = −(nθ + 1) (8)

which is verified for every nθ. We therefore need to use
another method to determine nθ. This is the purpose
of section II, in which an analytical study based on a
simplified spectral form of the energy and scalar spectra
is performed that allows to derive analytical expressions
for the scalar decay. These expressions are then validated
by two-point closure computations of the eddy-damped
quasi-normal Markovian (EDQNM) type and confirmed
by Large-Eddy Simulations in section III. All through
the paper the Schmidt number will be assumed unity.

II. ANALYSIS AND SCALINGS

For the purpose of clarity some results for the velocity
field are recalled, before starting the discussion of the pas-
sive scalar. The decay of kinetic energy in an unbounded
isotropic turbulent field can be roughly predicted by con-
sidering the simple model spectrum (c.f. Comte-Bellot
and Corrsin [6]),

E(K) =











AKs for K < KL

CKǫ2/3K−5/3 for KL ≤ K ≤ Kη

0 for K > Kη

(9)

where CK is the Kolmogorov constant. This spectrum
corresponds to the sketch in figure 1. It will be assumed
in the following that Kη ≫ KL. E(K) is related to the
kinetic energy k by

k =

∫

∞

0

E(K)dK (10)

Assuming power laws for k and ǫ (2), and that A is con-
stant during the time evolution, the following decay ex-
ponent is obtained

n =
2(s + 1)

s + 3
. (11)

Note that the constancy of A is a reasonable assumption
for s < 4 (see Lesieur and Schertzer [7]). A study of the
time evolution of A for s = 4 can be found for example in
Chasnov [8], but is outside the scope of the present paper.
The present work focuses on the behavior of turbulence
once the growth of the integral scales is limited by the
domain size. As shown in Skrbek and Stalp [2] or Touil
et al.[4], as soon as the integral scale becomes comparable
to the domain size, the decay exponent tends to 2, a
value larger than before saturation (n = 10/7 for s = 4
for example). This exponent 2 can be deduced assuming
an energy spectrum with a sharp infrared cut-off, of the
form

E(K) =











0 for K < Kinf

CKǫ2/3K−5/3 for Kinf ≤ K ≤ Kη

0 for K > Kη

(12)

i.e. an inertial range extending from the wavenumber
Kinf = 2π/d, with d the domain size, to Kη.

Integrating (12) gives in the limit of an infinite
Reynolds number:

k =
3

2
CKǫ2/3K

−2/3
inf . (13)

Assuming power law decay for ǫ (2) and using (3) one
can express ǫ as:

ǫ =
C3

K

K2
inf

(n + 1)3

(t − t0)3
(14)

∼ (t − t0)
−(n+1)

so that the equality between time exponents in the bal-
ance implies that n = 2.

Let us now come back to the central issue of this work,
the decay of the variance of passive scalar fluctuations.
By analogy with (9) the scalar spectrum can be assumed
to have the form:

Eθ(K) =











AθK
s′

for K < Kθ

CCOǫ−1/3ǫθK
−5/3 for Kθ ≤ K ≤ Kη

0 for K > Kη

(15)
with CCO the Corrsin-Obukhov constant. The scalar
variance is related to the spectrum by

1

2
θ2 =

∫

∞

0

Eθ(K)dK. (16)

Let us assume that θ2 decays as a power law:

θ2 ∼ (t − t0)
−nθ (17)

then ǫθ decays as

ǫθ ∼ nθ(t − t0)
−(nθ+1). (18)

This is not a trivial assumption and it will be checked
a posteriori by closure computations. The decay of θ2
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depends not only on its spectral distribution, but also on
the injection scale of the scalar fluctuations [9, 10, 11].
In the present work we consider the case in which the
initial scales of the scalar field and the velocity field are
comparable, KL ≈ Kθ. Within this framework, power
law decay can be possible [12], and an expression simi-
lar to (11) can be derived for the scalar variance. The
resulting expression (Herring et al.[13]) is:

nθ =
2(s′ + 1)

s + 3
. (19)

An important quantity directly related to the decay of
scalar variance and appearing in most engineering mod-
els, is the velocity to scalar time scale ratio, defined by:

r =
2kǫθ

θ2ǫ
. (20)

The assumption of power law decay of the integral quan-
tities (2) and (17) yields immediately the result r = nθ/n,
which gives for the present case

r =
s′ + 1

s + 1
. (21)

A more elaborate expression, depending on the Schmidt
number, was recently proposed by Ristorcelli [11].

To investigate the effect of the limitation of the tur-
bulent and scalar lengthscales when the integral length-
scales become comparable to the size of the domain, we
still assume that the energy spectrum is given by (12)
and we furthermore postulate that the scalar spectrum
has the form

Eθ(K) =











0 for K < Kinf

CCOǫ−1/3ǫθK
−5/3 for Kinf ≤ K ≤ Kη

0 for K > Kη.

(22)
Using expression (14) for the dissipation in (22) and in-

tegrating to obtain θ2:

1

2
θ2 =

3

2
CCOǫθǫ

−1/3K
−2/3
inf , (23)

and using (17) together with (5) gives

−nθ
CCO

2CK
(t − t0)

−(nθ+1) = −(t − t0)
−(nθ+1) (24)

so that equality of the exponents, leads again to expres-
sion (8) which is satisfied whatever the value of nθ. To
deduce an estimation of nθ we must therefore use the
equality between the prefactors in (24). It is found that

nθ = 2
Ck

CCO
. (25)

The time scale ratio directly follows

r = nθ/2 (26)

It must be emphasized that the situation is different from
what is found for the kinetic energy spectrum, or for the
scalar freely decaying in an unbounded domain, where
the values of the decay exponents are found by simply
using the relation between the exponents. The fact that
here use is made of a relation between the prefactors,
leads to the rather untypical situation where the Corrsin-
Obukhov and Kolmogorov constants expicitly appear in
the expression of the decay exponents. This is for exam-
ple in contrast with what is found for the velocity field
where n is not a function of the Kolmogorov constant,
but is entirely determined by the power law exponent s
of the spectrum in the low wavenumber region.

The relations (25) and (26) stress the importance of an
precise knowledge of CK and CCO. A review aimed at
determining the precise value of CCO by a compilation of
numerous experimental results was performed by Sreeni-
vasan [14]. In this work the value of C′

CO, the constant
intervening in the one-dimensional scalar spectrum was
found to be approximately 0.3 < C′

CO < 0.6. C′

CO is
related to CCO by the relation CCO = (5/3)C′

CO which
gives 0.5 < CCO < 1.0 according to the experiments.

Using EDQNM and LES it will be investigated in the
following section if the predictions of r and nθ are right.

III. CLOSURE AND LARGE-EDDY

SIMULATION

A. EDQNM

In this paper computations are performed within the
framework of the eddy-damped quasi-normal Marko-
vian (EDQNM) closure, as proposed for isotropic tur-
bulence by Orszag [15] and Leith [16]. The isotropic
scalar formulation used here was first proposed by Vi-
gnon et al.[17, 18] and Herring et al.[13]. The evolution
equations for the kinetic energy spectrum of an isotropic
turbulence and for the passive scalar spectrum are re-
spectively:

∂

∂t
E(K) = −2νK2E(K) + T (K) (27)

∂

∂t
Eθ(K) = −2κK2Eθ(K) + Tθ(K) (28)

Time dependence is omitted for notational simplicity.
The viscosity ν is equal to the diffusivity κ for the case
of unity Schmidt number, which we consider here. The
non-linear transfer terms T (K) and Tθ(K) are expressed
using the classical EDQNM formulation for isotropic tur-
bulence and scalar field:

T (K) =

∫

∆(K)

θKPQ(t)
xy + z3

Q
E(Q) ×

{

K2E(P ) − P 2E(K)

}

dPdQ (29)
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FIG. 2: Time evolution of the kinetic energy spectrum (top)
and scalar variance spectrum (bottom)

Tθ(K) =

∫

∆(K)

θθ
KPQ(t)

1 − z2

Q3
E(Q) ×

{

K3Eθ(P ) − KP 2Eθ(K)

}

dPdQ (30)

in which ∆ denotes the domain such that the three wave
vectors , P, Q form a triangle and x, y and z are the
cosines of the angles respectively opposite to K, P, Q in
this triangle. The EDQNM characteristic times are given
by

θKPQ(t) =
1 − e−(ν(K2+P 2+Q2)+η(K)+η(P )+η(Q))t

ν(K2 + P 2 + Q2) + η(K) + η(P ) + η(Q)
(31)

θθ
KPQ(t) =

1 − e−(κ(K2+P 2)+νQ2+η′(K)+η′(P )+η′′(Q))t

κ(K2 + P 2) + νQ2 + η′(K) + η′(P ) + η′′(Q)
(32)

in which the damping coeficients are expressed using the
classical forms:

η(K) = λ

√

∫ K

0

R2E(R)dR

η′(K) = λ1

√

∫ K

0

R2E(R)dR

η′′(K) = λ2

√

∫ K

0

R2E(R)dR. (33)

Three constants have to be fixed. For λ we use the clas-
sical value λ = 0.355. The values for λ1 and λ2 re-
quire more attention. We follow Herring et al.[13] and
choose a zero value for λ1 for compatability with the
Lagrangian History Direct Interaction Approximation of
Kraichnan [19]. The value of λ2 is not fixed and is re-
lated to the Corrsin-Obukhov constant. We will first use
the classical value (see Lesieur [12] and Herring et al.[13])
λ2 = 1.3. The results will be analyzed in the following
section. Then, we will take advantage of the fact that
varying λ2 provides a simple and efficient way to vary
the Corrsin-Obukhov constant in the model and we will
use this degree of freedom to check relations (25) and
(26).

The computational domain ranges from Kinf (low-
wavenumber or infrared cut-off, related to the size d
of the bounded domain by Kinf = 2π/d) to 4Kη, Kη

being the Kolmogorov wavenumber). The resolution is
approximately 14 wavenumbers per decade. The initial
spectrum is a von Karman spectrum [20]. The energy-
containing range is characterized by wavenumber KL, the
wavenumber at which E(K) has its maximum. At time
t = 0, initial conditions are such that KL is greater than
Kinf . The Taylor-scale Reynolds number evaluated at
the time when KL ≈ Kinf is approximately 105. This
high value for the Reynolds number is chosen to allow
a precise determination of the Kolmogorov and Corrsin-
Obukhov constants.

B. Large-Eddy Simulation

The code used for the LES computations is a classi-
cal pseudo-spectral code with fourth-order Runge-Kutta
time integration scheme. The resolution is 1283 grid
points. As initial spectrum, a von Karman spectrum
is used which behaves as K4 at small K and as K−5/3

for large K. The CZZS dynamic model [21, 22] is used
to model the subgrid stress and scalar flux.

IV. RESULTS

In Figure 2 EDQNM results are shown for the time
evolution of the kinetic energy spectrum and the scalar
variance spectrum. It can be observed that both spectra
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display a clear K−5/3 inertial range. The inertial ranges
are observed before saturation and are still present after.
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FIG. 3: Decay of kinetic energy and scalar fluctuations.
EDQNM computations results
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FIG. 4: Compensated kinetic energy spectrum (left) and scalar
variance spectrum (right)

These results were obtained with the classical values
of the constants (λ = 0.355, λ1 = 0 and λ2 = 1.3). The
kinetic energy and scalar variance are shown in figure 3.
It is observed that after a short time the kinetic energy
decays following a power law with an exponent close to

the classical value 10/7. As soon as the large scales be-
come saturated by the presence of the infrared cut-off, at
tsat, the power law exponent changes and takes a value
of 2 as predicted in the preceding sections. At very long
times, the behavior changes, corresponding to a final pe-
riod of viscous decay. It is observed in figure 3, that the
scalar variance also decays following a power law with an
exponent close to 10/7. At longer times, after saturation
has occurred, the decay is found to follow a t−3.25 power
law. The Kolmogorov and Corrsin-Obukhov constants
are determined by carefully evaluating the compensated
spectra. Figure 4 shows the compensated spectra E(K)
and Eθ(K). The Kolmogorov constant is CK ≈ 1.35,
a slightly low value. The Corrsin-Obukhov constant is
then approximately 0.85. The ratio 2Ck/CCO yields 3.2
which is close to the value of nθ observed in figure 3.

Figure 5 shows the time evolution of the velocity to
scalar time scale ratio. It is observed that after a tran-
sient, r goes to a constant value close to 1 corresponding
to the freely decaying period where both k and θ2 evolve
as t−10/7. At longer times, after saturation has occurred,
a second plateau is observed with a value close to 1.6.
This value is in agreement with the analysis in section II
that predicts that r = Ck/CCO.
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FIG. 5: Time evolution of the velocity to scalar time scale
ratio

In figure 6 the kinetic energy and scalar variance from
the Large-Eddy Simulation are shown. For the saturated
decay a power law exponent for the energy close to 2 is
observed in agreement with the results of Touil et al.[4].
The scalar variance decays with an exponent close to 4.
This corresponds according to (25) to a ratio CK/CCO

close to 2. This is well verified as can be oberved in
figure 7 where the ratio CK/CCO is plotted as a function
of K/Kc with Kc the cut-off wavenumber.

To check the relations (25) and (26) in more detail
CCO is now artificially varied by changing the value of
λ2 in the range [0.7-2.0]. By examining the compen-
sated spectra it was observed that this corresponded to a
Corrsin-Obukhov constant that takes values in the range
[0.46-1.28]. The time evolutions of θ2 are shown in fig-
ure 8 for three different values of λ2. Clear power laws
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are observed. The power law exponent is affected by the
variation of λ2.
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FIG. 8: Decay of passive scalar variance for varying λ2

In figure 9 we test the results (25) and (26) against
our computations. Good agreement is found between the

results of the closure and the analytical results (25) and
(26).
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FIG. 9: Scalar decay exponent nθ as a function of the ratio of
the Kolmogorov Ck and Corrsin-Obukhov constant CCO (top).
Scalar decay exponent as a function of the time scale ratio r
(bottom)

V. CONCLUSION

Analytical expressions were derived for the decay ex-
ponent of the scalar variance and the velocity to scalar
time scale ratio for a passive scalar decaying in bounded
isotropic turbulence. These expressions depend on the
Kolmogorov and Corrsin-Obukhov constants. It is rather
uncommon in turbulence theory that a decay exponent
depends on the values of these inertial range constants.
The proposed relations were tested against EDQNM
computations in which the Corrsin-Obukhov constant
was artificially varied. Good agreement was observed
and clear power law decay was observed for time evolu-
tion of the scalar variance. The values for the decay ex-
ponent and Kolmogorov and Corrsin-Obukhov constants
obtained by Large-Eddy Simulation are consistent with
these results. The decay exponent is shown to be approx-
imately 4 in the LES, a significantly larger value than the
exponent for the turbulent kinetic energy which in this
case is close to 2. The present study shows the impor-
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tance of a precise knowledge of spectral constants as their
values can directly determine the temporal behavior of
integral quantities.

An experimental verification of the results presented
in this paper would probably be difficult to achieve, as
in usual laboratory experiments, the Reynolds number
is too low for the wall bounded regime to be observed
before the final viscous decay occurs. To overcome this
difficulty, Skrbek and Stalp [2] performed measurements
in Helium superfluid. They were able to measure the
−3/2 decay exponent for the rms vorticity that corre-

sponds to the bounded domain regime, but no data on
scalar fluctuations were reported in their experimental
study.
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