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Abstract— This paper addresses issues on control and coding
co-design in the context of low-energy sensors. We particularly
focus on issues of low energy consumption (energy-aware). To
this aim, we propose to use a coding strategy with the ability
to quantify and to differentiate stand-still signal events from
changes in the source (level crossing detector). The stand-
still signal event is then modulated with a low energy carrier,
whereas the changes of levels will be modulated with enough
energy. Coding is then effectuated by defining a 3-valued
alphabet. The paper studies the closed-loop properties of such
arrangement. In particular, we derive conditions required so
that this coding algorithm preserves closed loop stability.

Index Terms— Control of sensor networks, energy-aware
coding.

I. INTRODUCTION

W IREless low-cost sensor networks are an expanded

technology in many new and varied areas such as:

traffic monitoring and control (urban, highways), undersea

monitoring/exploration, environment sensing (forest, farms,

etc.), building services, large instruments with distributed

sensing and actuators (Tokomak, telescopes), etc.

Sensors will be packaged together with communication

protocols, RF electronics, and energy management systems.

Therefore, the development of such integrated sensors will

be driven by constraints like: low cost, ease of replacement,

low energy consumption, and efficient communication links.

In turn, these constraints bring new problems to be considered

in the exploitation of this information. For instance, low cost

will induce sensors with low resolution (binary sensors, at the

extreme), low consumption will impose issues on efficient

sensor energy management (sleep and wake-up modes), ease

of replacement will imply the system ability to keep safe

operation in a failure of one or several sensors, and finally

communication links and protocols should be designed to

account for energy savings, information loss, and varying

fading characteristics.

To some extent, the coding structure proposed here can

be interpreted as a particular class of quantizer. Some works

in relation to study of coarse quantizers and coding have

been previously reported in [1], [2], [3], [4], [5], [6], [7], [8],

[9], and [10], [11] among others. The use of 3-valued code,

in connection with a delta-modulation coding structure and

a variable length-block encoding scheme, was proposed in

[12]. In this work, the authors have proposed to use entropy

coding to take advantage of the probability distribution of the

events, and hence to improve compression rates. However, no

claim for energy saving was done.

To the authors knowledge, this work is one of the first

intents to study the coding design in the context of NCS

in connection to characteristics of low-energy sensors. In

this paper, we particularly focus on issues on low energy

consumption (energy-aware). To this aim, we propose to

use a coding strategy with the ability to quantify and to

differentiate stand-still signal events from changes in the

source (level crossing detector). The stand-still signal event

is then modulated with a low energy carrier (sleep mode),

whereas the changes of levels will be modulated with enough

energy (wake-up mode). Coding can then be effectuated by

defining a 3-valued alphabet: 0 for the case where the source

signal information is contained in the time interval between

level crossing(sleep mode) and, ±1 in order to indicate

the direction of the level crossing when it occurs (wake-up

mode).

The overall coding strategy studied here is composed of

two main blocks: (i) a 3-valued encoder including a model-

based predictor (MBP) similar to the one proposed in [12],

and (ii) an amplitude modulator used to carry the code

produced by the encoder. The paper aims at studying the

closed-loop properties of such arrangement. In particular we

derive conditions required by this coding algorithm in order

to preserve closed loop stability.

A. Definitions

rk: reference signal,

xk: system output,

x̂k: estimated (reconstructed) output,

x̃k: true estimated error, x̃k = xk − x̂k,

ϕLD: level detector,

ϕ−1
LD: inverse of level detector,
ˆ̃xk: approximated estimated error, obtained after reconstruc-

tion, i.e. ˆ̃xk = {ϕ−1
LD ◦ϕLD}(x̃k), with ϕ−1

LD ◦ϕLD 6= 1.

∆: step interval used to detect level and reconstruct ˆ̃xk,

δk: 3-level valued integer signal: {−1, 0, 1}. Signal to be

modulated,

δ̂k: demodulated signal at the received information,

uk: control input.

B. Assumptions

• The transmitted information is amplitude modulated
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Fig. 1. Block diagram of the complete estimation/control process including the coding and the modulation steps.

• Only encoder-to-decoder information transmission is

allowed,

• Reliable noiseless transmission channel is considered,

• local clocks at the encoder/decoder are assumed to be

synchronized.

II. PROBLEM SET UP

We consider the following SISO discrete-time linear sys-

tem (possible unstable), of the form,

xk =
B(q−1)

A(q−1)
uk (1)

together with an RST controller,

uk =
R(q−1)

S(q−1)

{
γ

T (q−1)
rk − x̂k

}

(2)

where rk is the reference, x̂k is the estimated of the sys-

tem output xk, and R(q−1), S(q−1), T (q−1) are the control

polynomials in the delay operator q−1. They also satisfy:

T = RB, SA + RB = Acl, γ
△
= Acl(1)

with Acl being the closed-loop polynomial, and γ the static

gain needed to reach unitary zero-frequency gain. For sim-

plicity, we will omit the use of the argument (q−1) when

needed.

The coding process consists in several steps:

1) Encoding the system output xk. This process yields the

3-valued signal δk,

2) Modulation of the encoded signal. δk is transmitted by

using some particular type of modulation, i.e. ampli-

tude shift keying modulation (ASK). Note that when

signal is in stand still mode (the produced code is

δk = 0) then very limited power is needed,

3) Demodulation of the transmitted signal δ̂k, and

4) Decodification of the received information to produce

the estimated x̂k.

The complete sequence can be seen as a full estimation

process. The different components are shown in Figure 1.

When x̂k ≡ xk, the above controller gives the following

closed-loop nominal relation,

xk =
γ

Acl(q−1)
rk

else (x̂k 6= xk), we have,

xk =
γ

Acl(q−1)
rk + W (q−1)x̃k

where x̃k = xk − x̂k is the estimation error, and W =
BR/Acl. As Acl defines a stable polynomial, the output xk

is kept bounded as long as x̃k is bounded as well.

The problem is then to design the combined cod-

ing/modulation process that defines the output x̂k from the

input xk preserving closed-loop properties. This process,

which will be described next, can be split into two steps:

coding and modulation. We first present the coding algorithm

and study its stability assuming that the transmitted signal

process is ideal, then we present in a subsequent section the

influence of the amplitude modulator in terms of stability.

III. CODING PROCESS

We assume first that δ̂k = δk, the effect of the modulation

process is first neglected. The coding (encoding/decoding)

process is shown in Figure 1. The encoder (respectively the

inverse decoder) operation is composed of: a non uniform

sampler encoder including a level detector (LD), associated to

the map ϕLD, together with a model-based predictor (MBP).

A. The Level Detector

The operation principle of the level detector is shown in

Figure 2. The map (ϕLD : x̃k 7→ δk), takes the error signal

and codes the output signal into a 3-valued δk ∈ {−1, 0, 1}.

That is:

δk =







1 if one level is crossed upwards,

0 if x̃k stays at the actual level,

−1 if one level is crossed downwards.

Equations behind this are:

lk =

⌊
x̃k

∆
−

1

2

⌋

δk = f(x̃k) =

{

0 if lk = lk−1,

sign (lk − lk−1) else,

with ∆ the level threshold and ⌊·⌋ the floor operator which

rounds to the smaller integer.
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Fig. 2. Illustration of the level detector working operation principe.

B. The model-based predictor (MBP)

The role of the MBP is to recover the encoded signal xk

from the 3-valued binary signal δk. It is composed of:

• The inverse of the level detector: ϕ−1
LD : δk 7→ ˆ̃xk, whose

equation is:
ˆ̃xk = ˆ̃xk−1 + ∆ · δk

• The predictor: it is a model-based predictor. As its

name indicates, it uses the target closed-loop model

as a basis for its design. This structure is inspired

by our previous works in [9], [10], and also in [7].

The predictor is a dynamic linear discrete-time operator

that maps the output of the inverse level detector, to

the signal prediction x̂k. Its structure depends upon

the particular control used (state feedback or output

feedback). For instance, for the RST-control discussed

here, it has the following form:

x̂k = W
[ γ

T
rk + ˆ̃xk

]

, W
△
=

BR

Acl

, (3)

which results in the following error equation:

x̃k = W
[

x̃k − ˆ̃xk

]

. (4)

IV. STABILITY PROPERTIES UNDER IDEAL TRANSMISSION

Following the assumptions made in this section (lossless

transmission channel, with no transmission delay nor noise),

we then have that δk = δ̂k. In this case, we do not need to

differentiate the MBP at the encoder from the MBP at the

decoder otherwise it must be, and hence error equation can

be described by real variables only.

A. Error system

Introducing:

• ek = xk − γ
Acl

rk: the tracking error,

• x̃k = xk − x̂k: the prediction error, and

• εk = x̃k − ˆ̃xk: the LD error.

we have the closed-loop error system:

ek = W (q−1)x̃k (5)

x̃k = W (q−1)εk (6)

with W = BR/Acl being the stable operator defined previ-

ously. Note that εk = εk(x̃k), and thereby the above error

equation can be seen as two systems in cascade, i.e. the

output of the autonomous system (6) is the input of the

stable system (5). For stability purposes it is thus sufficient

to demonstrate the stability properties of the sub-system (6).

Note that εk writes as:

εk = x̃k − ˆ̃xk = x̃k − ϕLD ◦ ϕ−1
LD {x̃k} = x̃k − ϕ̃LD {x̃k}

where ϕ̃LD
△
= ϕLD ◦ ϕ−1

LD : x̃k 7→ ˆ̃xk. Note that this map is

dynamic and defined by the following relation:

ˆ̃xk = ˆ̃xk−1 + ∆ · δk (7)

with δk = f(x̃k) as defined before. Ideally, ie without

coding, the map ϕ̃LD be a linear map with unitary gain. This

ideal goal is hampered by several factors, among which the

unknown initial conditions of x̃0, and, more important, by a

bad choice of Ts, and ∆. In particular, large sampling times

Ts, and too small quantum ∆ may result in signal variation

of more than one level, which may lead to unrecovered bias

in the estimated, leading to potential instabilities for unstable

open-loop systems.

The following analysis gives sufficient stability conditions,

and it also details the type of stability that can be reached

with this coding scheme. For simplicity reasons, the analysis

is presented using a simple linear system with a scalar gain

which captures the essential stability characteristics of such

type of scheme, namely:

• condition needed for stabilization given as a function of

the maximum unstable open-loop eigenvalues, and

• attraction domain specified as a function of the granu-

larity of the level detector (∆)

The analysis first presents the case of the ideal transmission

when δ̂k = δk, then, in subsequent sections, the impact of

the modulation latency is assessed.

B. Stability properties: ideal transmission δ̂k = δk

Consider the stabilization problem (r = 0) of the following

simple unstable system
B(q−1)
A(q−1) = bq−1

1−aq−1 , with 2 > |a| > 1,

and the static feedback control law u = kxk. Let 1 > ac >
0 be the desired closed loop poles, the required gain to

reach such closed-loop specification is k = −(a − ac)/b.

This particular choice leads to the error equations (5)-(6)

with W (q−1) = (a−ac)q
−1

1−acq−1 . Due to the cascade structure

of such error equation arrangement, stability only relies on

the stability of the equation (5) which captures most of the

difficulties. To this aim we will concentrate on the following

set of equations,

x̃k+1 = acx̃k + (a − ac)εk, εk = x̃k − ˆ̃xk (8)

ˆ̃xk = ˆ̃xk−1 + ∆sign (lk − lk−1) , lk =

⌊
x̃k

∆
−

1

2

⌋

(9)

The stability analysis mainly depends on the following two

properties:
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• Rate level condition. Defines conditions on a, and a

domain Bρ1
for x̃k that ensure that no more than one

level change can be effectuated, i.e. |lk − lk−1| 6 1,

• Invariance condition. Defines condition under which

the domain Bρ1
is indeed an invariant; solutions x̃k

starting in Bρ1
do not leave this domain.

Lemma 1: Rate level condition. Consider unstable systems

limited by the relation a < 2 + ac < 3, and let define the

compact set, Bρ1
, as:

Bρ1
= {x̃k : |x̃k| < ρ1} , ρ1 =

(1 − (a−ac)
2 )

1 − ac

∆

with ρ1 > 0. Then for all |x̃k| ∈ Bρ1
the following holds,

∀k ∈ Z
+:

i) |x̃k − x̃k−1| 6 ∆, furthermore, i) implies the following

two equivalent inequalities:

ii) |lk − lk−1| 6 1
iii) |εk| 6 ∆/2

Proof: . See [12]

The Lemma establishes conditions on |x̃k|, ∀k ∈ Z
+

such that the rate change in the level detector be at most

one. For consistency reason, it is implicitly assumed that the

encoder/decoder internal states are suitably initialized. That

is, x̂0, and l0 are such that: ε0 < ∆/2, and ˆ̃x0 = ∆l0 at

k = 0.

Lemma 2: Invariance condition. Assume that x̂0, and l0
are such that: ε0 < ∆/2, and ˆ̃x0 = ∆l0 at k = 0, and that

x̃0 ∈ Bρ1
, then if,

ρ0 = ∆
(a − ac)

2(1 − ac)
< ∆

(1 − (a−ac)
2 )

1 − ac

= ρ1

then all solutions of x̃k ∈ Bρ1
, for all k = 0, 1, . . . .

Proof: . See [12]

Working out details of the above inequality, it can be shown

that this equality holds if a−ac < 1, for all ac ∈ (0, 1). Note

that this is a stronger condition than the one in Lemma 1 as

it is derived from a more conservative (Lyapunov) analysis.

The following theorem used the previous two lemmas to

derive the complete stability result.

Theorem 1: Assume that the coding algorithm is initial-

ized such that x̂0, and l0 are such that: ε0 < ∆/2, and
ˆ̃x0 = ∆l0. Consider system satisfying a − ac < 1, with

initial condition in the set x̃0 ∈ Bρ1
. Then:

• x̃k ∈ Bρ1
, ∀k ∈ Z

+,

• ∃k0 : |x̃k| 6 ρ0, ∀k > k0, and

• limk→∞ d(xk,Bβ) = 0.

where d(xk,Bβ) is the minimum Euclidean distance from xk

to any point within the ball

Bβ := {x ∈ R : ‖x‖ < β},

and β is a constant that depends on ρ0, and on the infinite

norm of W (q−1).
Proof: The first two statements follow from the previous

analysis, the last statement result from equation (5), i.e;

|xk| 6 ||W || · |x̃k|. Details for the derivation of this property

are similar to the ones used in [9], and [10].

V. STABILITY PROPERTIES WITH WIRELESS

TRANSMISSION

In this section we study the stability properties for the

case of wireless transmission. We first present the wireless

transmission method (amplitude modulation) and investigate

the effects of this transmission (latency), and then we present

a modification of the encoder to account for such a difference.

A. Wireless transmission method

There exists many well-known transmission techniques

that can be used to transmit the information symbols δk ∈
{−1, 0, 1} at the rate 1/Ts, see for example [13] for a

complete description. One possibility is to use a ternary RZ

line code associated to an amplitude shift keying modulation

(ASK). Let us describe the corresponding transmission and

the reception stages.

1) Transmission: The transmission stage can be divided

into two different steps: the line coding and the modulation.

a) Line coding: We have first of all to build a baseband,

low frequency signal, also called line code. It writes:

sLF(t) =
∑

k

δkhe(t − kTs) (10)

with he an emission filter whose aim is to precise to time-

frequency localization of the transmitted signal. For example,

he(t) can be a simple rectangular window with duration Ts.

In this case, we get the so called NRZ (Non Return to Zero)

line code. The rectangular window can also have a duration

τ < Ts, which corresponds to RZ (Return to Zero) line

code1. This is the choice adopted in this work. This signal,

sLF(t), could be transmitted through a wired line, but not

through a transmission channel. Indeed, wireless transmission

is possible only for high frequency signal (HF), whereas

sLF(t) is low frequency by construction. It is worthwhile

mentioning that the spectral properties of this signal are fixed

by he(t). In practice, the spectrum is never perfectly bounded,

but we can nevertheless make the approximation that there

exists an upper maximal frequency fmax : |He(f)| << 1 for

|f | > fmax.

b) Modulation: The modulation step consists in trans-

posing the low frequency signal sLF(t) around a carrier

frequency f0 in order to transmit it through radio waves. We

have chosen to use an amplitude modulation for its ease of

implementation and also in order to take advantage of the fact

that the signal will be equal to zero when δk = 0, reducing

the energy used. Then, the corresponding high frequency

modulated signal simply writes :

sHF(t) = sLF(t) cos(2πf0t)

The modulated signal spectrum is then concentrated around

−f0 and f0, precisely in the intervals [−fmax−f0; +fmax−f0]

1Classically, RZ and NRZ line codes rather use binary symbols, but they
of course can be extended yo the case of ternary symbols.
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and [−fmax +f0; +fmax +f0]. Thus, we must have f0 > fmax,

otherwise these two intervals overlap. In practice, f0 >>
fmax.

2) Reception: We will suppose that the received signal

is exactly equal to the transmitted signal sHF(t), which

is obviously not the case in reality. We will so neglect

synchronization issues, noise and any distortions due to the

transmission channel. The reception stage is dual to the

transmission stage. Thus, it comprises a demodulation step

followed by a decoding and a detection step.

a) Demodulation: We first have to demodulate the

received high frequency signal sHF(t), so that we will recover

sLF(t). The optimal solution consists in multiplying sHF(t)
by the same carrier as the one used at the modulation step,

and then low-pass filtering the obtained signal. Indeed, we

have

sHF(t) cos(2πf0t) =
1

2
sLF(t)
︸ ︷︷ ︸

|f |<fmax

+ sLF(t) cos(2π2f0t)
︸ ︷︷ ︸

|f−2f0|<fmax or |f+2f0|<fmax

and we thus deduce that sLF(t) can be recovered by low

pass filtering of sHF(t) cos(2πf0t), providing that this filter

HLF(ν), is such that :

• HLF(ν) = 2 pour |ν| < fmax ;

• HLF(ν) = 0 pour |ν| > −fmax + 2f0.

That is why 2f0 has to be greater enough than fmax, otherwise

the low-pass filter will not be practically feasible.

b) Decoding: Let us denote ŝLF(t) the signal obtained

after low pass filtering. If the low pass filtering is per-

fect and if sLF(t) is completely spectrally concentrated in

[−fmax; fmax], then ŝLF(t) = sLF(t). Otherwise, in a real case,

a slight error ε(t) occurs : ŝLF(t) = sLF(t)+ε(t). This slight

error is not problematic in fact. Indeed, what is important is

not to reconstruct exactly sLF(t), but only to recover the δk

symbols. It can be shown that the optimal receiver consists

in filtering by he(−t) and then sampling at the instant kTs :

δ̄k =

∫ ∞

−∞

ŝLF(t)he(t − nTs)dt = [ŝLF(t) ∗ he(−t)]t=kTs

(11)

The problem is that he(−t) is not a causal filter. That is why,

even for a perfectly reliable channel without noise, a delay

need to be introduced. Let us denote τ the duration of he(t).
Then, he(τ − t) is causal and

δ̄k = [ŝLF(t) ∗ he(τ − t)]t=kTs+τ

Thus, the symbol δk transmitted at the instant kTs can only

be received at the instant kTs + τ , that is to say with a delay

τ . Moreover, this delay is equal to the duration of he(t).
Thus, the lower is the duration of he(t), the lower will be

this delay. But a lower duration also implies a greater spectral

occupancy. It is worthwhile noting that if there were no noise,

this filtering would not be necessary, and therefore there no

demodulation delay.

c) Detection: At least, after the computation of an

estimation δ̄k of the symbol transmitted at the instant kTs,

we can take advantage of the fact that δk ∈ {−1, 0, 1} in

using a threshold non linearity with the following detection

rule:

δ̂k
△
=







−1 if δ̄k < −0.5
0 if |δ̄k| < 0.5
1 if δ̄k > 0.5

to get the final estimated δ̂k.

In conclusion, it is worthwhile emphasizing that :

• we must have HLF(ν) = 2 for |ν| < fmax and HLF(ν) =
0 for |ν| > −fmax + 2f0, hence f0 >> fmax ;

• if δk is transmitted at the instant kTs, it is received at

the instant kTs + τ . Therefore:

δ̂(kTs) = δ(kTs − τ), ∀k ∈ Z
+, τ > 0 (12)

B. Proposed modification for latency compensation

We have just seen that the transmission process introduces

a delay τ . Therefore, we can not assume anymore that δ̂k =
δk as in section IV. Nevertheless, we will now see that it

is possible to build a predictor with modified time-horizon

at the decoder side, so that the stability conditions remain

unchanged.

Without loss of generality, let us assume that2 τ = Ts/2.

This implies that the information needs to be processed with

higher rate, and hence the digital version of the decoder needs

to compile with this new sampling rate. To this aim, let us

introduce the new delay operator z−1 in this new time-base,

as: υ(t)z−1 = υ(t − Ts/2). We have then the following

relation z−2 = q−1, and according to (12) we also have:

δ̂k = z−1δk

Thus, the transmission latency can be assimilated to a pure

delay equal to z−1. The idea of the modification proposed

can be explained by first rewriting the encoder equation in

this new time basis (although there is no need to make any

change of equation nor to modify the time basis of the clock

at the encoder side). This gives,

x̂k = W (z−2)
∆

1 − z−2
δk

and noticing that if the previous decoder structure is modified

as:

x̂k = W (z−2)
∆z−1

1 − z−2
δ̂k = W (z−2)

∆

1 − z−2
δk

= W (q−1)
∆

1 − q−1
δk

where the last expression is obtained by using the fact that

δ̂k = z−1δk. Then, if the encoder and the decoder are

initialized equally, the solutions and the associated error

equation are similar to the ones presented in section IV. As

a consequence, the stability properties follow the results in

Theorem 1.

2the principle of our proof is valid for any τ < Ts
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z−1
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x̂k

δk

z−1

Fig. 3. Decoder and encoder equations.

VI. SIMULATION RESULTS

We consider the following simple system

B(q−1)

A(q−1)
=

bq−1

1 − aq−1
(13)

The controller is: uk = kx̂k +γrk obtained from the closed-

loop specification given by Acl = (1−aclq
−1), k = −a−acl

b

and γ = 1− ac. Parameter used in simulations are: a = 1.1,

b = 1, ac = 0.5, Ts = 0.1 (sec), ∆ = 0.02, x0 = 0 and

x̂0 = −0.01 so x̃0 = 0.01.

With ρ1 =
1− a−ac

2

1−ac

∆ = 0.028, we have x̃0 < ρ1 and a <
1 + ac = 1.5 so theorem 1 applies.

The upper figure 4, shows that xk can track the reference

rk with a certain error function of the quantification ∆.

Figure 4 (bottom) displays the distribution of δk: we can

see that when the reference is constant (as the output) the

encoder sends a substantially large number of δk = 0. As the

the encoder has no energy consumption during the δk = 0
phases, an important saving in energy is obtained at the

sensor side. This saving is much more important than the

ones that can be obtained by using the standard two-state

∆-modulation (δk = ±1) strategy.

VII. CONCLUSIONS

In this paper we have investigated the possibility to use 3-

level coding alphabet in the context of networked controlled

systems. The main motivation has been to explore the benefits

in terms of energy savings (energy-aware) in the context

of low-energy sensors. We have proposed to use a coding

strategy with the ability to quantify and to differentiate

stand-still signal events, from changes in the source (level

crossing detector). The stand-still signal event results then

in a modulation strategy with a low energy carrier (sleep

mode), whereas the changes of levels are modulated with

enough energy (wake-up mode).

We have studied the impact of the wireless RZ amplitude

modulation strategy in connection with the stability of the

system. It has been shown that this modulation introduced

an arbitrarily small latency, but that it can be compensated at

the decoder side, by accommodating the predictor horizons

to this delay which is known and fixed by the user. In that

way, the same stability condition as in the case of ideal

transmission are preserved.
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