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theory of nuclear reactions, cross sections are given by a product of the fusion and

the survival probabilities. The latter is well-known, though there are ambiguities

related to unknown parameters in the SHE region. But the mechanism of the fusion

hindrance has not been clarified yet, although it has been experimentally known

for a long time. Without its understanding, no reliable prediction is possible for

cross sections of SHE.1 The present talk is mainly addressed to the problem, i.e.,

to the process from Di-Nucleus Configuration ( DNC ) formed by the incident

combination of ions to the mono-nucleus, i.e., to the compound nucleus. For a

description of nuclear shapes, we need at least three parameters. We employ the

Two-Center parametrization, i.e., the distance R, the asymmetry α, and the neck

parameter ε. The parameter ε is not a neck radius, but defined by a modification

factor of the spike in the di-harmonic potential. Nuclear shape is defined by an equi-

potential energy surface with a fixed volume. ε = 1.0 corresponds to no correction,

thus to the configuration of touching two nuclei, while ε = 0.0 corresponds to no

spike, thus to mono-nucleus with the neck being completely filled in. For the mass-

symmetric incident channels, the mono-nucleus is a compound nucleus with the

superdeformation.

In the previous calculations, we simply assume ε to be equal to 0.8, which has

turned out to be not adequate as will be explained below. Due to that choice of the

parameter, at least partially, we could not reproduce absolute peak values of the

cross sections without adjustments of the shell correction energies in the calculations

of the survival probabilities,2 by the refined statistical codes KEWPIE I and II.3

2. Fusion Mechanism of Massive Systems ; Two-step model and

the method of statistical connection

A particular aspect in fusion of massive systems, which is different from that of

lighter systems, is that the overcoming of the Coulomb barrier is not the end of

the fusion process, as inferred from the hindrance observed experimentally. In fact,

DNC formed by the incident combination of ions is located outside of the condi-

tional saddle point, which is easily understood by the fact that DNC is a largely

deformed compound system, while the saddle point for fission is located near the

spherical ground state when the fissility parameter is close to 1. Therefore, after

overcoming the Coulomb barrier, the system has to overcome one more barrier, i.e.,

the conditional saddle point or the ridge-line.4

Therefore, the fusion probability Pfusion is given by the product of the two

probabilities: the probability for overcoming of the Coulomb barrier Psticking and

that for the formation of the spherical compound nucleus, starting from DNC Pform.

Pfusion(Ec.m.) = Psticking(Ec.m.) · Pform(Ec.m.). (1)

An important point here is that DNC is already excited due to interactions

before the contact of two ions, i.e., the incident kinetic energy is already dissipated.

Therefore, the overcoming of the conditional saddle point is not made mechanically,
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but by the fluctuation. Actually, the calculations of passing over the Coulomb bar-

rier are made by the use of the Surface Friction Model, extended to include the

Langevin force associated with the friction.5 The results show that in all the inci-

dent systems for SHE, the incident kinetic energies are completely dissipated, i.e.,

are transferred into internal excitations. In this sense, the process is also a heating-

up process of the compound systems. The radial momentum, thus, has a Boltzmann

distribution with the corresponding temperature. This gives an initial condition for

the next process of overcoming of the saddle point. That is, the two processes

are connected statistically. The second process is solved by a multi-dimensional

Langevin equation for shape evolution. For understanding of the two-step model

with the statistical connection method, we show a schematic example of a one-

dimensional case with an inverted parabolic approximation for the barrier around

the saddle point.6 The Langevin equation for the distance coordinate q and the

associate momentum p is given as follows,

d

dt

[

q

p

]

=

[

0 1/µ

µω2 −β

]

.

[

q

p

]

+

[

0

R

]

, (2)

where µ, ω, and β denote the inertia mass, the frequency of the parabola, and the

reduced friction coefficient, respectively. β = γ/µ with the friction coefficient γ. The

term R denotes the Langevin force, which is assumed to be Gaussian and related to

the friction γ by the dissipation-fluctuation theorem. Since the equation is linear,

we can easily solve it. Then, we can obtain the probability for passing to the other

side of the saddle, i.e., the formation probability with the initial values q0 and p0,

by averaging over all the possible realizations of the random force R and by the

integration over p and the half q-space.

Fform(q0, p0, t) =

∫

∞

0

dq
√

2π

1

σq(t)
exp

(

−
(q− < q(t) >)2

2σ2
q(t)

)

(3)

=
1

2
erfc

(

−
< q(t) >
√

2σq(t)

)

, (4)

where the average trajectory < q(t) >= A(t) · q0 + B(t) · p0. The coefficients A(t),

and B(t) are given by the system constants: the friction γ, ω and µ.

For a time long enough, the probability is written simply by an error function,

lim
t→∞

Fform =
1

2
erfc





√

x +
√

x2 + 1

2x

√

B

T
−

1
√

2x(x +
√

x2 + 1

√

K

T



 , (5)

where B = µ · ω2 · q2
0/2, the saddle point height measured from the intial point q0,

while K = p2
0/(2 · µ). x denotes the critical parameter β/(2 · ω). As we discussed

above, the distribution of p0 is a Boltzmann type with a zero mean value, and then,

an averaging overthe initial momentum p0 gives an extremely simple expression for
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the formation probability,

Pform(Ec.m.) =
1

2
erfc

(
√

B

T

)

. (6)

Here, we can simply understand the reason why the fusion is hindered. Even if we

give a larger incident kinetic energy, the formation and then the fusion probability

does not increase accordingly. It increases very slowly through the increase of the

temperature of the system, which appears in agreement with the experiment.7

3. DNC to Mono-Nucleus; Filling-in of the neck cleft

The fusion probability in the 1-dimensional model is further analysed, i.e., time

evolutions of the formation probability and of the fusion flux are investigated, which

are extremely helpful for an intuitive understanding of how the fusion process goes.

In cases of low kinetic energies available at the contact configuration, the flux has

a rather sharp peak in time around several in the unit of ~/MeV.8 Therefore,

it is interesting to investigate how the other degrees of freedom affect the fusion

process during the period of time. They couple with each other through Liquid

Drop Model (LDM) potential energy, as well as through the inertia mass and the

friction tensors, but the neck degree of freedom is relatively weak in the coupling

with the others. Thus, it is meaningful to analyse time evolution of the neck degree

of freedom, separately. As the first step, we look at the LDM potential for the

symmetric incident systems, which turns out to be approximately linear in the neck

parameter.9 We analyse time evolution of the neck parameter, starting at ε = 1.0

or around. A Langevin equation is solved, which turns out that the average value

of the neck parameter changes very quickly, far quicker than the radial fusion for

most systems including very heavy ones.10 The variance does also similarly. This

is due to action of the linear driving force in the neck ε, while the radial fusion is

governed by the fluctuation or the diffusion. Thus, it suggests that the neck degree

of freedom is in the thermal equilibrium during the fusion.

Next, in order to know how the distribution reaches the equilibrium, we try to

obtain a time-dependent distribution function of the neck, starting from the delta-

function at ε = 1.0, i.e., at the initial DNC. The equation employed is Smoluchowski

equation, since we know that the momentum space can be approximated to be in

a Boltzmann distribution, due to a very small inertia mass and thus a very quick

equilibration.11 With the linear potential, the equation to be solved is as follows,

∂N

∂t
= D

∂2N

∂ε2
+ C

∂N

∂ε
, (7)

where the diffusion coefficient D = T/γ, and C = f/γ with the slope parameter f :

V (ε) = f · ε. The friction coefficient γ is calculated with the usual one body model,

and the slope parameter f is calculated with LDM.9 For simplicty, we take the

range of the variable ε to be [0.0,∞], instead of the realistic [0.0, 1.0] (in this case,

a little more complicated expression can be obtained). Nevertheless, this would be
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adequate enough, because of the linear potential which is unfavourable for larger

ε. The important boundary condition is that the point at ε = 0.0 is reflective. This

is expressed in another way that the flux at ε = 0.0 is to be zero. As for the initial

condition, the distribution at time t = 0 is δ(ε − ε0) with ε0 being a starting value

of the neck parameter which should be close to 1.0, corresponding to the initial

DNC. With the initial and the above boundary conditions, the solution is obtained

as follows,12

N(ε, t) =
1

√
4πDt

[

exp

(

−
(ε − ε0)

2

4Dt

)

+ exp

(

−
(ε + ε0)

2

4Dt

)]

(8)

× exp

(

−
C

2D
(ε − ε0) −

C2t

4D

)

(9)

+
C

2D
exp

(

−
Cε

D

)

· erfc

(

ε + ε0 − Ct

2
√

Dt

)

. (10)

At the limit time t goes to the infinity, or well later, the expression becomes to be

a Boltzmann distribution. In Fig. 1, the time dependence is shown by distributions

at several different times after the contact, for the case of 100Mo+100Mo system.

Apparently, the Boltzmann distribution in the coordinate space is established al-

Fig. 1. Time evolution of the neck distribution function is shown with examples st several different
times for 100 Mo+100Mo system, for which typical values of the parameters are D = T/γ=1/8
and C = f/γ=20/8 in the unit of MeV/~. The time unit is ~/MeV.

ready at several tenths in the unit of ~/MeV. It is worth mentioning that the time

scale is far shorter than that of the 1-dimensional radial fusion. This means that

before the radial motion for fusion starts, the neck cleft is filled in, i.e., the initial

DNC becomes a superdeformed mono-nucleus. Thus, for fusioning motion, we can

approximately take ε to be close to 0.0, because it is the most probable value of the

Boltzmann distribution obtained above.

4. Remarks

The time evolution toward the Boltzmann distribution from the initial delta func-

tion is not simple as seen in Fig. 1. Thus, for cases with the two time scales being
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not so different, we have to make a convolution over time in order to take into

account effects of the neck degree of freedom, mainly changes of the saddle point

height. Actually, the slope parameter f is expected to depend on mass-asymmetry

of DNC, because it is essentially due to the change in the surface area in the neck

region. And the barrier height B is small in large mass asymmetries, then the two

time scales would be not very different. Therefore, the time dependent distribution

of the neck parameter presently obtained is important in understanding of the fu-

sion mechanism, i.e., the formation of the compound nucleus. It also provides useful

and practical information for theoretical predictions of the synthesis of SHE with

various combinations of targets and incident ions.
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