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Abstract

We consider a cosmological horizon, named thermo-horizon, to which

are associated a temperature and an entropy of Bekenstein-Hawking and

which obeys the first law for an energy flow calculated through the cor-

responding limit surface. We point out a contradiction between the first

law and the definition of the total energy contained inside the horizon.

This contradiction is removed when the first law is replaced by a Gibbs’

equation for a vacuum-like component associated to the event horizon.

1 Introduction

The generalization of the Thermodynamics of black holes (BH) to cosmological
horizons represents an important stake to understand different issues in cosmol-
ogy such as the nature of the dark energy (DE) in relation with the problems
of the cosmological constant (CC) and of the vacuum energy, the acceleration
of the present universe, the coincidence problem and the early inflation.

This generalization was first introduced for de Sitter spacetime [1]. There-
after, it was tentatively extended to quasi-de Sitter FRW spacetimes in different
frameworks (see [2]- [6]). In an interesting approach, Bousso [7, 8] considers the
flow of energy through the horizon as a null surface. He interprets the variation
of the entropy of the horizon through the variation of its surface as the response
of the horizon to the flux of energy, in the same way as the “first law” of the
BH.

Following this approach, several authors (see for example [9, 10]) have es-
timated that the apparent horizon (a.h.) is the only limit surface (excluding
other horizons such as the event horizon (e.h.)) having coherent thermodynam-
ical properties to address problems such as the nature of the DE.
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Our main goal is to shed some light on the contradiction between the amount
of energy calculated from the first law as defined in [7, 8] and the definition of
the energy contained inside the horizon, independently of the choice of the
thermo-horizon (t.h.).

We restrict our study to a spatially flat FRW spacetime, which is the starting
point of other studies (non spatially flat spacetimes, cases with interactions,...).

After a brief review of the definition of a t.h. in a Q-space introduced in
[7, 8], we show that any t.h. obeys the second law (Section 2). In section 3, we
present the contradiction between the amount of energy derived from the first
law and the definition of the energy inside the horizon. We then show that this
contradiction is resolved in a thermodynamical model for a DE [4, 5] based on
the e.h. (Section 4).

2 Definition of a thermo-horizon

In a spatially flat FRW spacetime

ds2 = −dt2 + a(t)2(dr2 + r2dΩ2), (1)

the dynamical evolution of the scale factor a(t) is given for a perfect fluid with
energy density ρ and pressure P by

(

ȧ

a

)2

= H2 = χ
ρ

3
, (2)

ä

a
= −

χ

6
(ρ + 3P ), (3)

where χ = 8π is the Einstein constant, with G = 1 and c = 1. The equation of
state (EoS) ω of the fluid is given by P = ωρ and we introduce the parameter
ε = 3

2
(1 + ω). In the following, we restrict our study to the Q-space [8], namely

accelerated universes, for which 0 < ε < 1. Extending the reasoning of [8], we
consider an horizon (null surface) with a given radius L. According to the first
law, the flow of energy through this surface is given by

−
·

E = 4πL2ρ(1 + ω) = T
·

S. (4)

We assume that we can associate a temperature T and an entropy S to the
dynamical horizon of radius L, given by the relations of Bekenstein-Hawking for
a BH or a de Sitter horizon

T =
1

2πL
, and S = πL2. (5)

Any horizon of radius L with a temperature and a entropy given by (5) and
which obeys the first law (4) is called thermo-horizon (t.h.).

Using (5), we obtain directly T
·

S =
·

L and Eq. (4) becomes

εL2H2 =
·

L. (6)
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With our notations, the Eq. (3) is given by

·
(

1

H

)

= ε, (7)

and the first law (6) rewrites

·

H =

·

(
1

L
). (8)

After integration, this equation leads to

HL − 1 = CL, (9)

where C is a constant. Eq. (9) establishes a general relation between the t.h.

L and the a.h. RA =
1

H
which is satisfied by any thermo-horizon of radius L

without restriction on ε (in particular without assuming ε = constant). With
the constant C, this relation is more general than the Eq. (28) of [8].

If L is the a.h., then L =
1

H
= RA, implying C = 0. Conversely, only C = 0

leads to L =
1

H
. Therefore the a.h. obeys the first law (4) if and only if C = 0.

This special case only is considered by [8].
More generally, any horizon L defined by (9) with a temperature and an

entropy given by (5) is a t.h. and it obeys the first law (4).
The equation (6) can be rewritten with the help of (9)

·

L = ε(1 + CL)2. (10)

Any t.h. verifies this equation. Using Eq. (10), L is strictly increasing in the
Q-space (accelerated universe) where 0 < ε < 1. The same result can be derived
for the entropy S given by (5).

3 Energy in a thermo-horizon and the first law

On one side, the total amount of energy contained inside the a.h. for a spatially
flat FW space-time is (e.g. [9] before Eq. (20))

E = ρ
4π

3
R3

A =
RA

2
. (11)

Let us remark that in [10] this relation is used for a non-spatially flat FRW
spacetime, albeit no more valid in this case.

On the other side, using (4) and (5), the first law applied to the a.h. con-
sidered as a t.h. leads to

−
·

E =
·

RA, (12)
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where −
·

E is the total amount of energy crossing the a.h. by unit of time.
According to the conservation of the energy, this amount of energy is equal to

the variation of the total energy (11) per unit time,
·

E =

·

RA

2
. This result is in

contradiction with (12) except when RA is constant, which corresponds to a de
Sitter spacetime where the a.h. identifies with the e.h..

This result is not restricted to the a.h. and can be extended to any t.h..
Using (7), the left hand side of (4) becomes for a t.h. of radius L

−
·

E = L2H2ε = −L2
·

H, (13)

while the total energy inside the horizon is

E =
1

2
H2L3. (14)

Differentiating (14) and equating with (13), we obtain with (8)

3

2
(HL)2 − HL + 1 = 0, (15)

where
·

H 6= 0 has been assumed. No real root can be found for this equation.

In particular, L =
1

H
is not a solution. Therefore, the above contradiction can

only be removed for
·

H = 0, namely for a de Sitter spacetime.

4 Thermodynamical model of the event horizon

for the dark energy

The preceding results are independent of the underlying model for the DE.
They depend only on the assumptions of the existence of a temperature and
an entropy associated to a t.h. through the relation (5) and of the validity
of the extension of the first law of BHs (4) to cosmological t.hs.. With these
assumptions, we obtain (9) (assuming C = 0), as demonstrated by [7, 8] and by
[9], in sections II-A and II-B.

In section II-B of [9], the authors consider only the specific model for the
DE developed in [6]. Let us emphasize that their results can be obtained inde-
pendently of any model for the DE (see Section 2) because the demonstration
involves only the density of the total energy ρ. Consequently, the reasoning
developed in [9] cannot question the validity of the model assumed for the com-
ponent DE and in particular the approach proposed in [6]. The first law (4) is
a relation between the density of energy ρ and the entropy. It does not involve
the density of energy of the DE ρΛ and therefore cannot be used to discuss or
refute its expression.
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In [9], the authors emphasize the apparent discrepancy between the horizon
chosen as IR cut-off in the expression of ρΛ in the holographic model of Li [6],
which is the e.h. r

χρΛ =
3c2

r2
, (16)

and the t.h. L which must be the a.h. RA in order to satisfy the first law. They
suggest that the e.h. r should be identical to the t.h. L obeying the first law. So,
they implicitly assume that in any holographic model for ρΛ, i.e. χρΛ = 3/l2,
we have to choose for cut-off l the same horizon as the t.h. L obeying the first
law.

Let us discuss the full consequences of the assumption l = L. On one hand,
by setting L = l = r in the expression of the flux of energy in the first law (4),
the first law is no more satisfied (see Section 3). On the other hand, if we choose
L = l = RA , we obtain for the holographic model:

χρΛ =
3

R2
A

= 3H2. (17)

which with (2) implies ρ = ρΛ, excluding any other contribution to the total
energy (dark matter (DM), dust, radiation,...) in contradiction with the present
observations where the DM takes a non negligible part (about 1/3) of the energy
of the universe.

Two points of view can be followed to solve this dilemma:

i) First, we can choose to preserve the first law (4) and propose an holo-
graphic model of the form (17) albeit not compatible with the observations
[6, 12].

ii) Secondly, we can consider the holographic model of the DE (16) compat-
ible with the present observations (acceleration and EoS today ωΛ ≃ −1
[5, 6, 11]) and modify the first law (4) to be compatible with the chosen
model for the DE.

Because compatible with the observational features, the second alternative
is more reasonable . This leads naturally to question the first law (4) which
seems to fail because, as seen in Section 3, it contradicts the definition (11)
of the total energy in the horizon. The first law must be modified in order to
include the DE through a model linking the DE with the chosen horizon. To
achieve this goal, we propose a Gibbs’ equation describing the thermodynamics
of the component DE instead of the first law (4). This approach was introduced
in the model [4, 5], where a DE component with an energy density of type (16)
(with c = 1) and an EoS of vacuum-type were considered

Λ

χ
= ρΛ = −PΛ = 3/χr2, (18)

with r the radius of the e.h.. In this model, the Gibbs’ equation relative to this
component DE is given at the specific level by

TΛdsΛ = dεΛ + PΛdvΛ, (19)
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where εΛ ≡
Λ

nΛχ
is the specific energy, vΛ ≡

1

nΛ

the specific volume and nΛ the

number density. With the EoS (18), the Eq. (19) becomes

·

Λ

n
= χTΛ

·

SΛ = −
·

r, (20)

with TΛ =
1

2πr
. After integration, we obtain for the specific entropy

SΛ = −πr2 + K, (21)

where K is a constant. In [4, 5] the local equation of the conservation of the
energy uβ∇αT αβ = 0 is used instead of the expression of the global energy E
and without assuming any peculiar expression for the entropy.

Considering the global energy of the DE component inside the horizon as in

[9, 10], EΛ = ρΛ

4π

3
r3 =

r

2
, the Gibbs’equation associated to this component

becomes

dEΛ = TΛdSΛ − PΛdVΛ , or
·

EΛ = TΛ

·

SΛ − PΛ

·

VΛ. (22)

With (18) and (21), this Eq. leads to
·

EΛ =

·

r

2
, in full agreement with the

previous definition of EΛ =
r

2
.

The previous results show that the contradiction described in Section 3 is
essentially related to the mainly questionable assumption of the validity of the
expression of the static entropy S = πL2 of the BH for the cosmological horizon
[7, 8]. On the contrary, our expression (21) of SΛ is not postulated but deduced
from the Gibbs’ equation for the model (18) of the DE [4, 5], which is supported
by the holographic approach [6].

By comparison of the two Eqs. (5) and (21), let us first note the difference
of sign in the expression of the entropy. This difference is in accordance with
the predictions because in the first case, the observer is outside the limit-surface
of the BH and looses information, while in the second case (cosmological case),
the observer is inside the limit-surface. This difference of sign is pointed out in
[7, 8] where it is attributed to the exchange of energy −dE rather than to TdS,
while we interpret it as a lost (or a gain) of information from the limit-surface.

Secondly, let us remark the presence of a pressure term in the Gibbs’ equation
(22) albeit not appearing in the first law (4). This term takes into account the
fact that the DE has a (negative) pressure, and that the transformation is not
isochore because the surface varies. This term is responsible for the sign “minus”
in the expression of the entropy Eq. (21). This point relates the two preceding
remarks and strengthens the consistency of this approach. The existence of such
a term was recently considered and discussed in another context for the first law
of the BH by [13].
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5 Conclusion

By a general demonstration independent of the underlying model for the DE,
we show in this article a contradiction (except in de Sitter) between the first

law introduced in [7, 8] for the thermo-horizon that leads to
·

−E =
·

RA, and

the definition of the total energy in the horizon E =
RA

2
. To solve this

contradiction, we propose to replace the first law by a Gibbs’ equation for the
DE component, which is naturally associated to the e.h. in the model [4, 5],
later supported by an holographic model [6] in an independent approach.
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