

New decompositions of 2-structures

Michaël Rao*

LIAFA, Université Paris 7, France
rao@liafa.jussieu.fr

Abstract

We present a family of decompositions of 2-structures generalizing the modular decomposition, and $O(n^3)$ time algorithms to compute all these decompositions. These results can be applied to non-oriented, oriented and directed graphs. Bi-join decomposition of non-oriented graphs and of tournaments are two special cases of this family of decomposition. Two others special cases are generalisations of the bi-join decomposition on directed graphs.

1 Introduction

The well-known modular decomposition of graph has many applications in graph theory and algorithms. It is unique [8] and can be computed in linear time (i.e. in O(n+m)) on non-oriented graphs [11], on directed graphs [10], and in linear time (i.e. in $O(n^2)$) on 2-structures [9]. The bijoin decomposition is a generalisation of the modular decomposition on non-oriented graphs [13, 14] and on tournaments [2]. These two decompositions can be computed in linear time.

We present a family of decompositions of 2-structures which generalize the modular decomposition. We show that these decompositions are unique, and we present an algorithm to compute them in time $O(n^3)$ (for a fixed decomposition in the family). We apply these results to oriented and directed graphs. We give two new different decompositions for directed graphs which generalize the bi-join decomposition of non-oriented graphs and tournaments, and we give a new decomposition for oriented graphs. Bi-join decomposition of non oriented graphs and bi-join decomposition of tournament are also special cases of this family of decompositions.

After some preliminaries in section 2, we introduce in section 3 the G-joins and show that G-joins have the bipartitive property. In section 4 we define the G-join decomposition. For any fixed abelian group with some properties, there is a different G-join decomposition. In section 5 we give some special cases of decompositions on non-oriented, oriented and directed graphs. Finally, we present an $O(n^3)$ algorithm to compute the G-join decomposition in section 6, for any fixed abelian group.

2 Preliminaries

2.1 Graphs and 2-structures

A directed graph G = (V, A) is a pair of a set of vertices V and a set of arcs $A \subseteq V \times V \setminus \{(u, u) : u \in V\}$. A non-oriented graph is a directed graph such that for all $(u, v) \in V^2$, with $u \neq v$, then

^{*}Research supported by the french project ANR GRAAL "Décompositions de graphes et algorithmes"

 $(u,v) \in A$ if and only if $(v,u) \in A$. An *oriented* graph is a directed graph such that for all (u,v), $(u,v) \in A \Rightarrow (v,u) \notin A$. A *tournament* is a oriented graph such that either $(u,v) \in A$ or $(v,u) \in A$.

Let \mathcal{D} be a set. A 2-structure on \mathcal{D} is a pair (V, e) such that $e: V \times V \to \mathcal{D}$. In this paper, every 2-structure is finite (i.e. V is finite). A 2-structure is symmetric if e(u, v) = e(v, u) for all $u, v \in V$, $u \neq v$. Let σ be an involution on \mathcal{D} (i.e a bijection such that $\sigma(\sigma(x)) = x$ for all $x \in \mathcal{D}$). A 2-structure (V, e) on \mathcal{D} is σ -symmetric if $e(u, v) = \sigma(e(v, u))$ for all $u, v \in \mathcal{D}$, $u \neq v$.

A directed graph can be viewed as a 2-structure on \mathbb{Z}_2 , a non oriented graph as a symmetric 2-structure on \mathbb{Z}_2 , and a tournament as a σ -symmetric 2-structure on \mathbb{Z}_2 with $\sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. There is a way to transform a 2-structure on \mathcal{D} into a σ -symmetric 2-structure on $\mathcal{D} \times \mathcal{D}$: take e'(u,v) = (e(u,v),e(v,u)) and $\sigma((i,j)) = (j,i)$ for all $i,j \in \mathcal{D}$. For example a directed graph can also be viewed as a σ -symmetric 2-structure on $\mathbb{Z}_2 \times \mathbb{Z}_2$, with $\sigma = \begin{bmatrix} (0,0) & (0,1) & (1,0) & (1,1) \\ (0,0) & (1,0) & (0,1) & (1,1) \end{bmatrix}$.

2.2 Bipartitive families

A bipartition of a set V is a partition $\{X,Y\}$ of V such that $X \neq \emptyset$ and $Y \neq \emptyset$. We write sometimes $\{X,-\}$ instead of $\{X,V\setminus X\}$. Two bipartitions $\{X,Y\}$ and $\{X',Y'\}$ overlap (or $\{X,Y\}$ overlaps $\{X',Y'\}$) if $X\cap X', X\cap Y', Y\cap X'$ and $Y\cap Y'$ are non empty. A family $\mathcal F$ of bipartitions of V is weakly bipartitive if:

- for all $v \in V$, $\{\{v\}, V \setminus \{v\}\}$ is in \mathcal{F} , and
- for all $\{X,Y\}$ and $\{X',Y'\}$ in \mathcal{F} such that $\{X,Y\}$ overlaps $\{X',Y'\}$, then $\{X\cap X',Y\cup Y'\}$, $\{X\cap Y',Y\cup X'\}$, $\{Y\cap X',X\cup Y'\}$ and $\{Y\cap Y',X\cup X'\}$ are in \mathcal{F} .

Moreover a weakly bipartitive family \mathcal{F} is bipartitive if for all $\{X,Y\}$ and $\{X',Y'\}$ which overlap in \mathcal{F} , $\{X\Delta X', X\Delta Y'\}$ is in \mathcal{F} (where $A\Delta B = (A \setminus B) \cup (B \setminus A)$). Bipartitive families are close to partitive families [3, 12] but deals with bipartitions of V instead of subsets of V.

A member of a bipartitive family is strong if it overlaps no other member in the family. A member $\{X,Y\}$ is trivial if |X|=1 or |Y|=1. Let T=(V,E) be a tree. We denote by Leaves(T) the leaves of T. For $\beta \in V$, let $\{A_{\beta}^1,\ldots,A_{\beta}^{d(\beta)}\}$ be the connected components of $T-\beta$. Let $C_{\beta}^i=A_{\beta}^i\cap \text{Leaves}(T)$. For $e\in E$, let A_e^1 and A_e^2 be the connected components of T-e, and let $\{C_e^1,C_e^2\}=\{A_e^1\cap \text{Leaves}(T),A_e^2\cap \text{Leaves}(T)\}$. The following result can be found in [14] or in [6] using a different formalism. This result can also be easily showed from known results of weakly partitive families [3, 12].

Theorem 1. [6, 14] Let \mathcal{F} be a weakly bipartitive family \mathcal{F} on V. Then there is a unique unrooted tree $T = (V_T, E_T)$, call the representative tree, such that Leaves(T) = V, and each internal node has at least 3 neighbors and is marked degenerate, linear or prime, such that:

- For all $e \in E_T$, $\{C_e^1, C_e^2\}$ is a strong member of \mathcal{F} and there is no other strong members in \mathcal{F} .
- Let $\beta \in V_T$ be an internal node, and let k be the degree of β .
 - If β is degenerated, then for all $\emptyset \subsetneq I \subsetneq \{1,\ldots,k\}$, $\{\cup_{i\in I} C^i_\beta,-\}$ is in \mathcal{F} .
 - If β is linear, there is a ordering $C^1_{\beta}, \ldots, C^k_{\beta}$ such that for all $a, b \in \{1, k\}$ with $a \leq b$ and $(a, b) \neq (1, k), \{ \cup_{i \in \{a, \ldots, b\}} C^i_{\beta}, \}$ is in \mathcal{F} .
- There is no other members in \mathcal{F} .

Furthermore if \mathcal{F} is bipartitive, then T has no linear node.

Decompositions based on bipartitive families have been studied in [6] under a formalism called decomposition frame with some properties. Some examples of this decomposition frame can be found in [4, 5]. Bipartitive families based decompositions are interesting since the bipartitivity imply an unique decomposition. Furthermore, this imply that a greedy algorithm to decompose the structure will always work: if we can find in polynomial time a decomposable bipartition in the structure, then we can decompose the whole structure in polynomial time.

2.3 Modular decomposition and bi-join decomposition

A module in a 2-structure G = (V, e) is a non-empty $X \subseteq V$ such that for all $v \notin X$ and $u, u' \in X$, e(v, u) = e(v, u') and e(u, v) = e(u', v). The family of modules of a 2-structure is weakly partitive, and is partitive if the 2-structure is symmetric [7]. If a structure G has a non-trivial module X, then it can be decomposed into G[X] and $G[V \setminus X \cup \{x\}]$, where $x \in X$. Note that the structure G can be easily reconstructed from G[X] and $G[V \setminus X \cup \{x\}]$. The modular decomposition is defined by recursively decompose the structure by a non-trivial module. It can be represented by a tree, call the modular decomposition tree, which is exactly the representative tree of the family of modules.

A bi-join in a non-oriented graph G = (V, E) is a bipartition $\{X, Y\}$ of V such that for all $v, v' \in X$, $\{N(v) \cap Y, Y \setminus N(v)\} = \{N(v') \cap Y, Y \setminus N(v')\}$. A bi-join in a tournament G = (V, A) is a bipartition $\{X, Y\}$ of V such that for all $v, v' \in X$, $\{N^+(v) \cap Y, Y \setminus N^+(v)\} = \{N^+(v') \cap Y, Y \setminus N^+(v')\}$.

Figure 1: A bi-join in a non-oriented graph and a tournament. $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$.

If $X \subsetneq V$ is a module of G, then it is a bi-join of G. The family of bi-joins of a undirected graph is bipartitive [13], and the family of bi-joins of a tournament is weakly bipartitive [2]. If a graph has a non-trivial bi-join, then it can be decomposed into two graphs, and the bi-join decomposition is the recursive decomposition by a strong non-trivial bi-join. Since the family of bi-join is bipartitive, the bi-join decomposition tree is unique (and is isomorphic to the representative tree).

2.4 Abelian group

We recall axioms of an abelian group $(\mathcal{D}, \dot{+})$.

Neutral element: There is an element $\dot{0}$ in \mathcal{D} such that for all a in \mathcal{D} , $\dot{0} \dotplus a = a \dotplus \dot{0} = a$.

Inverse element: For each a in \mathcal{D} there is an element a^{-1} in \mathcal{D} such that $a \dotplus a^{-1} = a^{-1} \dotplus a = \dot{0}$, where $\dot{0}$ is the neutral element. (We will wrote $\dot{-}a$ for a^{-1} .)

Associativity: For all a, b and c in \mathcal{D} , $(a \dotplus b) \dotplus c = a \dotplus (b \dotplus c)$.

Commutativity: For all a and b in \mathcal{D} , $a \dotplus b = b \dotplus a$.

3 G-joins

3.1 Definition

Throughout this section, we fix an abelian group $(\mathcal{D}, \dot{+})$. Let (V, e) be a 2-structure on \mathcal{D} . A pair (X, Y) with $X \neq \emptyset$, $Y \neq \emptyset$ and $V = X \uplus Y$ (i.e. $X \cup Y = V$ and $X \cap Y = \emptyset$) is a G-join if there is pairwise disjoin X_i and Y_i (for $i \in \mathcal{D}$) such that $X = \biguplus_{i \in \mathcal{D}} X_i$, $Y = \biguplus_{j \in \mathcal{D}} Y_j$, and for all $(i, j) \in \mathcal{D}^2$ and $(u, v) \in (X_i, Y_j)$, $e(u, v) = i \dotplus j$. We start with some easy observations.

Proposition 2. If (X,Y) is a G-join of G and $V' \subseteq V$ such that $V' \cap X \neq \emptyset$ and $V' \cap Y \neq \emptyset$, then $(X \cap V', Y \cap V')$ is a G-join of G[V'].

Proposition 3. If M is a module of (V, e), then $(M, V \setminus M)$ and $(V \setminus M, M)$ are G-joins of (V, e).

Proposition 4. For every pairwise different $a, b, c, d \in V$ such that there is a G-join $\{X, Y\}$ with $\{a, c\} \subseteq X$ and $\{b, d\} \subseteq Y$, then e(c, d) = e(c, b) + e(a, d) - e(a, b).

Lemma 5. Let (V, e) be a 2-structure on \mathcal{D} . Let (X, Y) and (X', Y') be two G-joins of (V, e) such that $X \cap X' \neq \emptyset$ and $Y \cap Y' \neq \emptyset$. Then $(X \cap X', Y \cup Y')$ is a G-join of (V, e).

Proof. Let X_i and Y_i (for $i \in \mathcal{D}$) such that $X = \biguplus_{i \in \mathcal{D}} X_i, Y = \biguplus_{j \in \mathcal{D}} Y_j$, and for all $(u, v) \in (X_i, Y_j)$, $e(u, v) = i \dotplus j$. Similarly let X_i' and Y_i' $(i \in \mathcal{D})$ such that $X' = \biguplus_{i \in \mathcal{D}} X_i', Y' = \biguplus_{j \in \mathcal{D}} Y_j'$, and for all $(u, v) \in (X_i', Y_i')$, $e(u, v) = i \dotplus j$.

Since $Y \cap Y'$ is non-empty, let $v \in Y \cap Y'$, and let $j, j' \in \mathcal{D}$ such that $v \in Y_j \cap Y'_{j'}$. Suppose that $w \in X \cap X'$, and let $i, i' \in \mathcal{D}$ such that $w \in X_i \cap X'_{i'}$. Then $e(w, v) = i \dotplus j = i' \dotplus j'$. Thus $X \cap X' = \biguplus_{i \in \mathcal{D}} X_i \cap X'_{i \dotplus j \dotplus j'}$. Moreover, for all $u \in Y \cap Y'$, $e(w, u) = i \dotplus k = i' \dotplus k'$ (with $u \in Y_k \cap Y'_{k'}$), thus $k' = i \dotplus i' \dotplus k = j' \dotplus j \dotplus k$, and $Y \cap Y' = \biguplus_{k \in \mathcal{D}} Y_k \cap Y'_{k \dotplus j' \dotplus j}$.

For all $k \in \mathcal{D}$, let $X_k'' = X_k \cap X_{k+j-j'}'$, and let $Y_k'' = Y_k \cup Y_{k+j'+j-1}'$. $X \cap X' = \biguplus_{i \in \mathcal{D}} X_i''$ and $Y \cup Y' = \biguplus_{k \in \mathcal{D}} Y_k''$. For all $u \in X_i''$ and $v \in Y_k''$, $e(u,v) = i \dotplus k$. Thus $(X \cap X', Y \cup Y')$ is a G-join.

3.2 G-joins in σ -symmetric 2-structures

A function f is a isomorphism for $(\mathcal{D}, \dot{+})$ if $f(a \dot{+} b) = f(a) \dot{+} f(b)$ for all $(a, b) \in \mathcal{D}^2$. From now σ will denote an involution on \mathcal{D} such that the function $f : a \to \sigma(a) \dot{-} \sigma(\dot{0})$ is an isomorphism for $(\mathcal{D}, \dot{+})$ (where $\dot{0}$ is the neutral element).

Lemma 6. Let (V, e) is a σ -symmetric 2-structure, and let X and Y such that $V = X \uplus Y$. Then (X, Y) is a G-join if and only if (Y, X) is a G-join.

Proof. Let X_a and Y_a (for $a \in \mathcal{D}$) such that $X = \biguplus_{a \in \mathcal{D}} X_a$, $Y = \biguplus_{a \in \mathcal{D}} Y_a$, and for all $(u, v) \in (X_a, Y_b)$, $e(u, v) = a \dotplus b$. Let $X'_a = X_{\sigma(a)}$ and $Y'_a = Y'_{\sigma(a) \dotplus \sigma(\dot{0})}$, for all $a \in \mathcal{D}$. Since σ is a bijection, $X = \biguplus_{a \in \mathcal{D}} X'_a$ and $Y = \biguplus_{a \in \mathcal{D}} Y'_a$. Moreover, for all $u \in X'_a$ and $v \in Y'_b$, $e(u, v) = \sigma(a) \dotplus \sigma(b) \dotplus \sigma(\dot{0}) = f(a) \dotplus f(b) \dotplus \sigma(\dot{0}) = f(a \dotplus b) \dotplus \sigma(\dot{0}) = \sigma(a \dotplus b)$, and $e(v, u) = a \dotplus b$. Thus (Y, X) is a G-join. \square

We say that $\{X,Y\}$ is a G-join of (V,e) if (X,Y) is a G-join of (V,e). Lemmas 5 and 6 show that if $\{X,Y\}$ and $\{X',Y'\}$ are two G-joins such that $\{X,Y\}$ overlaps $\{X',Y'\}$, then $\{X\cap X',Y\cup Y'\}$ is a G-join. Therefore we have:

Corollary 7. The family of G-joins of a σ -symmetric 2-structure is weakly bipartitive.

3.3 G-joins in symmetric 2-structures

Lemma 8. Let (V, e) be a symmetric 2-structure. Let $\{X, Y\}$ and $\{X', Y'\}$ be two G-joins of (V, e) such that $\{X, Y\}$ overlaps $\{X', Y'\}$. Then $\{X\Delta X', X\Delta Y'\}$ is a G-join of (V, e).

Proof. Let $v \in Y \cap Y'$, $w \in X \cap Y'$, and let $(j, j', l, l') \in \mathcal{D}^4$ such that $v \in Y_j \cap Y'_{j'}$ and $w \in X_l \cap Y'_{l'}$. As we show in proof of Lemma 5, $X \cap X' = \biguplus_{k \in \mathcal{D}} X_k \cap X'_{k+j-j'}$ and $Y \cap Y' = \biguplus_{k \in \mathcal{D}} Y_k \cap Y'_{k+j'-j}$. Using similar argument, $Y \cap X' = \biguplus_{k \in \mathcal{D}} Y_k \cap X'_{k+l-l'}$ and $X \cap Y' = \biguplus_{k \in \mathcal{D}} X_k \cap Y'_{k+l'-l}$. Let $X''_k = (X_k \cap X'_{k+l-l'}) \cup (Y_{k+j-j'+l'-l}) \cap Y'_{k+l-l'}$ and $Y''_k = (Y_k \cap X'_{k+l-l'-l}) \cup (X_{k+l-l'-l}) \cap Y'_{k+l-l'-l'}$

Let $X_k'' = (X_k \cap X_{k \dotplus j \dotplus j'}') \cup (Y_{k \dotplus j \dotplus j' \dotplus l' \dotplus l} \cap Y_{k \dotplus l' \dotplus l}')$ and $Y_k'' = (Y_k \cap X_{k \dotplus l \dotplus l'}') \cup (X_{k \dotplus j' \dotplus j \dotplus l \dotplus l'} \cap Y_{k \dotplus j' \dotplus j}')$. For all $u \in X_k''$ and $v \in Y_l''$, $e(u, v) = k \dotplus l$. Thus $\{\biguplus_{k \in \mathcal{D}} X_k'', \biguplus_{k \in \mathcal{D}} Y_k''\}$ is a G-join. \square

With Lemma 5, we obtain:

Corollary 9. The family of G-joins of a symmetric 2-structure is bipartitive.

4 G-join decomposition

In this section, we fix an abelian group $(\mathcal{D}, \dot{+})$ and an involution σ such that $f: a \to \sigma(a) \dot{-} \sigma(\dot{0})$ is an isomorphism for $(\mathcal{D}, \dot{+})$. For most part, our terminology follows terminology used in [4, 6].

4.1 Simple decomposition

A G-join $\{X,Y\}$ is trivial if |X|=1 or |Y|=1. Since every singleton is a module, every bipartition $\{X,Y\}$ with |X|=1 or |Y|=1 is a G-join.

Let G = (V, e) be a σ -symmetric 2 structure and $\{X, Y\}$ be a non-trivial G-join. Let $x \in X$ and $y \in Y$. A simple decomposition of (V, e) by the G-join (X, Y) is the decomposition into $G_1 = (X \cup \{y\}, e|_{X \cup \{y\}})$ and $G_2 = (Y \cup \{x\}, e|_{Y \cup \{x\}})$ with an additional marker triplet (x, y, α) , where $\alpha = e(x, y)$ ($e|_X$ represents the function e induced by $X \times X$). We write $G \to (G_1, G_2, (x, y, \alpha))$. Note that this decomposition is not unique for a fixed $\{X, Y\}$.

The simple composition of (V_1, e_1) , (V_2, e_2) and the marker triplet (x, y, α) , with $V_1 \cap V_2 = \{x, y\}$, is the 2-structure $(V_1 \cup V_2, e)$ where $e(a, b) = e_1(a, b)$ for all $a, b \in V_1 \setminus \{y\}$, $e(a, b) = e_2(a, b)$ for all $a, b \in V_2 \setminus \{x\}$, and $e(a, b) = e_1(a, y) \dot{-}\alpha \dot{+} e_2(x, b)$ for all $a \in V_1 \setminus \{y\}$ and $b \in V_2 \setminus \{x\}$. By Proposition 4, if $((V_1, e_1), (V_2, e_2), (x, y, \alpha))$ is a simple decomposition of (V, e), then the simple composition of $(V_1, e_1), (V_2, e_2)$ and (x, y, α) is (V, e).

Lemma 10. Let $\{X,Y\}$ be a G-join of G, and $(G_1,G_2,(x,y,\alpha))$ be the simple decomposition of G by (X,Y). Let $\{X',Y'\}$ be a bipartition of V with $Y' \subseteq Y$. Then $\{X',Y'\}$ is a G-join of G if and only if $\{\{x\} \cup Y \setminus Y',Y'\}$ is a G-join of G_2 .

Proof. If $\{X',Y'\}$ is a G-join of G then by Proposition 2 $\{\{x\} \cup Y \setminus Y',Y'\}$ is a G-join of G_2 . Now suppose that $\{\{x\} \cup Y \setminus Y',Y'\}$ is a G-join of G_2 . Let X'_a and Y'_a (for $a \in \mathcal{D}$) such that $(\{x\} \cup Y \setminus Y',Y') = (\biguplus_{a \in \mathcal{D}} X'_a,\biguplus_{a \in \mathcal{D}} Y'_a)$ and $e(u,v) = a \dotplus b$ for all $u \in X'_a$ and $v \in Y'_b$. Since $\{X,Y\}$ is a G-join of G, let X_a and Y_a such that $(X,Y) = (\biguplus_{a \in \mathcal{D}} X_a,\biguplus_{a \in \mathcal{D}} Y_a)$ and $e(u,v) = a \dotplus b$ for all $u \in X_a$ and $v \in Y_b$. Let $c,d \in \mathcal{D}$ such that $x \in X'_c$ and $y \in Y_d$. Let $X''_a = (X'_a \setminus \{x\}) \cup X_{a \dotplus d \dotplus c \dotplus a}$ and $Y''_a = Y'_a$. Let $u \in X''_a$ and $v \in Y''_b$. If $u \in X'_a$ then $e(u,v) = a \dotplus b$. Otherwise $u \in X_{a \dotplus d \dotplus c \dotplus a}$ and by definition of simple decomposition, $e(u,v) = e(u,y) \dotplus \alpha \dotplus e(x,v) = a \dotplus b$ since $e(u,y) = a \dotplus d - c \dotplus \alpha \dotplus d$ and $e(x,v) = c \dotplus b$. Then $\{\biguplus_{a \in \mathcal{D}} X''_a,\biguplus_{a \in \mathcal{D}} Y''_a\} = \{X',Y'\}$ is a G-join of G.

A G-join $\{X,Y\}$ is *strong* if it is a strong member of the bipartitive family of G-joins of G (*i.e.* there is no G-join $\{X',Y'\}$ such that $\{X,Y\}$ overlaps $\{X',Y'\}$). A simple decomposition is strong if it is induced by a strong G-join. The following Corollary follows from previous Lemma.

Corollary 11. Let $\{X,Y\}$ be a G-join of G, and $(G_1,G_2,(x,y,\alpha))$ be the simple decomposition of G by (X,Y). Let $\{X',Y'\}$ be a bipartition of V with $Y' \cap Y$. Then $\{X',Y'\}$ is a strong G-join of G if and only if $\{\{x\} \cup Y \setminus Y',Y'\}$ is a strong G-join of G_2 .

4.2 G-join decompositions

A 2-structure is *prime* if all its G-joins are trivial. A 2-structure is *degenerated* if every bipartition is a G-join. A 2-structure G = (V, E) is *linear* if there is a ordering v_1, \ldots, v_n of the vertices such that for all $i, j \in \{1, \ldots, n\}$ with $i \leq j$ and $(i, j) \neq (1, n), \{\{v_i, \ldots v_j\}, -\}$ is a G-join of G, and G has no others G-join. Every 2-structure with at most 3 vertices is degenerated, linear and prime, and every 2-structure with at least 4 vertices is either prime, degenerated, linear or none of these three cases. The following Lemma comes immediately from the bipartitivity of G-joins.

Lemma 12. Let G be a 2-structure. G has no strong non-trivial G-join if and only if G is either prime, degenerated or linear

Proof. If G has no strong non-trivial G-join, then representative tree of G has only one internal node β . Then G is prime, degenerated or linear if β is prime, degenerate or linear, respectively.

The following Lemma gives a characterisation of degenerated graphs. Its straightforward inductive proof is given in appendix.

Lemma 13. Suppose $\sigma(\dot{0}) = \dot{0}$. A σ -symmetric 2-structure with at least 4 vertices is degenerated if and only if there is an $\alpha \in \mathcal{D}$ such that $\sigma(\alpha) = \alpha$, and a function $f: V \to \mathcal{D}$ such that for all $u, v \in V$, $u \neq v$, $e(u, v) = \alpha \dotplus f(u) \dotplus \sigma(f(v))$.

Let G be a 2-structure. G-join decompositions of G are defined recursively: $(\{G\}, \emptyset)$ is a G-join decomposition of G and if (\mathcal{D}, M) is a G-join decomposition of G, $H \in \mathcal{D}$, and H_1 , H_2 is a simple decomposition of H with marker triplet (u, v, α) , then $((\mathcal{D} \setminus \{H\}) \cup \{H_1, H_2\}, M \cup \{(u, v, \alpha)\})$ is a G-join decomposition of G. In this case we say that $(\mathcal{D}', M') = ((\mathcal{D} \setminus \{H\}) \cup \{H_1, H_2\}, M \cup \{(u, v, \alpha)\})$ is a simple decomposition of (\mathcal{D}, M) , and we write $(\mathcal{D}, M) \to (\mathcal{D}', M')$.

A G-join decomposition (\mathcal{D}, M) is minimal if every 2-structure in \mathcal{D} is prime. A G-join decomposition (\mathcal{D}, M) is good if no $H \in \mathcal{D}$ has a strong non-trivial G-join. A G-join decomposition (\mathcal{D}, M) is standard if it can be obtained from $(\{G\}, \emptyset)$ by a sequence of simple strong decompositions, and no $H \in \mathcal{D}$ has a strong non-trivial G-join. Note that minimal decompositions and standard decompositions are goods. The proof of the following lemma is similar to the proof given in [6].

Lemma 14. Let (\mathcal{D}, M) be a good decomposition of G. If there is no good decomposition (\mathcal{D}', M') such that $(\mathcal{D}', M') \to (\mathcal{D}, M)$, then (\mathcal{D}, M) is a standard decomposition of G.

Proof. If (\mathcal{D}, M) is not a standard decomposition then there is a simple decomposition in the sequence of decompositions which is not strong. Let $(\mathcal{D}_1, M_1) \to (\mathcal{D}_2, M_2) = ((\mathcal{D}_1 \setminus \{H\}) \cup \{H_1, H_2\}, M_1 \cup \{m\})$ be the last non-strong decomposition in the sequence. All the decompositions after $(\mathcal{D}_1, M_1) \to (\mathcal{D}_2, M_2)$ are strong and correspond to unique strong G-joins of G. We construct

the decomposition (\mathcal{D}', M') from (\mathcal{D}_1, M_1) after simple decompositions of these strong G-joins. (\mathcal{D}', M') is good since there is a simple decomposition for every strong G-join in G and $(\mathcal{D}', M') \to (\mathcal{D}, M)$ by the simple decomposition of the G-join corresponding to $(\mathcal{D}_1, M_1) \to (\mathcal{D}_2, M_2)$.

The previous Lemma tells us that a standard decomposition can be obtained from a minimal decomposition by a sequence of simple compositions. This will be used in the decomposition algorithm presented in a next section.

A decomposition (\mathcal{D}, M) of G induces a unrooted tree of vertex set \mathcal{D} and H_1 is adjacent to H_2 if there is a $(x, y, \alpha) \in M$ such that x is a vertex of H_1 and y is a vertex of H_2 . The decomposition tree of a standard decomposition is isomorphic to the representative tree of the weakly bipartitive family of G-joins and thus is unique. We call it the *standard decomposition tree*.

5 Specials cases of G-join decomposition

5.1 Bi-join decomposition

The bi-join decomposition [13, 14] is a special case with $(\mathcal{D}, \dot{+}) = (\mathbb{Z}_2, +)$. Lemma 13 says that degenerated graphs are disjoint union of two cliques if $\alpha = 1$ and complete bipartite graphs if $\alpha = 0$. This decomposition has no linear node since the structure is symmetric. The bi-join decomposition of tournaments [2] is the decomposition, with $(\mathcal{D}, \dot{+}) = (\mathbb{Z}_2, +)$ and $\sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

5.2 Decomposition of oriented graphs

A directed graph G can be viewed as an σ -symmetric 2-structure on the set $\{(0,0),(1,0),(0,1)\}$, with $\sigma((i,j)) = (j,i)$ for $(i,j) \in \{(0,0),(1,0),(0,1)\}$. There is one abelian group on \mathcal{D} such that $a \to \sigma(a) \dot{-} \sigma(\dot{0})$ is an isomorphism. This abelian group, isomorphic to $(\mathbb{Z}_3,+)$, is given in figure 2.

5.3 Decompositions of directed graphs

A directed graph G is a 2-structure on \mathbb{Z}_2 , and can be viewed as a σ -symmetric 2-structure (V,e) on $\mathbb{Z}_2 \times \mathbb{Z}_2$, with $\sigma((i,j)) = (j,i)$. There are two abelian groups such that $a \to \sigma(a) \dot{-} \sigma(0)$ is an isomorphism. The first one (isomorphic to $(\mathbb{Z}_2^2,+)$) is given in figure 3, and the second (isomorphic to $(\mathbb{Z}_4,+)$) is given in figure 4. These two decompositions are generalizations of the bi-join decomposition on both non-oriented graphs and on tournament. They are mutually exclusive, that is there is a graph prime for the first one and completely decomposable for the other one, and *vice versa*.

6 Decomposition algorithm

From now, we fix an abelian group $(\mathcal{D}, \dot{+})$ and an involution σ such that $f: a \to \sigma(a) \dot{-} \sigma(\dot{0})$ is an isomorphism for $(\mathcal{D}, \dot{+})$.

6.1 Find a non trivial G-join

We give in this section a $O(n^2)$ algorithm for the following problem: given a 2-structure G = (V, e) and $u, v \in V$, output a non trivial G-join $\{X, Y\}$ such that $u \in X$ and $v \in Y$, or output "No" if there is no such partition.

÷	(0,0)	(1,0)	(0,1)
(0,0)	(0,0)	(1,0)	(0,1)
(1,0)	(1,0)	(0,1)	(0,0)
(0,1)	(0,1)	(0,0)	(1,0)

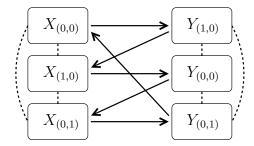


Figure 2: Decomposition for oriented graphs. (Dashed edge signify that two vertex can be adjacent or not.)

÷	(0,0)	(1,0)	(0,1)	(1,1)
(0,0)	(0,0)	(1,0)	(0,1)	(1,1)
(1,0)	(1,0)	(0,0)	(1,1)	(0,1)
(0,1)	(0,1)	(1,1)	(0,0)	(1,0)
(1,1)	(1,1)	(0,1)	(1,0)	(0,0)

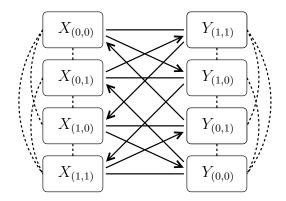


Figure 3: Decomposition for directed graphs (first).

÷	(0,0)	(1,0)	(0,1)	(1,1)
(0,0)	(0,0)	(1,0)	(0,1)	(1,1)
(1,0)	(1,0)	(1,1)	(0,0)	(0,1)
(0,1)	(0,1)	(0,0)	(1,1)	(1,0)
(1,1)	(1,1)	(0,1)	(1,0)	(0,0)

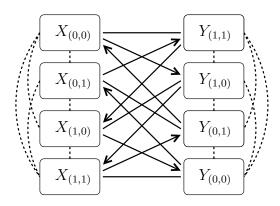


Figure 4: Decomposition for directed graphs (second).

A directed graph G = (V, A) is strongly connected if for every $u, v \in V$ there is a path from u to v (i.e. there is a sequence $u_0 = u, u_1, \ldots u_k = v$ such that for all $i \in \{0, \ldots k-1\}$, $(u_i, u_{i+1}) \in A$). A strongly connected component is a maximal subset $W \subseteq V$ such that G[W] is strongly connected. The strongly connected components form a partition of the vertices of G, and can be found in linear time [1]. Moreover, there is always a strongly connected component W such that there is no arcs from W to $V \setminus W$, since the incidence graph of strongly connected components is acyclic.

We transform our problem into a 2-SAT problem. We suppose w.l.o.g. that $u \in X_0$ and thus $v \in Y_{e(u,v)}$. If a vertex $w \notin \{u,v\}$ is in X then it is in $X_{e(w,v) \dot{-}e(u,v)}$, and if w is in Y, it is in $Y_{e(u,v)}$. Let the 2-SAT problem with variable set $V \setminus \{u,v\}$, and $w \Rightarrow t$ if $e(w,v) \dot{-}e(u,v) \dot{+} e(u,t) \neq e(w,t)$. A variable w is true means that $w \in X$. Then there is a non trivial G-join if and only is there is a non trivial solution for the 2-SAT problem. Let $G_f = (V \setminus \{u,v\}, E_f)$ with $E_f = \{(w,t) : w,t \in V \setminus \{u,v\}$ and $e(w,v) \dot{-} e(u,v) \dot{+} e(u,t) \neq e(w,t)\}$. The 2-SAT problem has a non trivial solution if and only if the graph G_f is not strongly connected. In this case $\{X \cup \{u\}, V \setminus (X \cup \{u\})\}$ is a non trivial G-join of G. All these operations can be done in time $O(n^2)$. (Algorithms in pseudo-code are given in appendix.)

6.2 Compute a minimal G-join decomposition

If a 2-structure is not prime, then a G-join can be found in $O(n^3)$ time using the previous algorithm for a fixed $u \in V$ and for all $v \neq u$. So a naive algorithm to compute a minimal decomposition take $O(n^4)$ time. We can reach $O(n^3)$ by the following way. We remember the set \mathcal{P} of subsets of V such that there is no non-trivial G-join which overlaps U for all $U \in \mathcal{P}$. \mathcal{P} is a partition of V, and at each call of the sub-routine, either it succeed and we decompose the 2-structure, either it fails and we merge two sets in \mathcal{P} . So a minimal decomposition can be obtained with O(n) call to the algorithm of section 6.1, and can computed in $O(n^3)$.

6.3 Compute a standard G-join decomposition

Lemma 14 says that a standard decomposition of G can be computed from a minimal decomposition, after some re-compositions. We show that we can test in time $O(n^2)$ if a composition of two 2-structures degenerated or linear is degenerated or linear.

Let $G_1 = (V_1, e_1)$ and $G_2 = (V_2, e_2)$ and a marker triplet (x, y, α) , such that G_1 and G_2 have no strong non-trivial G-join. If G has no strong non-trivial G-join, then by Lemma 12, G is either degenerated or linear (since it cannot be prime). If G_1 or G_2 is not degenerated, then G must be linear. Moreover if G_1 and G_2 are linear, let v_1, \ldots, v_k be a linear ordering of the vertex of G_1 , and let $v'_1, \ldots, v'_{k'}$ be a linear ordering of G_2 . W.l.o.g. $v_1 = y$ and $v'_1 = x$. Then if G is linear, $v_2, \ldots, v_k, v'_2, \ldots, v'_{k'}$ or $v_2, \ldots, v_k, v'_{k'}, \ldots, v'_2$ must be a linear ordering of G, and so either $\{\{v_2, v'_2\}, -\}$ or $\{v_2, v'_{k'}\}, -\}$ must be a G-join of G.

Let G_1 and G_2 be two 2-structures without strong non-trivial G-join. We want to known if the composition G of G_1 and G_2 with the marker triplet (x,y,α) is degenerated or linear (and to know a ordering of G if it is linear). Case 1: $|V_1| = |V_2| = 3$. All bipartitions of G can be tested in constant time, so the type of G (and a ordering if G is linear) can be computed in O(1). Case 2: $|V_1| \neq 3$ or $|V_2| \neq 3$. Then G_1 or G_2 is non degenerated, or non linear. If G_1 and G_2 are degenerated, then G is degenerated if and only if $\{\{x,y\},-\}$ is a G-join of G. If G_1 and G_2 are linear, with ordering $\{v_1=y,\ldots,v_k\}$ and $\{v_1'=x,\ldots,v_{k'}'\}$, then G is linear if $\{\{v_2,v_2'\},-\}$ or $\{\{v_2,v_{k'}'\},-\}$ is a G-join of G. In this case, $v_2,\ldots,v_k,v_2',\ldots,v_{k'}'$ or $v_2,\ldots,v_k,v_{k'}',\ldots,v_2'$ is ordering of G. In others cases, G

is neither degenerate nor linear. Moreover, to test if a bipartition is a G-join of a 2-structure can be done in $O(n^2)$.

There is at most O(n) re-compositions (at most one for each edge in the decomposition tree). To summarize, we obtain:

Theorem 15. A standard G-join decomposition can be computed in time $O(n^3)$.

References

- [1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and Algorithms, Addison-Wesley, Reading, Mass., 1983.
- [2] B.M. Bui Xuan, M. Habib, V. Limouzy, F. de Montgolfier, A new tractable combinatorial decomposition, *Manuscript* (2006)
- [3] M. CHEIN, M. HABIB, M. C. MAURER, Partitive hypergraphs, Discrete Math. 37 (1981) 35-50
- [4] W. H. Cunningham, Decomposition of directed graphs, SIAM Journal on Algebraic and Discrete Methods 3 (1982) 214–228
- [5] W. H. Cunningham, Decomposition of submodular functions, Combinatorica 3 (1983) 53-68
- [6] W. H. Cunningham, J. Edmonds, A combinatorial decomposition theory, Canad. J. Math 32 (1980) 734–765
- [7] A. Ehrenfeucht, G. Rozenberg, Primitivity is Hereditary for 2-Structures, Theoretical Computer Science, 70 (1990) 343–358
- [8] T. Gallai, Transitiv orientierbare Graphen, Acta Mathematica Academiae Scientiarum Hungaricae 18 (1967) 25–66
- [9] R. M. McConnell, An $O(n^2)$ incremental algorithm for modular decomposition of graphs and two-structures, Algorithmica 14 (1995) 209–227
- [10] R. M. McConnell, F. de Montgolfier, Linear-time modular decomposition of directed graphs, Discrete Applied Math. 145 (2005) 198–205
- [11] R. M. McConnell, J. Spinrad, Modular decomposition and transitive orientation, *Discrete Math.* 201 (1999) 189–241
- [12] R. H. MÖHRING, F. J. RADERMACHER, Substitution decomposition for discrete structures and connections with combinatorial optimization, *Annals of Discrete Math.* 19 (1984) 257–356
- [13] F. DE MONTGOLFIER, M. RAO, The bi-join decomposition, proceedings of ICGT'05, The Electronic Notes in Discrete Math. 22 (2005) 173–177.
- [14] F. DE MONTGOLFIER, M. RAO, Bipartitive families and the bi-join decomposition, Manuscript (2005)

7 Appendix

7.1 Proof of lemma 13

Let (V,e) be a 2-structure such that there is a $f:V\to\mathcal{D}$ and a α with $\sigma(\alpha)=\alpha$ and $e(u,v)=\alpha\dotplus f(u)\dotplus \sigma(f(v))$ for all $u,v\in V,\,u\neq v$. It is easy to see that (V,e) is σ -symmetric since $\sigma(\dot{0})=\dot{0}$ and thus σ is a isomorphism for $(\mathcal{D},\dot{+})$. Let $\{X,Y\}$ be a bipartition of V. Let $X_a=\{v\in X:a=f(v)\}$ and $Y_a=\{v\in Y:a=\alpha\dotplus \sigma(f(v))\}$. For all $u\in X_a$ and $b\in Y_b,\,a\dotplus b=f(u)\dotplus \alpha\dotplus \sigma(f(v))=e(u,v)$, thus $\{X,Y\}$ is a G-join.

On the other hand, let (V, e) be a degenerated 2-structure such that $|V| \geq 4$.

Claim 1. For every pairwise different $a, b, c, d \in V$, e(c, d) = e(c, b) + e(a, d) - e(a, b).

Proof. Since (V, e) is degenerated, $\{\{a, c\}, -\}$ is a G-join. By Proposition 4 we have the equality. \square

Claim 2. For every pairwise different $a, b, c \in V$:

$$e(a,b) \dotplus e(b,c) \dotplus e(c,a) = e(b,a) \dotplus e(c,b) \dotplus e(a,c).$$

Proof. Let $d \in V \setminus \{a, b, c\}$. Applying Claim 1, we get:

$$e(d, a) - e(d, b) = e(c, a) - e(c, b)$$

$$e(d, b) - e(d, c) = e(a, b) - e(a, c)$$

$$e(d, c) - e(d, a) = e(b, c) - e(b, a)$$

Thus

$$e(a,b) \dotplus e(b,c) \dotplus e(c,a) = e(b,a) \dotplus e(c,b) \dotplus e(a,c)$$
$$= \sigma(e(a,b)) \dotplus \sigma(e(b,c)) \dotplus \sigma(e(c,a)).$$

Case 1: |V| = 4. W.l.o.g $V = \{a, b, c, d\}$. Let:

$$\alpha = e(a,b) \dotplus e(b,c) \dotplus e(c,a)$$

$$f(a) = \dot{-}e(b,c)$$

$$f(b) = \dot{-}e(a,c)$$

$$f(c) = \dot{-}e(b,a)\dot{-}e(a,c) \dotplus e(c,a)$$

$$f(d) = e(d,a) \dotplus e(c,b)\dot{-}\alpha$$

From Claim 2, $\sigma(\alpha) = \alpha$. We get:

$$\begin{split} f(a) \dotplus \sigma(f(b)) \dotplus \alpha &= \dot{-}e(b,c) \dot{-}e(c,a) \dotplus e(a,b) \dotplus e(b,c) \dotplus e(c,a) \\ &= e(a,b) \\ f(a) \dotplus \sigma(f(c)) \dotplus \alpha &= \dot{-}e(b,c) \dot{-}e(a,b) \dot{-}e(c,a) \dotplus e(a,c) \dotplus e(a,b) \dotplus e(b,c) \dotplus e(c,a) \\ &= e(a,c) \\ f(b) \dotplus \sigma(f(c)) \dotplus \alpha &= \dot{-}e(a,c) \dot{-}e(a,b) \dot{-}e(c,a) \dotplus e(a,c) \dotplus e(a,b) \dotplus e(b,c) \dotplus e(c,a) \\ &= e(b,c) \\ f(a) \dotplus \sigma(f(d)) \dotplus \alpha &= \dot{-}e(b,c) \dotplus e(a,d) \dotplus e(b,c) \dot{-}\alpha \dotplus \alpha \\ &= e(a,d) \\ f(b) \dotplus \sigma(f(d)) \dotplus \alpha &= \dot{-}e(a,c) \dotplus e(a,d) \dotplus e(b,c) \dot{-}\alpha \dotplus \alpha \\ &= e(b,d) \quad \text{(by Claim 1)} \\ f(c) \dotplus \sigma(f(d)) \dotplus \alpha &= \dot{-}e(b,a) \dot{-}e(a,c) \dotplus e(c,a) \dotplus e(a,d) \dotplus e(b,c) \dot{-}\alpha \dotplus \alpha \\ &= e(a,d) \dotplus e(c,b) \dot{-}e(a,b) \quad \text{(by Claim 2)} \\ &= e(c,d) \quad \text{(by Claim 1.)} \end{split}$$

Thus f and α have the required property.

Case 2: |V| > 4. Let $v \in V$. $(V \setminus \{v\}, e)$ is degenerated and thus there is a $f' : V \setminus \{v\} \to \mathcal{D}$ and an $\alpha \in \mathcal{D}$ such that for all $u, v \in V \setminus \{v\}$, $e(u, v) = f'(u) \dotplus \sigma(f'(v)) \dotplus \alpha$. Let $u \neq v$, and let f such that f(w) = f'(w) if $x \in V \setminus \{v\}$ and $f(v) = e(v, u) \dot{-} \sigma(f'(u)) \dot{-} \alpha$.

$$f(u) \dotplus \sigma(f(v)) \dotplus \alpha = f'(u) \dotplus e(u, v) \dot{-} \sigma(\sigma(f'(u))) \dot{-} \alpha \dotplus \alpha$$
$$= e(u, v)$$

Let $w \in V \setminus \{u, v\}$ and $x \in V \setminus \{u, v, w\}$.

$$f(w) \dotplus \sigma(f(v)) \dotplus \alpha = f'(w) \dotplus e(u,v) \dot{-} \sigma(\sigma(f'(u))) \dot{-} \alpha \dotplus \alpha$$

$$= f'(w) \dot{-} f'(u) \dotplus e(u,x) \dotplus e(w,v) \dot{-} e(w,x) \quad \text{(by Claim 1)}$$

$$= e(w,v) \dotplus f'(w) \dot{-} f'(u) \dotplus f'(u) \dotplus \sigma(f'(x)) \dotplus \alpha \dot{-} f'(w) \dot{-} \sigma(f'(x)) \dot{-} \alpha$$

$$= e(w,v).$$

Thus f and α have the required property.

7.2 Algorithm to find a non trivial G-join

```
Function FindGJoin(G = (V, e), u, v)
            a 2-structure G = (V, e) and u, v \in V, u \neq v
Output: a non trivial G-join \{X,Y\} of G such that u \in X and v \in Y,
            or "No" is there is no such G-join
begin
  f_1(u) := \dot{0}
  f_2(v) := e(u,v)
  For every w \in V \setminus \{u, v\}
    f_1(w) := e(w, v) \dot{-} e(u, v)
    f_2(w) := e(u, w)
  E_f := \{(w,t) : w, t \in V \setminus \{u,v\} \text{ and } f_1(w) + f_2(t) \neq e(w,t)\}
  G_f := (V \setminus \{u, v\}, E_f)
  if G_f is strongly connected
    output "No"
  Otherwise
    Let W be a strongly connected component of G_f
      such that there is no arc in G_f from W to V \setminus W \setminus \{u, v\}
    output \{\{u\} \cup W, V \setminus \{u\} \setminus W\}
end {FINDGJOIN}
```

7.3 Algorithm to compute a minimal G-join decomposition

```
Function DecomposeP(G, \mathcal{P})
Input:
             a 2-structure G = (V, e) and a partition \mathcal{P} of V
Output: a minimal G-join decomposition G
begin
  If |\mathcal{P}| = 1 then
     return (\{G\},\emptyset)
  Let A, B \in \mathcal{P}, a \in A and b \in B
  If FINDGJOIN(G, a, b) returns "no" then
     P := \{A \cup B\} \cup (\mathcal{P} \setminus \{A, B\})
     return DecomposeP(G, \mathcal{P})
  Let \{X,Y\} be the G-join returned by FINDGJOIN
  Decompose G into G_1 and G_2 by the G-join \{X,Y\} with marker triplet (x,y,\alpha)
  \mathcal{P}_1 := \{ P \in \mathcal{P} : P \subseteq X \}
  \mathcal{P}_2 := \{ P \in \mathcal{P} : P \subseteq Y \}
   (\mathcal{D}_1, M_1) := \text{DecomposeP}(G_1, \mathcal{P}_1)
   (\mathcal{D}_2, M_2) := \text{DecomposeP}(G_2, \mathcal{P}_2)
  return (\mathcal{D}_1 \cup \mathcal{D}_2, M_1 \cup M_2 \cup (x, y, \alpha))
end {DecomposeP}
```

```
Function DECOMPOSE(G)

Input: a 2-structure G = (V, e)

Output: a minimal G-join decomposition G

begin

\mathcal{P} := \{\{v\} : v \in V\}

return DECOMPOSEP(G, \mathcal{P})

end \{DECOMPOSE\}
```

7.4 Algorithm to compute a standard G-join decomposition

```
Function DecomposeStandard (\mathcal{D}, M) Input: a minimal G-join decomposition Output: a standard G-join decomposition begin for all H \in \mathcal{D} if H has exactly 3 vertices then mark H degenerated and linear, and set an arbitrary linear ordering for H for all (x, y, \alpha) \in M let H_1 \in \mathcal{D} having vertex x, and let H_2 \in \mathcal{D} having vertex y compute the composition H of H_1 and H_2 if H is degenerated or linear then (\mathcal{D}, M) := (\mathcal{D} \setminus \{H_1, H_2\} \cup \{H\}, M \setminus \{(x, y, \alpha)\}) mark H degenerated or linear, and set the linear ordering of H if H is linear return (\mathcal{D}, M) end \{DecomposeStandard}\}
```