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Abstract

We present a family of decompositions of 2-structures generalizing the modular decompo-
sition, and O(n?) time algorithms to compute all these decompositions. These results can be
applied to non-oriented, oriented and directed graphs. Bi-join decomposition of non-oriented
graphs and of tournaments are two special cases of this family of decomposition. Two others
special cases are generalisations of the bi-join decomposition on directed graphs.

1 Introduction

The well-known modular decomposition of graph has many applications in graph theory and algo-
rithms. It is unique [8] and can be computed in linear time (i.e. in O(n + m)) on non-oriented
graphs [11], on directed graphs [10], and in linear time (i.e. in O(n?)) on 2-structures [9]. The bi-
join decomposition is a generalisation of the modular decomposition on non-oriented graphs [13, 14]
and on tournaments [2]. These two decompositions can be computed in linear time.

We present a family of decompositions of 2-structures which generalize the modular decomposi-
tion. We show that these decompositions are unique, and we present an algorithm to compute them
in time O(n3) (for a fixed decomposition in the family). We apply these results to oriented and
directed graphs. We give two new different decompositions for directed graphs which generalize the
bi-join decomposition of non-oriented graphs and tournaments, and we give a new decomposition
for oriented graphs. Bi-join decomposition of non oriented graphs and bi-join decomposition of
tournament are also special cases of this family of decompositions.

After some preliminaries in section 2, we introduce in section 3 the G-joins and show that G-
joins have the bipartitive property. In section 4 we define the G-join decomposition. For any fixed
abelian group with some properties, there is a different G-join decomposition. In section 5 we give
some special cases of decompositions on non-oriented, oriented and directed graphs. Finally, we
present an O(n?) algorithm to compute the G-join decomposition in section 6, for any fixed abelian

group.

2 Preliminaries

2.1 Graphs and 2-structures

A directed graph G = (V, A) is a pair of a set of vertices V and a set of arcs A CV x V \ {(u,u) :
u € V}. A non-oriented graph is a directed graph such that for all (u,v) € V2, with u # v, then
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(u,v) € A if and only if (v,u) € A. An oriented graph is a directed graph such that for all (u,v),
(u,v) € A= (v,u) € A. A tournament is a oriented graph such that either (u,v) € A or (v,u) € A.

Let D be a set. A 2-structure on D is a pair (V,e) such that e : V x V — D. In this paper,
every 2-structure is finite (i.e. V' is finite). A 2-structure is symmetric if e(u,v) = e(v,u) for all
u,v € V, u#v. Let o be an involution on D (i.e a bijection such that o(o(z)) = = for all x € D).
A 2-structure (V,e) on D is o-symmetric if e(u,v) = o(e(v,u)) for all u,v € D, u # v.

A directed graph can be viewed as a 2-structure on Zs, a non oriented graph as a symmetric
2-structure on Zs, and a tournament as a o-symmetric 2-structure on Zs with o = [ }]. There is
a way to transform a 2-structure on D into a o-symmetric 2-structure on D x D: take €'(u,v) =

(e(u,v),e(v,u)) and o((i,5)) = (j,4) for all 4,j € D. For example a directed graph can also be
(0,0) (0,1) (1,0) (1,1)

viewed as a og-symmetric 2-structure on Zo X Zs, with o = 0.0) (1.0) (0.1) (11) |-

2.2 Bipartitive families

A bipartition of a set V is a partition {X,Y} of V such that X # () and Y # (). We write sometimes
{X,—} instead of {X,V \ X}. Two bipartitions {X,Y} and {X', Y’} overlap (or {X,Y} overlaps
{X'YHUEXNX, XNY,YNX and Y NY’ are non empty. A family F of bipartitions of V' is
weakly bipartitive if:

o forallveV, {{v},V\{v}}isin F, and

e for all {X,Y} and {X', Y’} in F such that {X,Y} overlaps {X',Y'}, then {X N X", Y UY'},
{XNY ) YUX'HL{YNX  XUY'}and {Y NY', X U X'} are in F.

Moreover a weakly bipartitive family F is bipartitive if for all {X,Y} and {X’, Y’} which overlap
in F, {XAX', XAY'} is in F (where AAB = (A\ B)U (B \ A)). Bipartitive families are close to
partitive families |3, 12] but deals with bipartitions of V instead of subsets of V.

A member of a bipartitive family is strong if it overlaps no other member in the family. A
member {X,Y'} is trivial if [ X| =1or |Y|=1. Let T'= (V, E) be a tree. We denote by Leaves(T)
the leaves of T. For B € V, let {Al,...,Az(ﬁ)} be the connected components of T'— (3. Let
Cé = A% N Leaves(T). For e € E, let Al and A? be the connected components of 7' — e, and let

{0}, C?} = {Al N Leaves(T), A2 N Leaves(T)}. The following result can be found in [14] or in [6]
using a different formalism. This result can also be easily showed from known results of weakly
partitive families [3, 12].

Theorem 1. [6, 14 Let F be a weakly bipartitive family F on V. Then there is a unique unrooted
tree T = (Vp, E), call the representative tree, such that Leaves(T') = V', and each internal node
has at least 3 neighbors and is marked degenerate, linear or prime, such that:

e Foralle € Ep, {C},C?} is a strong member of F and there is no other strong members in F.
e Let B € Vr be an internal node, and let k be the degree of [3.

— If 3 is degenerated, then for all ) C I C {1,...,k}, {Uie;CY,—} is in F.

— If B is linear, there is a ordering C’é,...,C’g such that for all a,b € {1,k} witha <b
and (a7b) 7é (1>k>: {Uie{a,...,b}céa _} isin F.

o There is no other members in F.
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Furthermore if F is bipartitive, then T has no linear node.

Decompositions based on bipartitive families have been studied in [6] under a formalism called
decomposition frame with some properties. Some examples of this decomposition frame can be found
in [4, 5]. Bipartitive families based decompositions are interesting since the bipartitivity imply an
unique decomposition. Furthermore, this imply that a greedy algorithm to decompose the structure
will always work: if we can find in polynomial time a decomposable bipartition in the structure,
then we can decompose the whole structure in polynomial time.

2.3 Modular decomposition and bi-join decomposition

A module in a 2-structure G = (V, e) is a non-empty X C V such that for all v ¢ X and u,u’ € X,
e(v,u) = e(v,u’) and e(u,v) = e(v',v). The family of modules of a 2-structure is weakly partitive,
and is partitive if the 2-structure is symmetric [7]. If a structure G has a non-trivial module X, then
it can be decomposed into G[X] and G[V \ X U {z}|, where x € X. Note that the structure G can
be easily reconstructed from G[X] and G[V \ X U {z}]. The modular decomposition is defined by
recursively decompose the structure by a non-trivial module. It can be represented by a tree, call
the modular decomposition tree, which is exactly the representative tree of the family of modules.
A bi-join in a non-oriented graph G = (V, E) is a bipartition {X,Y} of V such that for all
v, € X, {N(Ww)NY, Y\ N(v)} ={N@')NY, Y\ N(')}. A bi-join in a tournament G = (V, A) is
a bipartition {X,Y} of V such that for all v,v' € X, {NT(v)NY,Y \ NT(v)} = {NT()nY, Y\

N*()}.
]
[ =]

Figure 1: A bi-join in a non-oriented graph and a tournament. X = X; U Xs and Y =Y, UYs.

]
.

BR

If X C V is a module of G, then it is a bi-join of G. The family of bi-joins of a undirected graph
is bipartitive [13], and the family of bi-joins of a tournament is weakly bipartitive [2]. If a graph has
a non-trivial bi-join, then it can be decomposed into two graphs, and the bi-join decomposition is
the recursive decomposition by a strong non-trivial bi-join. Since the family of bi-join is bipartitive,
the bi-join decomposition tree is unique (and is isomorphic to the representative tree).

2.4 Abelian group

We recall axioms of an abelian group (D, +).

Neutral element: There is an element 0 in D such that for all ¢ in D, 0+ a=a 4 0 = a.

Inverse element: For each a in D there is an element ¢! in D such that a+a ' =a "' +a =0,
where 0 is the neutral element. (We will wrote —a for a™!.)

Associativity: For all a, band cin D, (a+b)+c=a+ (b+¢).
Commutativity: For all @ and bin D, a+b=0>b+a.
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3 G-joins
3.1 Definition

Throughout this section, we fix an abelian group (D, +). Let (V,e) be a 2-structure on D. A pair
(X, Y)with X 20, Y #Qand V=X WY (i.e. XUY =V and X NY = () is a G-join if there is
pairwise disjoin X; and Y; (for i € D) such that X = #,cp Xi, Y = W;cp ¥j, and for all (i, ) € D?
and (u,v) € (X;,Y;), e(u,v) =i+ j. We start with some easy observations.

Proposition 2. If (X,Y) is a G-join of G and V' CV such that V'NX £ 0 and V' NY # 0, then
(X NV Yy nV') is a G-join of G[V'].

Proposition 3. If M is a module of (V,e), then (M,V \ M) and (V \ M, M) are G-joins of (V,e).

Proposition 4. For every pairwise different a,b,c,d € V' such that there is a G-join {X,Y} with
{a,c} C X and {b,d} CY, then e(c,d) = e(c,b) + e(a,d)—e(a,b).

Lemma 5. Let (V,e) be a 2-structure on D. Let (X,Y) and (X', Y") be two G-joins of (V,e) such
that XN X' # 0 and Y NY' £ 0. Then (X N X", Y UY’) is a G-join of (V,e).

Proof. Let X; and Y; (for i € D) such that X = ,cp Xi, Y = W;cp Yj, and for all (u,v) € (X;,Y)),
e(u,v) =i+ j . Similarly let X and Y/ (i € D) such that X' = f),cp X[, Y' = J,cp Y], and for
all (u,v) € (X0, Y7), elu,v) =i+ j

Since Y NY" is non-empty, let v € Y NY’, and let j,j° € D such that v € ¥; NY],. Suppose
that w € X N X', and let ¢,7' € D such that w € X; N X],. Then e(w,v) =i+ j =1+ 5.
Thus X N X' = ¥;.p Xi ﬂ Xl{-i-j;j,' Moreover, forall u e Y NY', e(w,u) =i+ k =14+ k' (with
weY,NY)), thus i’ =i—i' +k=j—j+kand Y NY' = Y,cp Y N Yk’ﬂ.,;j.

For all k € D, let X;' = X;; N Xl/H—j;j” and let Y = Y3, U Yk/-Fj’-Fj‘l' XNX' =cp X/ and
YUY = WuepY,. Forallue X and v € Y/, e(u,v) =i+ k. Thus (X N X', YUY')is a
G-join. O

3.2 G-joins in o-symmetric 2-structures

A function f is a isomorphism for (D,+) if f(a +b) = f(a) + f(b) for all (a,b) € D?. From now

o will denote an involution on D such that the function f : a — o(a)—c(0) is an isomorphism for
(D,+) (where 0 is the neutral element).

Lemma 6. Let (V,e) is a o-symmetric 2-structure, and let X and Y such that V = X WY . Then
(X,Y) is a G-join if and only if (Y, X) is a G-join.

Proof. Let X, and Y, (for a € D) such that X = |Y,cp Xa, ¥ = W,ep Ya, and for all (u,v) €
(Xa, Ya), e(u,v) = a+b. Let X, = X, ;) and Y, = Ya/(a);a(('))’ for all a € D. Since o is a bijection,
X =W,ep X, and Y = ¥,p Yo. Moreover, for all u € X/, and v € Yy, e(u,v) = o(a)+o(b)—0o(0) =

f(a)+ f(0) +0(0) = f(a+b) +0(0) = o(a+b), and e(v,u) = a+b. Thus (Y, X) is a G-join. O

We say that {X,Y } is a G-join of (V,e) if (X,Y") is a G-join of (V,e). Lemmas 5 and 6 show that
if {X,Y} and {X', Y’} are two G-joins such that {X,Y} overlaps {X’,Y'}, then {X N X" YUY’}
is a G-join. Therefore we have:

Corollary 7. The family of G-joins of a o-symmetric 2-structure is weakly bipartitive.
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3.3 G-joins in symmetric 2-structures

Lemma 8. Let (V,e) be a symmetric 2-structure. Let {X,Y} and {X',Y'} be two G-joins of (V,e)
such that {X,Y} overlaps {X',Y'}. Then {XAX', XAY'} is a G-join of (V,e).

Proof. Let v € YNY' we XNY’ and let (4,5',1,I') € D* such that v € YjﬂYj’, and w € X;NY).
Asiwe S.hO.W in proof of Lemma 5, X N X' = [H,.p Xi N X]’C_.H.;j, and Y NY' =,cp Y N Yk’ﬂ.,;j.
Using s1m/1,1ar argumen’,c, YNX' =Wpep YN Xl/c—,i-l;l’ and X ﬂ”Y/ = LﬂkeD/Xk NY/ -

Let Xk = (Xk N Xk—i—]f]/) U (Yk—i-j;j’-i-l/;l N Yk—j—l’;l) and Yk = (Yk N Xk—i—l;l/) U (Xk_i_j/;j_i_l;l/ N
Yk/-'rj'éj)‘ For all u € X} and v € Y/, e(u,v) = k +1. Thus {H,cp X}, Wpep Yy} is @ G-join. [

With Lemma 5, we obtain:

Corollary 9. The family of G-joins of a symmetric 2-structure is bipartitive.

4 G-join decomposition

In this section, we fix an abelian group (D, +) and an involution ¢ such that f: a — o(a)—0o(0) is
an isomorphism for (D, +). For most part, our terminology follows terminology used in [4, 6].

4.1 Simple decomposition

A G-join {X,Y } is trivial if | X| = 1 or |Y| = 1. Since every singleton is a module, every bipartition
{X,Y} with | X|=1or |Y]| =11is a G-join.

Let G = (V,e) be a o-symmetric 2 structure and {X,Y } be a non-trivial G-join. Let x € X
and y € Y. A simple decomposition of (V,e) by the G-join (X,Y") is the decomposition into G; =
(X U{y},elxuqyy) and G2 = (Y U {x},elyugy)) with an additional marker triplet (z,y, «), where
a = e(z,y) (e|x represents the function e induced by X x X). We write G — (G1, G2, (z,y, «)).
Note that this decomposition is not unique for a fixed {X,Y}.

The simple composition of (Vi,e1), (Va,e2) and the marker triplet (z,y,a), with Vi NVy =
{z,y}, is the 2-structure (V; U Va,e) where e(a,b) = e1(a,b) for all a,b € V1 \ {y}, e(a,b) = ea(a,b)
for all a,b € V5 \ {z}, and e(a,b) = ei(a,y)—a + es(z,b) for all a € V1 \ {y} and b € V5 \ {z}.
By Proposition 4, if ((Vi,e1), (Va,e2), (z,y,a)) is a simple decomposition of (V,e), then the simple
composition of (V1,e1), (Va,e2) and (z,y,a) is (V,e).

Lemma 10. Let {X,Y} be a G-join of G, and (G1, G2, (x,y,«)) be the simple decomposition of G
by (X,Y). Let {X',Y'} be a bipartition of V withY' CY. Then {X',Y'} is a G-join of G if and
only if {{z}UY \ Y'Y’} is a G-join of Gs.

Proof. If {X',Y'} is a G-join of G then by Proposition 2 {{z} UY \ Y'Y’} is a G-join of Gj.
Now suppose that {{z} UY \ Y'Y’} is a G-join of G2. Let X/ and Y, (for a € D) such that
{23 UY\Y")Y") = (Woep Xis Waep Ya) and e(u,v) = a+bfor allu € X} and v € Y} Since {X,Y}
is a G-join of G, let X, and Y, such that (X,Y) = (H,ep Xa: Weep Ya) and e(u,v) = a + b for all
u € Xqand v €Y. Let ¢,d € Dsuch that v € X/ and y € Yy. Let X = (X, \{z})UX, -4 .i, and
Y,/ =Y, Letue X]and v eV,’. If u e X then e(u,v) = a+b. Otherwise u € X,- ;- .1, and by
definition of simple decomposition, e(u,v) = e(u,y)—a+e(z,v) = a+bsince e(u,y) = a—d—c+a+d
and e(z,v) = ¢+ b. Then {),cp X7, Waep Yo'} = {X', Y’} is a G-join of G. O
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A G-join {X,Y'} is strong if it is a strong member of the bipartitive family of G-joins of G (i.e.
there is no G-join {X’, Y’} such that {X,Y} overlaps {X’,Y’}). A simple decomposition is strong
if it is induced by a strong G-join. The following Corollary follows from previous Lemma.

Corollary 11. Let {X,Y} be a G-join of G, and (G1, G2, (x,y,a)) be the simple decomposition of
G by (X,Y). Let {X',Y'} be a bipartition of V with Y' NY. Then {X',Y'} is a strong G-join of
G if and only if {{z} UY \ Y'Y} is a strong G-join of Gs.

4.2 G-join decompositions

A 2-structure is prime if all its G-joins are trivial. A 2-structure is degenerated if every bipartition
is a G-join. A 2-structure G = (V, E) is linear if there is a ordering vy, ..., v, of the vertices such
that for all 4,5 € {1,...,n} with ¢ < j and (7,7) # (1,n), {{vi,...v;},—} is a G-join of G, and G
has no others G-join. Every 2-structure with at most 3 vertices is degenerated, linear and prime,
and every 2-structure with at least 4 vertices is either prime, degenerated, linear or none of these
three cases. The following Lemma comes immediately from the bipartitivity of G-joins.

Lemma 12. Let G be a 2-structure. G has no strong non-trivial G-join if and only if G is either
prime, degenerated or linear

Proof. If G has no strong non-trivial G-join, then representative tree of G has only one internal node
(. Then G is prime, degenerated or linear if (3 is prime, degenerate or linear, respectively. O

The following Lemma gives a characterisation of degenerated graphs. Its straightforward induc-
tive proof is given in appendix.

Lemma 13. Suppose o(0) = 0. A o-symmetric 2-structure with at least 4 vertices is degenerated
if and only if there is an a € D such that o(a) = «, and a function f : V — D such that for all
w,v €V, utv, e(u,v) =a+ f(u) +o(f(v)

Let G be a 2-structure. G-join decompositions of G are defined recursively: ({G},0) is a G-join
decomposition of G' and if (D, M) is a G-join decomposition of G, H € D, and Hy, Hs is a simple
decomposition of H with marker triplet (u,v, o), then (D\{H})U{H1, H2}, M U{(u,v,a)}) is a G-
join decomposition of G. In this case we say that (D', M') = (D\{H})U{H1, Ha}, M U{(u,v,a)})
is a simple decomposition of (D, M), and we write (D, M) — (D', M'").

A G-join decomposition (D, M) is minimal if every 2-structure in D is prime. A G-join de-
composition (D, M) is good if no H € D has a strong non-trivial G-join. A G-join decomposition
(D, M) is standard if it can be obtained from ({G},0) by a sequence of simple strong decompo-
sitions, and no H € D has a strong non-trivial G-join. Note that minimal decompositions and
standard decompositions are goods. The proof of the following lemma is similar to the proof given
in [6].

Lemma 14. Let (D, M) be a good decomposition of G. If there is no good decomposition (D', M")
such that (D', M') — (D, M), then (D, M) is a standard decomposition of G.

Proof. If (D, M) is not a standard decomposition then there is a simple decomposition in the
sequence of decompositions which is not strong. Let (Dy, M) — (D2, M) = (D1 \ {H}) U
{Hi, H2}, M1 U{m}) be the last non-strong decomposition in the sequence. All the decompositions
after (D1, M) — (Dq, My) are strong and correspond to unique strong G-joins of G. We construct
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the decomposition (D', M’) from (D, M;) after simple decompositions of these strong G-joins.
(D', M) is good since there is a simple decomposition for every strong G-join in G and (D', M') —
(D, M) by the simple decomposition of the G-join corresponding to (Dy, M) — (Do, Ms). O

The previous Lemma tells us that a standard decomposition can be obtained from a minimal de-
composition by a sequence of simple compositions. This will be used in the decomposition algorithm
presented in a next section.

A decomposition (D, M) of G induces a unrooted tree of vertex set D and H; is adjacent to Hy
if there is a (z,y,«) € M such that x is a vertex of H; and y is a vertex of Hy. The decomposition
tree of a standard decomposition is isomorphic to the representative tree of the weakly bipartitive
family of G-joins and thus is unique. We call it the standard decomposition tree.

5 Specials cases of G-join decomposition

5.1 Bi-join decomposition

The bi-join decomposition [13, 14] is a special case with (D,+) = (Z2,+). Lemma 13 says that
degenerated graphs are disjoint union of two cliques if & = 1 and complete bipartite graphs if o = 0.
This decomposition has no linear node since the structure is symmetric. The bi-join decomposition
of tournaments [2] is the decomposition, with (D, +) = (Z2,+) and o = [} }].

5.2 Decomposition of oriented graphs

A directed graph G can be viewed as an o-symmetric 2-structure on the set {(0,0),(1,0),(0,1)},
with o((¢,7)) = (4,9) for (4,5) € {(0,0),(1,0),(0,1)}. There is one abelian group on D such that
a — o(a)—c(0) is an isomorphism. This abelian group, isomorphic to (Zs,+), is given in figure 2.

5.3 Decompositions of directed graphs

A directed graph G is a 2-structure on Zo, and can be viewed as a o-symmetric 2-structure (V) e)
on Zo X Zo, with o((i,7)) = (j,i). There are two abelian groups such that a — o(a)~c(0) is an
isomorphism. The first one (isomorphic to (Z3,+)) is given in figure 3, and the second (isomor-
phic to (Z4,+)) is given in figure 4. These two decompositions are generalizations of the bi-join
decomposition on both non-oriented graphs and on tournament. They are mutually exclusive, that
is there is a graph prime for the first one and completely decomposable for the other one, and wice
versa.

6 Decomposition algorithm

From now, we fix an abelian group (D, +) and an involution o such that f : a — o(a)—0c(0) is an
isomorphism for (D, +).

6.1 Find a non trivial G-join

We give in this section a O(n?) algorithm for the following problem: given a 2-structure G = (V, e)
and u,v € V, output a non trivial G-join {X,Y} such that v € X and v € Y, or output “No” if
there is no such partition.
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A directed graph G = (V, A) is strongly connected if for every u,v € V there is a path from u to
v (i.e. there is a sequence up = u,uy,...u; = v such that for all i € {0,... &k — 1}, (u;,ui+1) € A).
A strongly connected component is a maximal subset W C V such that G[W] is strongly connected.
The strongly connected components form a partition of the vertices of GG, and can be found in linear
time [1]. Moreover, there is always a strongly connected component W such that there is no arcs
from W to V' \ W, since the incidence graph of strongly connected components is acyclic.

We transform our problem into a 2-SAT problem. We suppose w.l.o.g. that u € X; and thus
v € Yo(uw)- If avertex w € {u,v} is in X then it is in Xe(wv)—e(up), and if wisin Y, it isin Yo, ).
Let the 2-SAT problem with variable set V' \ {u, v}, and w = t if e(w,v)—e(u,v) + e(u,t) # e(w, t).
A variable w is true means that w € X. Then there is a non trivial G-join if and only is there is
a non trivial solution for the 2-SAT problem. Let Gy = (V \ {u,v}, Ey) with Ef = {(w,t) : w,t €
V\ {u,v} and e(w,v)—e(u,v) + e(u,t) # e(w,t)}. The 2-SAT problem has a non trivial solution if
and only if the graph G is not strongly connected. In this case {X U {u},V \ (X U{u})} is a non
trivial G-join of G. All these operations can be done in time O(n?). (Algorithms in pseudo-code
are given in appendix.)

6.2 Compute a minimal G-join decomposition

If a 2-structure is not prime, then a G-join can be found in O(n?) time using the previous algorithm
for a fixed u € V' and for all v # u. So a naive algorithm to compute a minimal decomposition take
O(n*) time. We can reach O(n?®) by the following way. We remember the set P of subsets of V'
such that there is no non-trivial G-join which overlaps U for all U € P. P is a partition of V, and
at each call of the sub-routine, either it succeed and we decompose the 2-structure, either it fails
and we merge two sets in P. So a minimal decomposition can be obtained with O(n) call to the
algorithm of section 6.1, and can computed in O(n?).

6.3 Compute a standard G-join decomposition

Lemma 14 says that a standard decomposition of G can be computed from a minimal decomposition,
after some re-compositions. We show that we can test in time O(n?) if a composition of two 2-
structures degenerated or linear is degenerated or linear.

Let G; = (Vi,e1) and Go = (V,e3) and a marker triplet (z,y,«), such that G; and G have
no strong non-trivial G-join. If G’ has no strong non-trivial G-join, then by Lemma 12, G is either
degenerated or linear (since it cannot be prime). If G7 or Gy is not degenerated, then G must

be linear. Moreover if G; and G4 are linear, let vy,...,v; be a linear ordering of the vertex of
G1, and let vi,...,v;, be a linear ordering of Go. W.lo.g. v; = y and v{ = x. Then if G is
linear, va,...,Vk, Uy, ...,V OF V2,...,Vk, V), ...,V must be a linear ordering of G, and so either

{{va,v5}, =} or {v2, v}, }, —} must be a G-join of G.

Let G; and G35 be two 2-structures without strong non-trivial G-join. We want to known if the
composition G of G; and G9 with the marker triplet (z,y, ) is degenerated or linear (and to know a
ordering of G if it is linear). Case 1: |V;| = |Va| = 3. All bipartitions of G can be tested in constant
time, so the type of G (and a ordering if G is linear) can be computed in O(1). Case 2: |Vi| # 3
or |Va| # 3. Then GG or Gy is non degenerated, or non linear. If G; and G2 are degenerated, then
G is degenerated if and only if {{z,y},—} is a G-join of G. If G; and G4 are linear, with ordering
{vi=y,...,v} and {v] = x,..., v}, then G is linear if {{vy,v5}, —} or {{v2, v}, },—} is a G-join
of G. In this case, vg, ..., V4, V), ...,V OF V2, ..., Uk, Vs, .., V5 is ordering of G. In others cases, GG
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either degenerate nor linear. Moreover, to test if a bipartition is a G-join of a 2-structure can

be done in O(n?).

There is at most O(n) re-compositions (at most one for each edge in the decomposition tree).

To summarize, we obtain:

Theorem 15. A standard G-join decomposition can be computed in time O(n3).
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7 Appendix

7.1 Proof of lemma 13

Let (V,e) be a 2-structure such that thereisa f : V — D and a «a with o(a) = a and e(u,v) = a+
fu)+o(f(v)) forall u,v € V, u # v. It is easy to see that (V,e) is o-symmetric since o(0) = 0 and
thus o is a isomorphism for (D, +). Let {X, Y} be a bipartition of V. Let X, ={ve X :a = f(v)}
andY, ={veY:a=a+o(f(v))}. Forallue X, and b € Y}, a+b= f(u)+ato(f(v)) = e(u,v),
thus {X,Y} is a G-join.

On the other hand, let (V,e) be a degenerated 2-structure such that |V| > 4.
Claim 1. For every pairwise different a,b,c,d € V, e(c,d) = e(c,b) + e(a,d)—e(a, b).

Proof. Since (V) e) is degenerated, {{a, ¢}, —} is a G-join. By Proposition 4 we have the equality. [
Claim 2. For every pairwise different a,b,c € V:

e(a,b) +e(b,c) + e(c,a) = e(b,a) + e(c,b) + e(a, ).
Proof. Let d € V' \ {a,b,c}. Applying Claim 1, we get:

e(d,a)—e(d,b) = e(c,a)—e(c,b)
e(d,b)—e(d,c) = e(a,b)—e(a,c)
e(d,c)—e(d,a) = e(b,c)—e(b,a).

S
)

2]

Thus

e(a,b) +e(b,c) +e(c,a) = e(b,a) + e(c,b) + e(a, )
= o(e(a,b)) + o(e(b,c)) + ole(c, a)).

Case 1: |[V|=4. Wlo.g V ={a,b,c,d}. Let:

a=e(a,b)+e(b,c)+eca)

fla) = ~e(b,c)

f(b) = ~e(a,c)

f(c) = —e(b,a)—e(a,c) + e(c,a)
f(d) =e(d,a) + e(c,b)—a

11



From Claim 2, o(a) = a. We get:

fla) +a(f(b)) + o= —e(bc)-
= e(a,b)
fla)+o(f(c)) +a= —e(b,c)—e(a,b)—e
= e(a,c)
fO)+o(f(c) + a= —e(a,c)—e(a,b)—
=e(b,c)
fla)+o(f(d) +a=
= e(a,d)
) +o(f(d) +a=~
= e(b,d)
f(e) +o(f(d) +a= —e(ba)—

= e(a,d) + e(c,b)—
(by Claim 1.)

= e(c,d)

Thus f and « have the required property.

such that f(w) =

Let w € V\{u,v} and z € V \ {u, v, w}.

= f'(w)=f'(u) +
= e(w,v) + f'(w)=f

= e(w,v).

Fe(u
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Thus f and «a have the required property.

)

f'(w)

e(u,

12

+
+

v)

Case 2: |[V| > 4. Let v € V. (V \ {v},e) is degenerated and thus there is a f’ :
and an o € D such that for all u,v € V'\ {v},

fl(w)if z € V\ {v} and f(v) = e(v,u)—o(f (u))—c.
fw)+o(f(v)+a=f'(u)+e(u,v)=c(o(f(u)~a+a

= e(u,v)

e(c,a) + e(a,b) + e(b, ¢) + e(c,a)
(c,a) + e(a,¢) + e(a,b) + e(b, ) + e(c, )
e(c,a) + e(a, ) + e(a,b) + e(b, c) + e(c, a)
Ze(bye) + e(a,d) + e(b,0)~a +a

e(a,c) + e(a,d) + e(b,c)~a + a

(by Claim 1)

e(a,c) + e(c,a) + e(a,d) +e(b,c)—a+ a
e(a,b)

(by Claim 2)

V\{v} —-D
f'(u) +o(f'(v)) + a. Let u # v, and let f

fw) +o(f(v) +a=f(w)+e(uv)-o(o(f(u)-ata
e(w,
f'(w) +

v)—e(w, )
o(f'(x) + a=f'(w)-

(by Claim 1)
o(f'(z)-a



7.2 Algorithm to find a non trivial G-join

Function FINDGJOIN(G = (V,e),u,v)
Input: a 2-structure G = (V,e) and u,v € V, u # v
Output: a non trivial G-join {X,Y} of G such that u € X and v €Y,
or “No” is there is no such G-join
begin
fi(u) =

fa(v) = (U v)
For every w € V\ {u,v}

fi(w) = e(w,v)=e(u,v)
folw) = e(u,w)
Ey = {(w.t) sw.t € V\ {u,0} and fu(w) + fa(®) # e(w.1)
Gy = (V\ {u,0}, Ey)
if G ¢ is strongly connected
output “No”
Otherwise
Let W be a strongly connected component of G
such that there is no arc in G from W to V \ W'\ {u,v}
output {{u} UW,V \ {u} \ W}
end {FINDGJOIN}

7.3 Algorithm to compute a minimal G-join decomposition

Function DECOMPOSEP (G, P)
Input: a 2-structure G = (V,e) and a partition P of V
Output: a minimal G-join decomposition G
begin
If |P| =1 then
return ({G},0)
Let ABeP,ac Aandbe B
If FINDGJOIN(G, a, b) returns “no” then
P:={AUB}U(P\{A,B})
return DECOMPOSEP (G, P)
Let {X,Y} be the G-join returned by FINDGJOIN
Decompose G into G; and Go by the G-join {X, Y} with marker triplet (z,y, )
P:={PeP:PCX}
Py:={PecP:PCY}
(D1, My) :== DECOMPOSEP (G1, P1)
(Dy, M) := DECOMPOSEP (G2, Ps)
return (D; U Dy, My U My U (z,y, )
end {DECOMPOSEP}
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Function DECOMPOSE(G)
Input: a 2-structure G = (V,e)
Output: a minimal G-join decomposition G
begin
P :={{v}:veV}
return DECOMPOSEP (G, P)
end {DECOMPOSE}

7.4 Algorithm to compute a standard G-join decomposition

Function DECOMPOSESTANDARD((D, M))
Input: a minimal G-join decomposition
Output: a standard G-join decomposition
begin
for all H € D
if H has exactly 3 vertices then
mark H degenerated and linear, and set an arbitrary linear ordering for H
for all (z,y,a) € M
let H, € D having vertex z, and let Hy € D having vertex y
compute the composition H of Hy and Hs
if H is degenerated or linear then
(D, M) = (D\ {Hy, Hy} U{H}, M\ {(z,.)}))
mark H degenerated or linear, and set the linear ordering of H if H is linear
return (D, M)
end {DECOMPOSESTANDARD}
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