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1. INTRODUCTION

This study has been started two years ago by the laboratories
of Radiochimie, Sciences Analytiques et Environnement
(LRSAE) of the University of Nice Sophia-Antipolis (UNS)
and PROcessus de Transferts et d’Echanges dans l’Environ-
nement (PROTEE) of the University of Sud Toulon-Var
(USTV). It has numerous goals, among which the study of
the exchanges between different kinds of rocks and soils
(limestone, conglomerates, alluvial and phreatic layers),
water and underground water to determine the impact of
erosion phenomena, the nature of exchanges between the
Var and its affluents (Vésubie and Esteron), the quality of
water, the detection of potential polluting agents (marking
elements and more precisely heavy metals like Pb, As and
Co for example).

Since january 2009, water samples have been collected on
a weekly basis in five locations, named: Var river (1),
Auda (2), Maccario (3), Puget (4) and La Tour (5). Differ-
ent measures are then performed: dissolved organic carbon,
dissolved oxygen, pH, temperature, concentration of ions
and heavy metals.

∗Funded by a PhD support delivered by the University of Nice, in the
frame of the PRES euro-méditerrannéen.

2. PROBLEM STATEMENT

2.1. Experimental configuration and its aims

The raw data are collected in five measurement locations.
Their geographic position is depicted in Fig.1. It is as-
sumed that some locations interact with each other, whereas
others do not. In such a context, we are interested in de-
termining the contribution of each location and in better
understanding the water exchanges that are involved. Or-
ganic components can also be identified thanks to methods
such as Canonical Polyadic decompositions (CP) (some-
times known as Parafac), applied to 3D fluorescence spectra
calculated from the collected samples. Thus, organic ele-
ments will be tracked along the river.

2.2. Mathematical model and assumptions

Considering the aforementioned experimental configura-
tion, we have set up a mathematical model, whose aim is to
model the water exchanges between the chosen locations. It
leads to various partial relations between data C(i)(t), mea-
sured at location i and time t, e.g. concentrations. For ex-
ample, regarding area numbered 4, we have exchanges with
areas 1, 3 and 5, but not with area 2, so that we can assume
the model below:

α44C
(4)(t) =α41C

(1)(t− τ41) + α43C
(3)(t− τ43)

+ α45C
(5)(t− τ45) + χ(4)(t) (1)
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Fig. 1.

where αij stands for the flow from location j to i if i 6= j
and αii =

∑
j 6=i αij , τji stands for the transport delay from

site i to site j, and χi denotes an error term. We can do the
same for area 3:

α33C
(3)(t) =α31C

(1)(t− τ31) + α32C
(2)(t− τ32)

− α23C
(3)(t− τ23) + χ(3)(t) (2)

and for area 2:

α22C
(2)(t) =α21C

(1)(t− τ21) + α23C
(3)(t− τ23)

− α32C
(2)(t− τ32) + α26C

(6)(t) + χ(2)(t)
(3)

One can notice that flows can go in both directions, as
it is observed for areas 2 and 3. In the equation above,
α26C

(6)(t) represents the contribution of the phreatic layer,
which could have been be merged in the error term, since it
cannot be measured.

As pointed out earlier,C(i)(t) represents some measure-
ment performed at site i and time t. Assume for instance
that it represents a fluorescence intensity (but it could be
another type of measurement such as pH, etc). It can be de-
composed as: C(t) =

∑Np

p=1 cp(t)Sp, whereNp denotes the
(unknown) number of components in the mixing, cp(t) the
concentration of the pth component and Sp its fluorescence
3D spectrum. Actually, Sp is an intensity, which is mea-
sured as a function of emission and excitation wavelengths.

So it is a function of two variables (as C(t) in the case of
fluorescence analysis); for the sake of simplicity, this de-
pendence has not been made explicit in the notation. See
the next section for more details.

Assumptions. Our subsequent developments are based
on the assumptions below:

A1. Only conservative elements can be considered, in or-
der to be able to estimate transport delays.

A2. Coefficients αij are constant for each component over
the observation duration.

A3. Delays τij are constant too, for each component.

Goals. One of our objectives is to estimate the transport
delays τij . To determine theses delays, one very basic idea
is to search for maxima of inter-correlations between data
from two linked locations. Additional information like the
marking elements (i.e. metals) concentrations should help
us to achieve this task.
The other goal is to determine the flows αij , which should
provide a good estimation of the contribution of each loca-
tion to the global system. We can already point out some of
the difficulties that we have encountered. The estimation of
the delays cannot be performed directly since measurements
are not performed regularly (sparse sampling) and not syn-
chronized (since not performed at the same time). Our first
objective has been to resample the data on a regular grid as
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Fig. 2. Arsenic concentrations measured during one year
(+) at site 4 (Puget), surperimposed on the resampled data
(straight line).

illustrated by Fig. (2). Moreover, some technical problems
can appear during the process of estimation of concentra-
tions. This is why measurements are sometimes missing.
This problem has to be taken into account too, especially
when it concerns the first(s) or last(s) measurements of the
considered time series.
Another difficulty to overcome is the fact that most mea-
surement techniques do not provide us with an information
on a single element, but on a mixture of elements. The
goal is then to recover individual information from mix-
tures. This is addressed in the next section.

3. CANONICAL DECOMPOSITION

In order to fix the ideas, consider the case of a fluorescence
analysis. If a solution is excited by an optical excitation,
several effects may be produced: Rayleigh diffusion, Ra-
man diffusion, and fluorescence. At low concentrations, the
Beer-Lambert law can be linearized so that the fluorescence
intensity rather accurately follows the model below [7]:

I(λf , λe, k) = Io γ(λf ) ε(λe) ck

where ε denotes absorbance spectrum (sometimes called ex-
citation spectrum), λe the excitation wavelength, γ the fluo-
rescence emission spectrum, λf is the fluorescence emis-
sion wavelength, and k denotes the sample number (e.g.
which can vary concentration). Provided it can be separated
from diffusion phenomena, the fluorescence phenomenon
allows to determine the concentration of a diluted (fluo-
rescent) chemical component, and possibly to recognize it
thanks to its fluorescent spectrum.

A difficulty appears when the solution contains more
than one fluorescent solute. In such a case, the overall flu-
orescence intensity is an unknown linear combination of
component fluorescence intensities:

I(λf , λe, k) = Io
∑

`

γ`(λf ) ε`(λe) ck,` (4)

It is then necessary to separate each component contribu-
tion.
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Fig. 3. 3D fluorescence spectrum of a water sample of Var
river (Auda), before removal of Rayleigh and Raman ef-
fects; horizonal: λf , vertical: λe.
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Fig. 4. After isolation of a 3D fluorescence spectrum, a
component may be identified; here a PicM component, ma-
rine humic-like matters, Coble, 1996.

There exist a wide panel of separation techniques, al-
lowing to identify linear mixtures of functions (or stochas-
tic processes) and to extract them. Most of them rely on
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statistical tools, or on sparsity; see for instance the survey
provided in [2]. It seems that in the present case, determin-
istic techniques are more appropriate; they are based on the
decomposition of tensor arrays into elementary terms [3].

To be more explicit, a finite number of excitation and
emission frequencies are measured, so that the measure-
ments are stored in a finite array of order 3 and finite di-
mensions, say I × J ×K:

Tijk = I(λf (i), λe(j), k),

1 ≤ i ≤ I , 1 ≤ j ≤ J , 1 ≤ k ≤ K. Tensor T can always
be decomposed into a sum of elementary terms as:

Tijk =
R∑

`=1

λ(`)Ai`Bj` Ck` (5)

where A, B and C are matrices with unit-norm columns,
and where R is a sufficiently large integer. This can be re-
ferred to as a Polyadic decomposition of T [4]. The small-
est integer R that can be found such that the equality above
holds exactly is called the tensor rank [5]. For this value of
R, the above decomposition is called the Polyadic Canon-
ical decomposition (CP) of tensor T . It is clear, by com-
paring equations (4) and (5), that thanks to uniqueness of
the CP, one can identify γ`(λf (i)) with Ai`, ε`(λe(j)) with
Bj` and ck,` with Ck`. Hence, the computation of the CP
yields emission spectra of each component as well as their
concentration. There is no need to know in advance what
are the components expected to be present in the solution.

This decomposition differs from the decomposition of
matrices into a sum of rank-1 terms in several respects [1].
In particular, it is unique if the rank R of T is smaller
than a known bound [3]. This is not the case for matri-
ces, for which uniqueness can be achieved only thanks to
orthogonality constraints imposed among the columns of A
(resp. B), which leads to the Singular Value Decomposition
(SVD). However, such a constraint has no physical mean-
ing, and would not yield the spectra we are looking for.

Uniqueness of the CP is the main reason to resort to
tensors rather than matrices. Note that in some scientific
communities, the CP decomposition has received the name
of “Parafac” [7] [6], which has no mathematical mean-
ing. Such a terminology, introduced in the seventies by re-
searchers in psychometrics, should be avoided, to the ben-
efit of the more widely used acronym “CP” (even if often
standing for “CanDecomp/Parafac” [3], to obtain agreement
of all users).

Another nice property, which is not of crucial interest in
the present framework, is that R is generally much larger
than the smallest dimension of T . Such a property is very
attractive in antenna array processing for instance [2], where
linear mixtures may be “underdetermined”. Tensor-based
algorithms are then able to localize more radiating sources
than sensors.

4. CONCLUSION

In this paper, we have outlined what are the goals we want
to reach, what are the problems needing to be overcome,
and what are the tools that we plan to use to solve them.
Specific algorithms will be developed in order to cope with
delays, with the positivity constraint of rank-1 tensors, and
possibly with joint decomposition of mixtures of different
nature. The cooperation initiated several years ago between
I3S and PROTEE, is now more concrete thanks to the PhD
of J.-P.Royer, launched in the frame of the PRES (Pole de
Recherche et d’Enseignement Superieur) of the university
of Nice. It gives the opportunity to I3S to participate more
actively in the long-term study led by LRSAE [8] and PRO-
TEE.

The expected impact is a better understanding of water
exchanges (in particular underground) in the Var area, and a
more efficient detection of polluting matters in water.
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