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Abstract

We introduce a new P2P exploration strategy based on
an extension of space filling curve principles. This stat-
egy is exhaustive and do not generates redundant mes-
sages. Initiated at the source node of a search query,
a walker is sent to explore the neighbourhood of this
node. This walker is carrying an increasing list of vis-
ited nodes as an Ariadne-sequence, building at the same
time an uncrossable fence. When encountering a fence,
this walker splits and its offsprings continue the scan-
ning of the close neighbourhood. The set of walkers
creates a tree-like covering structure that ensures that
all nodes are visited once and only once. We describe
the support overlay and introduce a low cost node het-
erogeneity management. We conclude with a discussion
on experimental validation results.

1. Introduction

In the last few years, the quality (reliability and
bandwidth) of Internet connections has increased dras-
tically. During the download of data, the transfert rate
is now only limited by the capability of the server to
manage a large amount of high bandwith clients at the
same time. Thanks to the peer-to-peer (P2P) mecha-
nisms, each user can contribute to this data exchange
mechanism as a potential server: this extends the shar-
ing capability and features some fault resilient proper-
ties because of the data replication and distribution in-
volved.

Structured P2P networks are very well suited for
search process that involves a mapping location/value:
for instance DHT based strategy are very efficient when
a key should be used to retrieve information [9, 6, 7,
11, 5]. Most of the time, structured P2P tend to equally
balance the load among peers, even if these peers have
different capabilities, as a result the heterogeneity of the
network is often poorly taken into account.

Unstructured P2P networks can greatly benefit
from this heterogeneity to dynamically optimize the
load of the different nodes. Such networks are well
suited to generic distance based queries which make no
strong assumption of the location of data: the network
has to be scanned as exhaustively as possible, to per-
form complex query evaluations on each visited node.

This implies an exploration strategy that scans each
node of the network, at least one time, and avoids (as
much as possible) to scan each node more than one
time. Queries can quickly reach a large amount of nodes
with flooding [2]: even if this strategy features low la-
tency and high parallelism, it generates a large number
of messages. On the other hand, random walk [4] re-
duces network traffic but induces high latency and is
less resilient to nodes failure.

This paper presents the design of a P2P architec-
ture featuring a tree-based search strategy. Peers gen-
erates an exploration tree that fills their neihborhood:
nodes are visited once and only once in a stable envi-
ronment and the exploration becomes more and more
parallelised as the search progress.

This tree filling strategy needs a triangular mesh to
proceed; we describe protocols that maintain at low cost
this overlay through arrival and failure of nodes. Per-
formances of this exploration strategy increase in a net-
work with heterogeneous node degrees: this approach
is therefore well suited to heterogeneity among peers
capabilities [8]. The overall number of generated mes-
sages per node needed to maintain the overlay remains
constant.

Section 2 describes related works, section 3 intro-
duces our filling tree exploration paradigm. Section 4
presents the overlay designed for the walk. In the last
section, we evaluate our approach on a simulated net-
work and discuss the results.
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2. Related works

As mentionned before, search can be achieved
in unstructured P2P networks using flooding, like in
Gnutella [2]. A node initiates a query with a TTL (Time
To live) strictly positive and forwards the query to all
of its neighbors. Nodes receiving the query decrease
the TTL by one and if it is still strictly positive, they
forward it to all neighbors excepting the sender. This
approach induces low latency and high reliability but
quickly generates a lot of messages. Although nodes
discard queries already processed, flooding generates
redundancy that increases with the TTL of the search
(the number of detected cycles in the graph increases
with the radius of the exploration).

In [3], Song Jiang et al. proposed to manage the
redundancy by the mean of a spanning tree overlay. As
redundancy is only significant in flooding above a given
radius, the algorithm in [3] is divided in two stages.
In the first stage, standard flooding is used for the first
hops. In the second stage, messages are only flooded in
the suboverlay.

Search using flooding is highly parallelised, hence
the flooding process cannot be stopped when a node an-
swers the query. To solve this problem, adaptive flood-
ing has been proposed: successive floods with increas-
ing TTL are performed. According to the policy used,
they are called expanding rings [4] or iterative deepen-
ing [10]. Although these approaches reduce network
traffic to retrieve popular data (i.e. with a high number
of replicas), they induce significant overhead for rare
data as the first rings are useless.

Random walk [4] reduces network traffic, at the ex-
pense of reliability and latency. After being processed
on a node, queries are forwarded to a neighbour of this
node choosen at random. k-random walk [4] increases
reliability and reduces latency, at the cost of additionnal
network traffic since k walker are launched in parallel.
This approach is well suited for popular data, but when
searching rare data, walkers may visit twice or more the
same node.

A Gnutella-like system has been proposed in
[1]. The system relies on measures performed by
[8] that show the heterogenity in capabilities of the
peers involved in an unstructured P2P network such as
Gnutella. This system uses a biased random walk that
visits the nodes with a higher degree first. Each node
has pointers on data hosted by its neighbors, and each
new node that enters the network tries to connect to a
high-degree node. These features increase the overall
performance of the system by three to five orders of
magnitude.

3. Filling tree exploration

3.1. Principle

We propose to design walkers able to build filling
trees to explore a network area. They keep the sequence
of the visited nodes, recording a kind-of Ariadne se-
quence composed with successive visited nodes. This
sequence ensures that a node is visited once and only
once. On a plannar graph, this sequence builds incre-
mentally an uncrossable fence for the walker. When
encountering this limit, the walker splits, as shown in
figure 1, and each new walker inherits the previously
recorded path. The sequences of paths taken by the
walkers is a tree that fills the neighbourhood of the
source node Ps, ensuring that all nodes are scanned at
least and at most one time.

Figure 1. Principle of filling tree algorithm.

Since walkers create clones, this algorithm can be
viewed as a kind of k-walk. The advantage of this
approach is that, thanks to the properties of the net-
work overlay and the gathering of information about
visited nodes, all spawned walkers will not visit the
same nodes, whereas in traditional k-random walk this
may happen. Contrary to flooding (or LightFlood [3])
filling trees do not need a cache on nodes to store previ-
ous seen queries, as there is no discard process.

3.2. Cloning mecanism

Let N(p) be the 1-hop neighborhood of peer p.
When a walker visits p, it clusters unvisited nodes of
N(p). Because of the triangular mesh, all nodes in N(p)
describe a ring. By removing on this ring already vis-
ited nodes and their connections, there are between 0
and x = b |N(p)|

2 c remaining connected components. A
clone of the walker is spawned in each of these remain-
ing connected component. The figure 2 shows an exam-
ple with two connected components. The behaviour of
walkers is described in algorithm 1

For x−1 connected components, there is a cycle in
the graph made from visited nodes (current visited peer
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is acounted as visited). Walkers that explore these con-
nected components are trapped in deadlocks and cannot
explore the remainings of the network. This ensures that
no node will be visited more than once. The last walker
explores the remaining of the network still accessible.

Algorithm 1: Walker behaviour during explo-
ration

Input: start, Vp, T T Lp
current← start;
// visited nodes
V ←Vp;
TTL← T T Lp;
while T T L > 0 do

V ←V∪ {current};
// unvisited neighbors
W ← N(current)\V ;
TTL← TTL - 1;
if W = /0 then

TTL← 0;
else if T T L > 0 then

// nodes to visit
T ← /0;
while W 6= /0 do

// connected component
C←{randomElement(W )};
W ←W \C;
clusterGrow← true;
while clusterGrow do

clusterGrow← false;
forall p ∈ cluster do

if N(p)∩W 6= /0 then
C←C∪ (N(p)∩W );
W ←W ∩N(p);
clusterGrow← true;

end
end

end
dmax← max(|N(p)|)∀p ∈C;
C←{p ∈ cluster, |N(p)|= dmax};
T ← T ∪{randomElement(C)};

end
current← randomElement(T );
T ← T \{current};
forall p ∈ T do

launchWalker(p,V ,TTL);
end

end
end

High degree nodes are likely to be connected to-
gether, so that walkers are likely to hit fences and to
clone themselves. Our approach takes advantage of this
property to increase parallelism by visiting the largest

2-hops neighborhood first. We use the 2-hops neigh-
borhood instead of a 1-hop neighborhood because many
high degree nodes are connected through a third party
node.

Figure 2. Example of a cloning case.

When the request carried out by the walker is full-
filled, it returns to the initial node using the inverse path
it has recorded. The walker terminates if all neigh-
bors are already visited (no connected component is de-
tected) or if its TTL reaches 0.

4. Overlay

We assume that each node on the network has a
unique identifier. Nodes refresh the knowledge of their
2-hop neighborhood by sending their identifier and their
1-hop neighbors identifiers to their neighbors. Futher-
more, peers maintain a list of all the triangles they be-
long to. The size of this list is equal to the node’s de-
gree.

The overlay is maintained through the use of proto-
cols for node arrival and failure/departure. These proto-
cols induce a number of messages that are proportional
to node degrees. Because the average node degree in
a triangular mesh is nearly constant (or tends to six),
the bandwidth that is used and the number of generated
messages remains very limited. Not only this adaptive
mesh layer is important to support our strategy of explo-
ration, but also, it offers another interesting property: it
allows to promote high resource nodes with more con-
nexions, thus performing locally load balancing.

4.1. Node arrival

A peer p joining the network contacts a random
node p1 in the network. The way this random node p1 is
obtained can be achieved in various ways (for instance
with a central server registering few nodes taken at ran-
dom) and is not addressed here. A triangle (p1, p2, p3)
in the list of triangles containing p1 is then taken at
random. New connections are created between p− p1,
p− p2 and p− p3.

The lists of triangles of p1, p2 and p3 are then up-
dated. When a node connects to the network, it has a de-
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Figure 3. Node arrival.

gree of three and increases the degree of the three nodes
by one. Hence the average node degree tends to six as
the size of the network grows.

4.2. Node departure/failure

We make the assumption that a node leaving the
network is equivalent to a failure of this node. A failure
on a node p f is detected by its neighbors when they do
not receive a ping message of p f within a given timeout.
If a failure is detected, then the overlay needs to be re-
paired in order to maintain the triangular mesh, except
if the failing node had a degree of three. In this case,
the node departure can be seen as the inverse of a node
arrival, as shown in figure 3.

Figure 4. Topology repairment after the failure
of node p f . The two neighbors of pr cannot be
candidate for handling the repairment because
they have three neighbors in N(p f ).

The departure/failure of a node p f with a degree
higher than three makes a hole in the mesh. This hole
is delimited by N(p f ) and its size is s = ‖N(p f )‖− 3.
This hole can be repaired by creating s connections.
The repairment process is handled by a node pr that
connects to other nodes of N(p f ) excepts its neigh-
boors and itself, as shown in figure 4. As it creates
‖N(p f )\N(pr)‖−1 connections, it must have only two
neighbors in N(p f ) to be able to create s connections.
Moreover, its two neighbors in N(p f ) must have a min-
imal degree of 3 so that there are no nodes with a degree
of two after the repairment. However breaking this sec-
ond property invalidates the first one, as a node with
a degree of 2 will have its 2 neighbors in N(p f ) con-
nected together, hence the first property is sufficient:
‖N(p f )∩N(pr)‖= 2.

To select Pr, we assume an order relationship be-
tween nodes identifier. The node in N(p f ) with the low-
est identifier checks if it can handle the hole repairment.
This node knows it has the lowest identifier in N(p f )
because of the neighborhood knowledge he previously
received from p f . If the node cannot handle the repair-
ment process, it launches a token on the ring (nodes in
N(p f ) describe a ring - see section 3.2). Each node on
the ring checks if it can handle the repairment process,
and if it cannot, the token is forwarded on the ring.

If all nodes in N(p f ) have a degree of two, they are
all disconnected from the remaining of the network. Let
pc be a node that has a connection with another node
not in N(p f ). Because of the triangular mesh, the two
neighboor of pc in N(p f ) are connected to this other
node and there is a sequence of 3 nodes in N(p f ) that
have at least a degree of 3. Because the overlay is a
planar graph, pc cannot be connected to other nodes in
N(p f ) and satisfy the first constraint. This ensure that
at least one node fullfilling the two requested features
belongs to the ring (and will be found by the repairment
process). This repairment process ensures that the net-
work keeps the same overall shape.

4.3. Peers connectivity

Peer-to-peer networks feature heterogeneity
amongs peer resources as shown in [8]. As some peers
have more bandwidth or CPU, they can process more
queries than other peers. Therefore, nodes should have
a number of neighbors proportionnal to their amount
of available resources. This heterogeneity among
peers connectivity is achieved by switching peers
neighborhood.

If a peer p1 has more resources and a degree
smaller than one of its neighboor p2, it may disconnect
from its current neighbors except p2, and connect to all
neighbors of p2, except itself. p2 performs the same
process and exchanges its neighborhood with the one of
p1. As the repairment, this optimizing process ensures
that the network overall shape remains unmodified.

5. Experiments

Experiments have been performed on a dedicated
simulator developped in Java. At initialization, the net-
work is made of four nodes connected together: the
overlay is a tetrahedron, with all nodes having a degree
of four. The average node degree gets closer to six as
more nodes are added to the network with the process
described before.

We compare our approach with flooding [2], k-
random walk [4] and LightFlood [3]. We run the al-
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gorithms on a random power-law graph with an aver-
age degree of six. Simulated networks contain 100000
nodes. Figure 5 shows an example of unfolded tree gen-
erated while exploring a part of the network. In our sim-
ulation, one third of the nodes have a degree of three,
hence, as described in section 4.2, their failure do not
need to be repaired.

Figure 5. Filling tree resulting of an exploration
with a TTL = 12 starting from node Ps. 236
nodes were visited. The node positions in the
unfolded tree do not reflect their position in the
overlay.

5.1. Coverage

Figure 6 shows the number of visited nodes accord-
ing to the TTL of the exploration. Flooding has the
best coverage for the lowest TTL, however this is as
the cost of redundant messages, as shown in figure 7.
LightFlood features good coverage at low TLL : 95%
of nodes are discovered with a TTL of 10.

Figure 6. Network coverage.

Our approach offers the same coverage as the
LightFlood approach at the expense of an extended TTL
: but unlike Lighflood, our system does not need a cache

storage on each visited node. A TTL of 30 remains
quite acceptable for a network of 100000 nodes. Ran-
dom walk is omitted here as it has poor coverage per-
formances.

Moreover, it takes about 40 hops for filling trees to
fully cover the network, while LightFlood covers 98.2%
of the network with a TTL of 100. This lack of exhaus-
tivity in LightFlood is explained in [3]: flooded mes-
sages may collide with each other within the spanning
tree and be discarded.

5.2. Redundancy

Let v be the number of visited nodes and m be the
number of generated messages. The percentage of re-
dundant messages is evaluated to 100× (m

v −1). Figure
7 shows the percentage of redundant messages accord-
ing to the number of visited nodes on a static overlay.
We measure messages redundancy for flooding, k ran-
dom walk with 100 walkers, LightFlood with 4 hops of
pure flooding and our approach.

Figure 7. Message redundancy.

This experiment shows that random walk and
flooding do not scale well. While they are suited for vis-
iting few nodes (up to 20k nodes in our simulation) the
percentage of redundant messages increases with the
number of visited nodes. LightFlood generates up to 5
% of redundant messages after 4 hops of pure flooding.
Then redundancy decreases until reaching roughly one
percent for visiting 95k nodes. As shown on Figure 7,
filling tree still does not generate redundant messages.

5.3. Node departure

We measure the coverage of filling trees as more
and more nodes (taken at random) leave the network.
We evaluate our approach both on a fixed overlay (each
time a node is removed, the overlay is repaired) and on a
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broken overlay (never repaired after a node departure).
We compare our approach with LightFlood with a repair
process that keeps average node degree constant. To
have similar coverage for both approaches, we set the
TTL for LightFlood to 8 after 4 hops of pure flooding,
and set the TTL of filling trees to 25. Results of this
experiment are plotted on figure 8.

Figure 8. Coverage with node departures

When repairing topologies, the number of nodes
covered by LightFlood and filling trees decreases as
more and more nodes are removed from the network.
Because of the settings we use, the number of nodes
covered by LightFlood is slightly greater than the num-
ber of nodes covered by filling trees but the gap between
the two approach is reduced as more and more nodes are
removed. This shows the efficiency of our repairment
process.

On a broken overlay, the number of nodes covered
by filling trees increases while up to 15% of nodes are
removed but decreases quickly when more of 15% of
nodes are removed. Having holes into the mesh in-
creases walker cloning rate, since holes increase the
number of different connected components of unvis-
ited nodes while analyzing the neighborhood of nodes.
However, because of the shape of the network, there
is still no redundancy. Of course, while the number of
covered nodes increases, the number of reachable nodes
(with an infinite TTL) slightly decreases.

This feature is very interesting because as node
churnning rate creates holes, a dynamic overlay is never
fully repaired. As our approach benefits from this prop-
erty, this shows that it is very well adapted to dynamic
environments.

6. Conclusion and future work

We introduced a strategy for the search in an un-
structured P2P network based on the unfolding of an

exploration tree. This tree features the evolution of a
collection of walkers that explores the mesh in a paral-
lel way, speeding up the search. We designed a low cost
maintained overlay to support this process. We show
that our approach takes into account the natural het-
erogeneity of the underlying network. The experiments
suggest very promising preliminary results on both sta-
ble and dynamic environments.
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