
Dynamic Self-Organising Map1

Nicolas Rougier∗1 and Yann Boniface2
2

1LORIA/INRIA Nancy - Grand Est Research Centre, 54600 Villers-lès-Nancy, France3
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Abstract6

We present in this paper a variation of the self-organising map algorithm where the original7

time-dependent (learning rate and neighbourhood) learning function is replaced by a time-8

invariant one. This allows for on-line and continuous learning on both static and dynamic9

data distributions. One of the property of the newly proposed algorithm is that it does10

not fit the magnification law and the achieved vector density is not directly proportional11

to the density of the distribution as found in most vector quantisation algorithms. From a12

biological point of view, this algorithm sheds light on cortical plasticity seen as a dynamic13

and tight coupling between the environment and the model.14
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1 Introduction16

Vector quantisation (VQ) refers to the modelling of a probability density function into a discrete17

set of prototype vectors (sometimes called the codebook) such that any point drawn from the18

associated distribution can be associated to a prototype vector. Most VQ algorithms try to19

match the density through the density of their codebook: high density regions of the distribu-20

tion tend to have more associated prototypes than low density region. This generally allows to21

minimise the loss of information (or distortion) as measured by the mean quadratic error. For22

a complete picture, it is to be noted that there also exists some cases where only a partition23

of the space occupied by the data (regardless of their density) is necessary. In this case, one24

wants to achieve a regular quantification a priori of the probability density function. For ex-25

ample, in some classification problems, one wants to achieve a discrimination of data in term of26

classes and thus needs only to draw frontiers between data regardless of their respective density.27

28

Vector quantisation can be achieved using several methods such as variations of the k-means29

method [1], Linde–Buzo–Gray (LBG) algorithm [2] or neural network models such as the self-30

organising map (SOM) [3], neural gas (NG) [4] and growing neural gas (GNG) [5]. Among all31

these methods, the SOM algorithm is certainly the most famous in the field of computational32

neurosciences since it can give a biologically and plausible account on the organisation of recep-33

tive fields in sensory areas where adjacent neurons shares similar representations. The stability34

and the quality of such self-organisation depends heavily on a decreasing learning rate as well as35

a decreasing neighbourhood function. This is quite congruent with the idea of a critical period36

in the early years of development where most sensory or motor properties are acquired and37
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stabilised [6–8]. However, this fails to explain cortical plasticity since we know that the cortex38

has the capacity to re-organise itself in face of lesions or deficits [9–11]. The question is then to39

know to what extent it is possible to have both stable and dynamic representations ?40

41

Quite obviously, this cannot be achieved using SOM-like algorithms that depends on a time42

decreasing learning rate and/or neighbourhood function (SOM, NG, GNG) and, despite the43

huge amount of literature [12, 13] around self-organising maps and Kohonen-typed networks44

(more than 7000 works listed in [14]), there is is surprisingly and comparatively very little work45

dealing with online learning (also referred as incremental or lifelong learning). Furthermore,46

most of these works are based on incremental models, that is, networks that create and/or47

delete nodes as necessary. For example, the modified GNG model [15] is able to follow non-48

stationary distributions by creating nodes like in a regular GNG and deleting them when they49

have a too small utility parameter. Similarly, the evolving self-organising map (ESOM) [16,17]50

is based on an incremental network quite similar to GNG that creates dynamically based on51

the measure of the distance of the winner to the data (but the new node is created at exact52

data point instead of the mid-point as in GNG). Self-organising incremental neural network53

(SOINN) [18] and its enhanced version (ESOINN) [19] are also based on an incremental struc-54

ture where the first version is using a two layers network while the enhanced version proposed55

a single layer network. One noticeable result is the model proposed by [20] which does not56

rely on a incremental structure but is based on the Butterworth decay scheme that does not57

decay parameters to zero. The model works in two phases, an initial phase (approximately ten58

epochs) is used to establish a rough global topology thanks to a very large neighbourhood and59

the second phase uses a small neighbourhood phase to train the network. Unfortunately, the size60

of the neighbourhood in the second phase has to be adapted to the expected density of the data.61

62

Without judging performances of these models, we do not think they give a satisfactory63

answer to our initial question and we propose instead to answer by considering a tight coupling64

between the environment and representations. If the environment is stable, representations65

should remain stable and if the environment suddenly changes, representations must dynam-66

ically adapt themselves and stabilise again onto the new environment. We thus modified the67

original SOM algorithm in order to make its learning rule and neighbourhood independent of68

time. This results in a tight coupling between the environment and the model that ensure both69

stability and plasticity. In next section, we formally describe the dynamic self-organising map70

in the context of vector quantisation and both neural gas and self-organising map are formally71

described in order to underline differences between the three algorithms. The next section re-72

introduces the model from a more behavioural point of view and main experimental results are73

introduced using either low or high dimensional data and offers side-to-side comparison with74

other algorithms. Results concerning dynamic distributions are also introduced in the case of75

dynamic self-organising map in order to illustrate the coupling between the distribution and76

the model. Finally, we discuss the relevancy of such a model in the context of computational77

neurosciences and embodied cognition.78

2 Definitions79

Let us consider a probability density function f(x) on a compact manifold Ω ∈ Rd. A vector80

quantisation (VQ) is a function Φ from Ω to a finite subset of n code words {wi ∈ Rd}1≤i≤n that81

form the codebook. A cluster is defined as Ci
def
= {x ∈ Ω|Φ(x) = wi}, which forms a partition82

2

in
ria

-0
04

95
82

7,
 v

er
si

on
 1

 - 
29

 J
un

 2
01

0



of Ω and the distortion of the VQ is measured by the mean quadratic error83

ξ =
n∑
i=1

∫
Ci

‖x−wi‖2f(x)dx. (2.1)

If the function f is unknown and a finite set {xi} of p non biased observations is available, the84

distortion error may be empirically estimated by85

ξ̂ =
1

p

n∑
i=1

∑
xj∈Ci

‖xj −wi‖2. (2.2)

Neural maps define a special type of vector quantifiers whose most common approaches are the86

Self-Organising Map (SOM) [3], Elastic Net (EN) [21], Neural Gas (NG) [4] and Growing Neural87

Gas (GNG) [22]. In the following, we will use definitions and notations introduced by [23] where88

a neural map is defined as the projection from a manifold Ω ⊂ Rd onto a set N of n neurons89

which is formally written as Φ : Ω→ N . Each neuron i is associated with a code word wi ∈ Rd,90

all of which established the set {wi}i∈N that is referred as the codebook. The mapping from91

Ω to N is a closest-neighbour winner-take-all rule such that any vector v ∈ Ω is mapped to a92

neuron i with the code wv being closest to the actual presented stimulus vector v,93

Φ : v 7→ arg min
i∈N

(‖v −wi‖). (2.3)

The neuron wv is called the winning element and the set Ci = {x ∈ Ω|Φ(x) = wi} is called the94

receptive field of the neuron i. The geometry corresponds to a Voronöı diagram of the space95

with wi as the center.96

2.1 Self-Organising Maps (SOM)97

SOM is a neural map equipped with a structure (usually a hypercube or hexagonal lattice)98

and each element i is assigned a fixed position pi in Rq where q is the dimension of the lattice99

(usually 1 or 2). The learning process is an iterative process between time t = 0 and time100

t = tf ∈ N+ where vectors v ∈ Ω are sequentially presented to the map with respect to the101

probability density function f . For each presented vector v at time t, a winner s ∈ N is102

determined according to equation (2.3). All codes wi from the codebook are shifted towards v103

according to104

∆wi = ε(t) hσ(t, i, s) (v −wi) (2.4)

with hσ(t, i, j) being a neighbourhood function of the form105

hσ(t, i, j) = e
−
‖pi−pj‖

2

2σ(t)2 . (2.5)

where ε(t) ∈ R is the learning rate and σ(t) ∈ R is the width of the neighbourhood defined as106

σ(t) = σi

(
σf
σi

)t/tf
, with ε(t) = εi

(
εf
εi

)t/tf
, (2.6)

while σi and σf are respectively the initial and final neighbourhood width and εi and εf are107

respectively the initial and final learning rate. We usually have σf � σi and εf � εi.108

3

in
ria

-0
04

95
82

7,
 v

er
si

on
 1

 - 
29

 J
un

 2
01

0



2.2 Neural Gas (NG)109

In the case of NG, the learning process is an iterative process between time t = 0 and time110

t = tf ∈ N+ where vectors v ∈ Ω are sequentially presented to the map with respect to the111

probability density function f . For each presented vector v at time t, neurons are ordered112

according to their respective distance to v (closest distances map to lower ranks) and assigned113

a rank ki(v). All codes wi from the codebook are shifted towards v according to114

∆wi = ε(t) hλ(t, i,v) (v −wi) (2.7)

with hλ(t, i,v) being a neighbourhood function of the form:115

hλ(t, i,v) = e
− ki(v)

λ(t) (2.8)

where ε(t) ∈ R is the learning rate and λ(t) ∈ R is the width of the neighbourhood defined as116

λ(t) = λi

(
λf
λi

)t/tf
, with ε(t) = εi

(
εf
εi

)t/tf
, (2.9)

while λi and λf are respectively the initial and final neighbourhood and εi and εf are respectively117

the initial and final learning rate. We usually have λf � λi and εf � εi.118

2.3 Dynamic Self-Organising Map (DSOM)119

DSOM is a neural map equipped with a structure (a hypercube or hexagonal lattice) and each120

neuron i is assigned a fixed position pi in Rq where q is the dimension of the lattice (usually 1 or121

2). The learning process is an iterative process where vectors v ∈ Ω are sequentially presented122

to the map with respect to the probability density function f . For each presented vector v, a123

winner s ∈ N is determined according to equation (2.3). All codes wi from the codebook W124

are shifted towards v according to125

∆wi = ε‖v −wi‖Ω hη(i, s,v) (v −wi) (2.10)

with ε being a constant learning rate and hη(i, s,v) being a neighbourhood function of the form126

hη(i, s,v) = e
− 1
η2
‖pi−ps‖2

‖v−ws‖2Ω (2.11)

where η is the elasticity or plasticity parameter. If v = ws, then hη(i, s,v) = 0127

3 Model128

As we explained in the introduction, the DSOM algorithm is essentially a variation of the SOM129

algorithm where the time dependency has been removed. Regular learning function (2.4) and130

neighbourhood function (2.5) have been respectively replaced by equations (2.10) and (2.11)131

which reflect two main ideas:132

• If a neuron is close enough to the data, there is no need for others to learn anything: the133

winner can represent the data.134

• If there is no neuron close enough to the data, any neuron learns the data according to135

its own distance to the data.136

This draws several consequences on the notion of neighbourhood that is now dynamic and137

leads to a qualitatively different self-organisation that can be controlled using a free elasticity138

parameter.139
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3.1 Dynamic neighbourhood140

Learning rate is modulated using the closeness of the winner to the data. The figure 1 represents141

this learning rate modulation as a function of a data v, a neuron i (with code wi) and a winner142

s (with code ws). If the winner s is very close or equal to v (bottom line on the figure), learning143

rate of any neuron different from the winner s is zero and only the winner actually learns the144

new data. When the winner s is very far from the data (top line), any neuron benefits from145

a large learning rate and learns the new data (modulated by their own distance to the data146

but this extra modulation is not represented on the figure). This notion of closeness of the147

winner to the data is thus critical for the algorithm and modifies considerably both the notion148

of neighbourhood and the final codebook. Most VQ tries to capture data density through the149

density of their codebook as introduced in [23] where authors considers the generalised error150

Eγ =

∫
Ω
‖ws − v‖γP (v)dv (3.1)

and introduces the relation P (w) ∝ ρ(w)α with ρ(w) being the weight vector density and151

α being the magnification exponent or magnification factor. If we consider the intrinsic (or152

Hausdorff) dimension d of the data, the relation between magnification and d is given by α = d
d+γ153

and an ideal VQ achieves a magnification factor of 1. However, DSOM algorithm clearly states154

that if a neuron is already close enough to a presented data, there is no need for the neighbours155

to learn anything and this results in a codebook that does not follow the magnification law as156

illustrated on figure 2 for three very simple two-dimensional non homogeneous distributions.157

Said differently, what is actually mapped by the DSOM is the structure or support of the158

distribution (Ω using notations introduced in section 2) rather than the density.159

3.2 Elasticity160

The DSOM algorithm is not parameter free since we need to control when a neuron may be161

considered to be close enough to a data such that it prevents learning for its neighbours. This162

is the role of the elasticity parameter that modulates the strength of the coupling between163

neurons as shown on figure 3 for a simple two-dimensional normal distribution. This notion164

of elasticity shares some common concepts with the Adaptive Resonance Theory (ART) as165

it has been introduced in [24]. In the ART model, the vigilance parameter has a critical166

influence on learning since it controls the actual partition of the input space: high vigilance167

level produces high number of very precise memories while low vigilance level produces fewer168

and more generic memories. This is very similar to the elasticity parameter: if elasticity is169

high, neurons tend to pack themselves very tightly together (code vectors are relatively close)170

while a lower elasticity allows for looser coupling between neurons. However, in the case of171

ART, the vigilance parameter also governs the number of final prototypes since they can be172

created on demand. In the case of DSOM, the number of prototypes (i.e. neurons) is fixed173

and they are supposed to span the whole input space to ensure convergence. Consequently,174

there exists a relation between the diameter of the support (defined as the maximum distance175

between any two points in Ω), the number of neurons and the elasticity parameter. In the one176

hand, if elasticity is too high, neurons cannot span the whole space and the DSOM algorithm177

does not converge, in the other hand, if elasticity is too low, coupling between neurons is weak178

and may prevent self-organisation to occur: code-vectors are evenly spread on the support but179

they do not respect the neighbourhood relationship anymore. There certainly exists an optimal180

elasticity for a given distribution but we did not yet investigate fully this relationship and we181

do not have formal results. As a preliminary work, we have studied the relationship between182

elasticity and the initial conditions in the one dimensional case using a very simple experimental183
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Figure 1: At each presented data v, the learning rate of each neuron i is modulated according
to both the distance ‖ws − v‖ (which represents the distance between the winner s and the
presented data v) and the distance ‖pi−ps‖ (which represent the distance between code words
of neuron i and neuron s). If the winner s is very close or equal to v (bottom line on the figure),
learning rate of any neuron different from the winner s is zero and only the winner actually
learns the new data. When the winner s is very far from the data (top line), any neuron benefits
from a large learning rate and learns the new data (modulated by their own distance to the
data but this extra modulation is not represented on the figure).
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Figure 2: Three DSOM have been trained on a disc distribution using different density areas.
Left. The density is uniform all over the disc (0.25). Center. Outer ring has higher density
(.4) than inner disc (.1). Right. Outer ring has lower density (.1) than inner disc (.4). Despite
these different density distributions, the three DSOM self-organise onto the support of the
distribution (the whole disc) and does not try to match density.

Figure 3: Three DSOM with respective elasticity equal to 1, 1.5 and 2 have been trained for
20 000 iteration on a normal distribution using a regular grid covering the [0, 1]2 segment as
initialisation. Low elasticity leads to loose coupling between neurons while higher elasticity
results in a tight coupling between neurons.
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Figure 4: Several one-dimensional DSOM with two nodes have been trained for 2500 epochs
using a dataset of two samples (0 and 1) that were presented alternatively. Each point of each
curve represents the error of a network with given elasticity and initial conditions. Point A
represents a case where elasticity is too high and makes the network to oscillate while point B
represents a case where elasticity was low enough to allow the network to properly converge
(towards x = 0 and y = 1).

setup where the dataset is made of only two samples (one at 0 and the other at 1) as explained184

on figure 4. This figure clearly shows a discontinuity in the error when elasticity is varying from185

1.0 to 4.0 but at different places for different initial conditions. The reason comes from the186

dependency of the learning to the distance between the winner node and the presented data.187

When this difference is large, a large correction of weights occur on all networks nodes and this188

is only attenuated by their distance to the winner and the network elasticity. In the presented189

experimental setup, data (0 and 1) were presented alternatively and lead to a convergence190

when elasticity was low enough and to an oscillatory behaviour (not visible on the figure) when191

elasticity was too high. This oscillatory behaviour can be understood most simply when looking192

at scheme A on the figure. Each correction made to the network in one way is immediately193

counter-balanced in the other way when next data is presented. This preliminary study lead194

us to think that the choice of an optimal elasticity not only depends on the size of the network195

and the size of the support but also on the initial conditions. If we were to generalise from the196

simple study above, the initial configuration of the network should cover the entire support as197

much as possible to reduce elasticity dependency.198

3.3 Convergence199

It is well known that the convergence of the Kohonen algorithm has not be proved in the general200

case [25] even though some conditional convergence properties have been established in the one-201

dimensional case [26]. Furthermore, in the case of continuous input, it has been shown that202

there does not exist an associated energy function [27] and in the case of a finite set of training203

patterns, the energy function is highly discontinuous [28]. In the case of the dynamic SOM, the204

proof of convergence is straightforward since we can exhibit at least one case where the DSOM205

does not converge, when the number of nodes is less then the number of data as illustrated on206

figure 5. Most generally, in case where the number of nodes is less than the total number of207

presented data, we can predict that the dynamic SOM will not converge. Moreover, a similar208

problem occurs if the number of nodes is exactly equal to the number of data and if nodes are209

initially distributed uniquely on each data. In such an initial setup, the learning parameter is210
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Figure 5: Due to its dynamic nature, the dynamic SOM cannot converge when the number of
nodes (4 here) is less than the number of data (5 here). NG and SOM can converge on an
approximated solution thanks to both their decaying learning rate and neighborhood and this
explains why three nodes are exactly aligned with their corresponding data while the last node
found a mid-distance position. In the case of DSOM and because of the constant learning rate,
every node is moving at each presented data and thus cannot converge at all.

zero for any presented data and this prevents the network to learn anything at all. We could211

say that it does converge in such a case (network is frozen) but if the initial configuration does212

not correspond to a proper unfolded one, the answer would not be really satisfactory. A proof213

of convergence would then require to identify configurations (initial conditions, size, elasticity,214

learning rate) where the network may have chances to converge but we think this is currently215

out of the scope of this paper.216

4 Experimental results217

We report in this section some experimental results we obtained on different types of distribution218

that aim at illustrating DSOM principles. We do not have yet formal results about convergence219

and/or quality of the codebook. As a consequence, these results do not pretend to prove220

anything and are introduced mainly to illustrate qualitative behaviour of the algorithm.221

Unless stated otherwise, the learning procedure in following examples is:222

1. A distribution is chosen (normal, uniform, etc.)223

2. A discrete sample set of samples is drawn from the distribution224

3. Model learns for n iterations225

4. At each iteration, a sample is picked randomly and uniformly in the discrete sample set226

5. Distortion is measured on whole sample set every 100 iterations using equation (2.2).227

The distortion error is plotted above each graphics to show rate of convergence.228
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Figure 6: Three networks (NG, SOM, DSOM) have been trained for 20 000 iterations on a
dynamic distribution that vary along time: a uniform distribution (1) on [0.0, 0.5] × [0.0, 0.5]
from iterations 0 to 5000, a uniform distribution (2) on [0.5, 1.0]× [0.5, 1.0] from iterations 5000
to 10000, a uniform distribution (3) on [0.0, 0.5]× [0.5, 1.0] from iterations 10000 to 15000 and
a final uniform distribution (4) on [0.5, 1.0]× [0.0, 0.5] from iterations 15000 to 20000.

4.1 Non-stationary distributions229

In order to study dynamic aspect of the DSOM algorithm, three networks (NG, SOM, DSOM)230

have been trained for 20 000 iterations on a dynamic distribution that vary along time: a231

uniform distribution (1) on [0.0, 0.5]× [0.0, 0.5] from iterations 0 to 5000, a uniform distribution232

(2) on [0.5, 1.0]×[0.5, 1.0] from iterations 5000 to 10000, a uniform distribution (3) on [0.0, 0.5]×233

[0.5, 1.0] from iterations 10000 to 15000 and a final uniform distribution (4) on [0.5, 1.0]×[0.0, 0.5]234

from iterations 15000 to 20000. NG shows some difficulties in tracking various changes and the235

final state reflects the history of the distribution: there are many code words within the first236

distribution and very few in the final one. In the case of SOM, the algorithm can almost cope237

with the dynamic nature of the distributions as long as its learning rate and neighbourhood238

function are large enough to move the codebook into the new data region. This is the case for239

distributions (1) to (3) but the final change makes the SOM network unable to map the final240

distribution as expected because of the time dependency of the algorithm. In the case of DSOM,241

the network is able to accurately track each successive distribution with a short transient error242

correlated to the distribution change. We think this behaviour reflects cortical plasticity seen243

as a tight coupling between the model and the environment.244

4.2 High-dimensional distributions245

Until now, we have considered only trivial two-dimensional distributions whose intrinsic dimen-246

sion matched the topography of the network. We now consider higher dimensional distribution247

with unknown intrinsic dimension. Using the standard Lena grey-level image as a source input,248

samples of 8× 8 pixels have been draw uniformly from the image and presented to the different249

networks. 1000 such samples have been drawn and all three networks have learnt during 10250

000 iterations. As illustrated on figure 7, the strong influence of neighbourhood in the case251

of SOM leads to a final codebook where vectors tend to be very homogeneous and composed252

of a mean value with little variations around this mean value. In the case of NG, things are253
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Figure 7: Three networks (NG, SOM, DSOM) have been trained for 20 000 iterations on 1000
samples of size 8× 8 pixels that have been drawn uniformly from the standard lena grey image.

different because of the absence of topographic constraints: NG converges rapidly toward a254

stable solution made of qualitatively different filters, part of them are quite homogeneous like255

in SOM but some others clearly possess a greater internal variety. In the case of DSOM, we can256

also check on the figure a greater variety of filters that are self-organised. The meaning of such257

a greater variety of filters in the case of DSOM is difficult to appreciate. In the one hand, if258

we were to reconstruct the original image using those filters, we would certainly obtain a larger259

distortion error. In the other hand, if those filters were supposed to extract useful information260

from the image, they would certainly give a better account of the structure of the image.261

5 Conclusion262

One of the major problem of most neural map algorithms is the necessity to have a finite set263

of observations to perform adaptive learning starting from a set of initial parameters (learning264

rate, neighbourhood or temperature) at time ti down to a set of final parameters at time tf . In265

the framework of signal processing or data analysis, this may be acceptable as long as we can266

generate a finite set of samples in order to learn it off-line. However, from a more behavioural267

point of view, this is not always possible to have access to a finite set and we must face on-line268

learning. As explained in the introduction, if we consider the existence of a critical period in269

the early years of development, the problem may be solved using decreasing learning rate and270

neighbourhood over an extended period of time. But if this may explain to some extents the271

development of early sensory filters, this fails at explaining cortical plasticity at a more broad272

level. As explained in [29], we know today that “cortical representations are not fixed entities,273

but rather, are dynamic and are continuously modified by experience”. How can we achieve274

both stability and reactivity ?275

276

We proposed to answer this question by introducing a variant of the original SOM learning277

algorithm where time depency has been removed. With no available formal proof of conver-278

gence and based on several experiments in both two-dimensional, high-dimensional cases and279

dynamic cases, we think this new algorithm allows for on-line and continuous learning ensuring280

a tight coupling to the environment. However, the resulting codebook does not fit data den-281
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sity as expected in most VQ algorithms. This could be a serious drawback in the framework282

of signal processing or data compression but may be a desirable property from a behavioural283

point fo view. For example let us consider a picture of a (very) snowy landscape with a small284

tree in the middle. If we want to mimic visual exploration of the scene using eye saccades,285

we can randomly pick small patches within the image and present them to the model. Not286

very surprisingly, the vast majority of these patches would be essentially white (possibly with287

some variations) because the whole image is mainly white. From a pure VQ point of view, the288

codebook would reflect this density by having a vast majority of its representations into the289

white domain and if the tree is small enough, we could even have only white representation290

within the codebook. While this would serve data compression, how much is it relevant in291

general ? We do not have the answer in the general case but we think this must be decided292

explicitely depending on task. DSOM allows such explicit decision since it maps the structure293

of the data rather than their density. This means that in a more general framework, we could294

expect an external structure to attach some kind of motivation for each data that would modu-295

late its learning. If some region of the perceptive space is judged behaviourally relevant, model296

could develop precise representations in this region but if learning is driven solely by data density297

(like in most VQ), such modulation would certainly be strongly attenuated or not possible at all.298

299
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A Notations302

Ω : a compact manifold of Rd where d ∈ N+
303

f(x) : a probability density function (pdf) Ω→ R304

{xi} : a set of p non-biased observations of f .305

N : a set of n elements, n ∈ N+.306

Φ : a function defined from Ω→ N307

wi ∈ Rd : code word associated to an element i of N308

{wi} : codebook associated to N309

Ci : cluster associated to element i such that Ci = {x ∈ Ω|Φ(x) = wi}310

‖x‖ : euclidean norm defined over Rd311

‖x‖Ω : normalised euclidean norm defined over Ω as x 7→ ‖x‖
maxy,z∈Ω(‖y−z‖)312

ξ : distortion error defined as
∑n

i=1

∫
Ci
‖x−wi‖2f(x)dx313

ξ̂ : estimated distortion error defined as 1
p

∑n
i=1

∑
xj∈Ci‖xj −wi‖2314

ε(t) : learning rate at time t315

λ(t) or σ(t) : neighbourhood width at time t316

η : elasticity or plasticity317
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B Online resources318

Python code sources319

http://www.loria.fr/~rougier/DSOM/dsom.tgz320

321

Movie of self-organisation onto a sphere surface322

http://www.loria.fr/~rougier/DSOM/sphere.avi323

324

Movie of self-organisation onto a cube surface325

http://www.loria.fr/~rougier/DSOM/cube.avi326

327

Movie of self-reorganisation from sphere to cube surface328

http://www.loria.fr/~rougier/DSOM/sphere-cube.avi329

330

Movie of self-reorganisation from one sphere to two spheres surface331

http://www.loria.fr/~rougier/DSOM/sphere-spheres.avi332

333
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[14] M. Pöllä, T. Honkela, T. Kohonen, Bibliography of self-organizing map (som) papers:363

2002-2005 addendum, Tech. rep., Information and Computer Science, Helsinki University364

of Technology (2009).365

[15] B. Fritzke, A self-organizing network that can follow non-stationary distributions, in:366

ICANN, 1997, pp. 613–618.367

[16] D. Deng, N. Kasabov, Esom: An algorithm to evolve self-organizing maps from on-line368

data streams, in: Proc. of IJCNN’2000, Vol. VI, Como, Italy, 2000, pp. 3–8.369

[17] D. Deng, N. Kasabov, On-line pattern analysis by evolving self-organizing maps, Neuro-370

computing 51 (2003) 87–103.371

14

in
ria

-0
04

95
82

7,
 v

er
si

on
 1

 - 
29

 J
un

 2
01

0



[18] S. Furao, O. Hasegawa, An incremental network for on-line unsupervised classification and372

topology learning, Neural Networks 19 (1) (2006) 90–106.373

[19] S. Furao, T. Ogura, O. Hasegawa, An enhanced self-organizing incremental neural network374

for online unsupervised learning, Neural Networks 20 (8) (2007) 893–903.375

[20] R. Keith-Magee, Learning and development in kohonen-style self-organising maps, Ph.D.376

thesis, Curtin University of Technology (2001).377

[21] R. Durbin, D. Willshaw, An analogue approach to the travelling salesman problem, Nature378

326 (1987) 689–691.379

[22] B. Fritzke, Fast learning with incremental RBF networks, Neural Processing Letters 1 (1)380

(1994) 2–5.381

[23] T. Villman, J. Claussen, Magnification control in self-organizing maps and neural gas,382

Neural Computation 18 (2006) 446–449.383

[24] S. Grossberg, Competitive learning: From interactive activation to adaptive resonance,384

Cognitive Science 11 (1) (1987) 23–63.385

[25] M. Cottrell, J. F. G. Pagès, Theoretical aspects of the som algorithm, Neurocomputing 21386

(1998) 119–138.387

[26] M. Cottrell, J. Fort, Etude d’un algorithme d’auto-organisation, Annales Institut Henri388
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