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Abstract

In this note, we propose to revisit the approximate stationary Hamilton-Jacobi
equations and analyse the corresponding solutions following certain properties of
the hamiltonian. This enables us to give a characterization of the zero set of the
limiting solution. We also remark that the analysis can be applied for evolution
equations with a time periodic source term.

1 Introduction

In this note, we will be concerned with the viscosity solutions uα of the approximate
Hamilton-Jacobi type equations

αu + H(x, Du) = 0, x ∈ RN (1)

for α > 0 and with the characterization of these solutions and also of the limit of the
sequence (uα)α as α goes to zero. In the above, the hamiltonian H is a continuous
function of its variables and Du denotes the gradient of u.
Now one knows that for α > 0, equation (1) admits a unique viscosity solution under
some suitable hypotheses on the hamiltonian H. We need notably a boundedness
property wrt the space variable. For this sake, we will suppose that

H is periodic in x. (2)

We will also want some regularity of the solutions. This will be achieved by the coer-
civity condition

lim
|p|→∞

H(x, p) = ∞, uniformly in x ∈ RN . (3)

The above is a weak regularity assumption in the sense that no convexity assumption of
H is called for. Under the hypotheses (2) and (3), for every α > 0, equation (1) admits
a unique viscosity solution uα ∈ W 1,∞(RN ). Moreover uα is periodic. We refer the
reader to [5], and [1] for a review of the definition and properties of viscosity solutions
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for Hamilton-Jacobi equations.

The properties of uα will naturally depend on those imposed on the hamiltonian
H. We want to inquire about this dependence. For this, we start by assuming that the
function x 7−→ H(x, 0) has a sign. As a consequence, we have

LEMMA 1. Suppose H(x, 0) ≤ 0 for all x ∈ RN . Then (i) uα ≥ 0 for all α > 0 and
(ii) (uα)α is increasing when α goes to zero.
We thus need to bound (uα) if we want to say anything about its convergence. Notice
also that, as we naturally expect the limit to be a solution of

H(x, Du) = 0, x ∈ RN (4)

we are brought to inquire about the well-posedness of (4) in the class of bounded
continuous solutions. The latter solvability is not to be taken for granted. In fact, one
can show that if the so-called ergodic equation

H(x, Du) = λ, x ∈ RN (5)

is solvable in the class of bounded solutions, then it is so for a unique ergodic constant
λ ∈ R. See for example the paper of Lions, Papanicolaou and Varadhan [6] where the
above equation appears as the cell problem in a homogenization process. This unique
λ, usually denoted by the letter c, is also called the critical value and the corresponding
solutions, critical solutions, see for e.g. [3] and [4]. In fact the hypotheses (2) and (3)
guarantee the solvability of (5) for some λ ∈ R and thus we just demand that the
critical value be equal to zero in our case. Before going further, let us give sufficient
conditions for this to be true.

LEMMA 2. Let H satisfy (2) and (3) with H(x, 0) ≤ 0, x ∈ RN . Assume that there
exists a point x∗ ∈ RN such that H(x∗, p) ≥ 0 for all p ∈ RN . Then

(5) is solvable iff λ = 0.

A typical example will be the standard hamiltonian in classical mechanics which is
given by

H(x, p) = |p|2 − V (x)

with V periodic in x and min V = 0. It is not difficult to see that H verifies the
assumptions of the above lemma so that |Du|2 − V (x) = λ is solvable only for λ = 0.
We thus recover the result observed in [6] where the above example is treated rather
in details. Let us also point out that the critical value c can be rather explicitly
characterized under some convexity assumptions on H. One can see for example the
paper by Fathi-Siconolfi [4], where quasiconvex hamiltonians are considered and the
one by Roquejoffre in a 1-D context [8], where it is notably shown that in some cases,
which includes a strict convexity assumption of H wrt p, we have

c = max
x

min
p

H(x, p).

We now state
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LEMMA 3. Let H(x, 0) ≤ 0 and (4) be solvable. Then

uα −→
α→0

u0 = sup
α>0

uα in C0(RN )

with u0 a periodic solution of (4).
Now we want to make more precise the characterization of the limit u0. Define for this
sake the set

Z = {x ∈ RN : H(x, 0) = 0}. (6)

It is easy to verify that, due to the periodicity condition, Z is a nonempty set. We
then propose

LEMMA 4. Under the hypotheses of Lemma 3, u0 attains its minimum on Z and
vanishes at the minima points.
In fact an analogous property applies for uα. More precisely if x0 is a minimum point
of u0 then it is a minimum point of uα for all α > 0 and uα(x0) = 0. But of course, at
this stage we cannot say that the minima points of u0 and those of the functions uα

coincide, i.e. a point x1 can be a minimum point of a function uα but without being
a minimum point of u0.
Also Lemma 4 tells us that if x0 is a minimum point of u0 then x0 ∈ Z and u0(x0) = 0.
But does the zero set of u0 coincide with Z? We now give our main result which states
that under an additional condition on H, the zero set of u0 coincides with the zero set
of uα for all α > 0 and is equal to the set Z.

THEOREM. Let H satisfy (2) and (3) with H(x, 0) ≤ 0, x ∈ RN . Assume also
that H(x, p) ≥ 0 for all x ∈ Z and p ∈ RN . Then the sequence of solutions uα of (1)
converges to a periodic solution u0 of (4) whose zero set is exactly equal to Z. Moreover
Z coincides also with the zero set of uα for all α > 0.

Note that the assumptions of the above theorem ensure the solvability of (4) via the
Lemma 2. Let us point out that the above type of characterization is known for time
asymtotic limits of Cauchy problems. See for e.g. [7] where the zero set of the limiting
solution was shown to coincide with the maxima points of the initial condition. The
analogy seems to stop here because in the case at present, there is of course no initial
condition. What is important in both cases is some monotonicity character of the
solutions, wrt the time variable for the Cauchy problem and wrt α for the steady case
as stated in Lemma 1.

We proceed in the next section by giving an application of the above result and
notably show how the previous analysis can be profitably used to characterize the
asymptotic limit in the case of evolution equations having a time periodic source term.
And finally the last part will be devoted to the proofs of the lemmas and of the theorem.

2 The time periodic case

We consider therefore the following Hamilton-Jacobi type equation

αu + ∂tu + H(x,Du) = f(t), (x, t) ∈ RN × R (7)
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where f is a continuous T−periodic function in t. One knows that under assumptions
(2) and (3), equation (7) admits a unique T−periodic viscosity solution uα(x, t) in
W 1,∞(RN × R), see for example [2]. We enquire about the limit when α goes to zero.
To simplify the presentation and without loss of generality, we will suppose that the
mean of f over one period is zero.
We proceed by a decoupling of the equation (7). Consider for this sake

αφ + H(x,Dφ) = 0, x ∈ RN (8)

and
αv + vt = f(t), t ∈ R. (9)

The ode (9) admits also a unique periodic solution vα for every α > 0 and which has
the explicit formulation

vα(t) =
e−αt

1− e−αT

∫ T

0

e−α(T−s)f(s)ds +
∫ t

0

e−α(t−s)f(s)ds.

It is then not difficult to verify that

vα(t) −→
α→0

F (t) + C∗ for all t ∈ R

where

F (t) =
∫ t

0

f(s)ds and the constant C∗ =
1
T

∫ T

0

sf(s)ds.

Now if we denote by φα(x) the solution of (8), then it is immediate to verify that
uα(x, t) = φα(x) + vα(t) is the solution of (7). Therefore the study of the limit, when
α goes to zero, of the time periodic solution uα of (7) is reduced to that of the solution
φα of the stationary equation (9). In fact, the limiting solution, which is time periodic
via F, can thus be completely explicited as we have

uα(x, t) −→
α→0

φ0(x) + F (t) + C∗ uniformly in x ∈ RN and t ∈ R,

with φ0 as previously characterized following the assumptions on the hamiltonian H.

3 Proof of the Theorem

We start by proving the preliminary lemmas.

3.1 Proof of Lemma 1

Observe that as H(x, 0) ≤ 0, 0 is a subsolution of (1). By comparison results, we then
have uα ≥ 0. Next take 0 < α ≤ β and notice that uα is a supersolution of

βu(x) + H(x,Du) = 0, x ∈ RN ,

since we know that (β − α)uα ≥ 0. Again by comparison results, we have uα ≥ uβ .
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3.2 Proof of Lemma 3

We now suppose that (4) is solvable and let φ be a continuous bounded solution. Then
observe that φ + ‖φ‖∞ is a supersolution of (1) so that we have

0 ≤ uα ≤ φ + ‖φ‖∞

i.e. (uα)α is bounded. Considering the monotonicity of the sequence (uα)α, we then
have

uα(x) −→
α→0

u0(x) = sup
α>0

uα(x), x ∈ RN .

In fact, due to the coercivity condition (3), (uα)α is uniformly bounded in W 1,∞(RN ) so
that the above convergence is uniform, at least locally. The stability result of viscosity
solutions then yields that u0 is a viscosity solution of (4). The periodicity of u0 results
from that of each uα and we are done with the proof of Lemma 3.

3.3 Proof of Lemma 4

To prove the lemma, first observe that the set Z = {x ∈ RN : H(x, 0) = 0} is
non empty. Indeed at a minimum point x0 of u0 (its existence is guaranteed by the
periodicity of u0) we have H(x0, 0) ≥ 0 which together with the assumption H(x, 0) ≤ 0
leads to H(x0, 0) = 0, i.e. x0 ∈ Z. Note at this stage that H just bounded (instead
of being periodic) would not have sufficed. It remains to show that u0(x0) = 0. We
already know that uα ≥ 0 for all α > 0 and thus u0(x0) ≥ 0. Now one can easily
verify that u0 − u0(x0) is a supersolution of (1). By comparison result, we then have
u0 − u0(x0) ≥ uα for all α > 0. A passage to the limit then leads to u0(x0) ≤ 0 and
thus u0(x0) = 0. As pointed out before, since for all α we have 0 ≤ uα ≤ u0, x0 is also
a minimum point for uα for all α > 0 and uα(x0) = 0.

3.4 Proof of the theorem

For the time being we know that if u0 vanishes, it does so at a point of Z. Proving
the theorem comes therefore to verify that if x0 is a point of Z then u0(x0) = 0 i.e.
the zero set of u0 coincides exactly with Z. Let then x0 ∈ Z and let us show that
uα(x0) = 0,∀α > 0. We know that uα(x0) ≥ 0. Suppose uα(x0) > 0, for some α > 0.
As uα is bounded and lipschitz continuous, it is almost everywhere differentiable and
therefore one can find a sequence (xn)n such that

xn −→
n→∞

x0 and Duα(xn) exists ∀n.

Set pα
n = Duα(xn). Then for all n, there holds

αuα(xn) + H(xn, pα
n) = 0 (10)

Due to the boundedness of uα and the coercivity condition (3), the sequence (pα
n)n is

bounded so that it converges (up to a subsequence) to some pα ∈ RN . A passage to
the limit in (10) then leads to

αuα(x0) + H(x0, p
α) = 0.
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Now this is not possible because uα(x0) > 0 and by assumption H(x0, p
α) ≥ 0. We

thus have uα(x0) = 0 and so will be u0(x0) by passing to the limit in α.

Now it remains to prove the Lemma 2 and we will be done.

3.5 Proof of Lemma 2

We know by [6] that there exists a unique λ for which 5 is solvable. Therefore, to prove
the lemma, it suffices to prove that λ = 0. Consider for this sake, for some α > 0, the
unique solution uα of the equation

αuα + H(x, Duα) = λ, x ∈ RN . (11)

Let x0 be a global minimum point of uα. By testing (11) with 0, one has αuα(x0) ≥ λ
and thus

αuα(x) ≥ λ, ∀x ∈ RN . (12)

Consider now the point x∗ such that H(x∗, p) ≥ 0 for all p. As previously, we can find
a sequence (xn)n which has x∗ as limit and such that

αuα(xn) + H(xn, Duα(xn)) = λ

holds for all n. And thus, at the limit n goes to infinity, we recover

αuα(x∗) + H(x∗, pα) = λ,

which leads to αuα(x∗) ≤ λ, which together with (12) gives αuα(x∗) = λ. Now as α
was taken arbitrarily and (uα)α bounded, by letting α go to zero, we obtain λ = 0.
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