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Abstract

This paper describes the ideas and methodologies that we used in the Yahoo learning-to-
rank challenge1. Our technique is essentially pointwise with a listwise touch at the last
combination step. The main ingredients of our approach are 1) preprocessing (querywise
normalization) 2) multi-class AdaBoost.MH 3) regression calibration, and 4) an expo-
nentially weighted forecaster for model combination. In post-challenge analysis we found
that preprocessing and training AdaBoost with a wide variety of hyperparameters im-
proved individual models significantly, the final listwise ensemble step was crucial, whereas
calibration helped only in creating diversity.
Keywords: AdaBoost, AdaBoost.MH, ranking, regression calibration, exponentially
weighted forecaster

1. Introduction

Ranking systems are traditionally classified into three distinct categories. In the simplest
pointwise approach, the instances are first assigned a relevance score using classical regres-
sion or classification techniques, and then ranked by posterior scores obtained using the
trained model. In the pairwise approach, the order of pairs of instances is treated as a
binary label and learned by a classification method (Freund et al., 2003). Finally, in the
most complex listwise approach, the fully ranked lists are learned by a tailor-made learning
method which aims to optimize a ranking-specific evaluation metric (such as Normalized
Discounted Cumulative Gain (NDCG) or the Expected Reciprocal Rank (ERR)) during the

1. Our team name was LAL.

c©2011 R. Busa-Fekete, B. Kégl, T. Éltető, G. Szarvas.
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learning process (Valizadegan et al., 2009). Although it seems to be the general consensus
in the recent learning-to-rank literature (Cao et al., 2007; Valizadegan et al., 2009) that
pairwise and listwise techniques outperform the pointwise approach, the results of the con-
test (Table 1) paint a different picture. The winners of the two tracks did use pairwise and
listwise techniques, but all the other contestants (who disseminated their methods), includ-
ing us, followed the pointwise approach and achieved competitive results. We did try some
pairwise-flavored ideas in some of the steps (e.g., in the calibration step) with no success.
On the other hand, a computationally cheap listwise model-combination post-processing
did improve our results significantly. So, it seems to us that the jury is out. One possible
narrative is that if you have enough computational power and you master your listwise or
pairwise techniques, they may be the best choice, but simple, robust, and computationally
cheaper pointwise approaches work practically as well, especially on large data.

Rank Track 1 Track 2
1 Ca3Si2O7 0 MN-U 0
2 catonakeyboardinspace 748 arizona 307
3 MLG 1651 Joker 363
4 Joker 1828 ULG-PG 1790
5 AG 2448 VeryGoodSignal 1844
6 LAL 2856 ya 1983
7 HotStepper 3946 WashU 2292
8 WashU 4307 catonakeyboardinspace 2329
9 ya 4346 CLTeam 2578
10 ULG-PG 4373 yareg 2956
11 yareg 5562 LAL 2991
12 MN-U 5857 lily 3510

Table 1: For the score we calculated the ERR difference from the winning team’s score
in each track and multiplied it by 106. Teams with red, green, and blue back-
grounds used pointwise, pairwise, and listwise approaches, respectively. We have
no information on uncolored teams. The name of our team was LAL.

We also shared another important feature of using an ensemble method with most of
the other contestants. In fact, we followed a double ensemble approach in the sense that
our core technique was based on AdaBoost (Freund and Schapire, 1997), but at the
end we used another ensemble technique to combine models trained with different hyper-
parameters. In Section 2 we present our four steps of preprocessing, training, calibration,
and model selection/combination. Since most of the contestants used similar techniques,
here we highlight some of the elements of our approach that seem to be unique.

• Although AdaBoost has a pairwise version (Freund et al., 2003), we used it in a clas-
sical pointwise manner. Moreover, even though the five-valued relevance score would
have suggested to use a regression technique, we trained AdaBoost.MH (Schapire
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and Singer, 1999) in a multi-class classification setup, and obtained a real valued score
by regression-calibration.

• We did not validate any of the hyperparameters. We trained a large number of models
and used a simple exponential weighting technique to combine them into a final meta-
ensemble.

• We used decision products (Kégl and Busa-Fekete, 2009) together with the more tra-
ditional decision trees.

• We did querywise standardization and whitening to normalize the raw features (sim-
ilarly to the catonakeyboardinspace team).

Among the plethora of ranking algorithms, our approach is the closest to the McRank
algorithm (Li et al., 2007). We both use a multi-class learning algorithm at the core (they
use gradient boosting whereas we apply AdaBoost.MH). The novelty in our approach is
that we use product base classifiers beside tree base classifiers and apply several different
calibration approaches. Both elements add more diversity to our models that we exploit by
a final meta-ensemble technique.

The outline of the paper is as follows. In Section 2 we describe the main ingredients of
our approach. In Section 3 we present post-contest analysis. To gain more insight on what
worked and what did not, we made an attempt to uncouple some of the elements of the
algorithm and analyzed them individually in terms of their effect on the final performance.

2. Calibrated multi-class AdaBoost.MH with exponentially weighted
model combination

2.1 Preprocessing

Feature transformations. The contest organizers used their in-house feature extractor
to provide real-valued features for the query-document pairs. We augmented this feature set
in two different ways. First, we standardized each feature to have mean zero and standard
deviation one, and second, we carried out principal component analysis and whitening
to get rid of possible correlations between the features. It is important to note that both
transformations were done querywise.2 The intuition behind querywise normalization is that
features used in a learning-to-rank task often represent some kind of count3. Some of these
counts are not comparable in an absolute way: for example, the number of times a query
term occurs in a document is not comparable between common query terms (e.g., “dog”)
and rare query terms (e.g., “Adaboost”). Our bandit-based boosting technique (Busa-
Fekete and Kégl, 2010) is able to handle a large set of possibly noisy features, so there was
no computational reason not to use all features. Eliminating the original features would
have also had a detrimental effect since probably not all the features were count-based.
At the same time, we were curious about which normalization would be the best in terms

2. In fact, global standardization would make no sense since we used tree-like predictors, insensitive to any
monotonic transformation of the features.

3. For instance, the number of occurrences of the term in the abstract of the document; see the feature list
of the LETOR project at http://research.microsoft.com/en-us/projects/mslr/feature.aspx
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of performance, so we created three distinct data sets: 1) only the original features, 2)
the original features augmented with standardized features, and 3) the original features
augmented with whitened features.4

Label groupings. Each query-document pair was assigned an integer relevance label
between 0 and 4. The most natural pointwise approach is to predict this label in a regression
setup, however, we decided to cast the problem as multi-class classification – mainly since
our boosting implementation is designed for this task – and applied regression calibration
as a post-processing step (Section 2.3).

Annotating relevance is an arduous and sometimes subjective task, so the relevance
labels provided by humans can have considerable label noise. Deciding whether a document
is relevant or not is a relatively easy task, so the label noise mainly affects the integer-valued
degree of relevance. Inconsistency in the labeling usually materializes as a random upward or
downward shift in the relevance levels. As a result, the borders between adjacent relevance
levels might be blurred. In practice, this kind of noise can be estimated and resolved
using inter-annotator agreement tests. Since we had no access to multiple annotations or
to the actual annotation protocol, we decided to use multiple label groupings (Table 2)
in the multi-class classification setup. To control random shift noise, we decided to group
neighboring relevance labels in various ways, hoping that a more accurate model can be
learned in this way. An additional benefit of this setup was that it increased the diversity of
the models which we could later exploit by our model combination approach (Section 2.4).

New labels: 1 2 3 4 5
Original labels: {0} {1} {2} {3} {4}
Binary labels: {0} {1, 2, 3, 4}
Three classes (1): {0} {1, 2} {3, 4}
Three classes (2): {0} {1, 2, 3} {4}
Four classes: {0} {1, 2} {3} {4}

Table 2: The five different label groupings we used.

The classical way to select the best training set and the best label grouping would
be to handle these selection variables as hyperparameters, and validate them on hold-out
validation sets. There is increasing evidence5 that the paradigm of selecting one set of
hyperparameters is suboptimal to keeping all models and combining them in an ensemble
setup, so we trained models using all fifteen combinations of training sets and label group-
ings, and use an ensemble technique (Section 2.4) to find the best way to weight these
models to obtain a final ranking.

2.2 Training AdaBoost.MH

Hyperparameters. Our basic modeling tool was multi-class AdaBoost.MH of Schapire
and Singer (1999). We used our open source implementation available at multiboost.org.6

4. If the eigenvalue calculation failed, we used regularization with a value of 0.001.
5. See for example this volume or entries in last year’s KDD-Cup (Dror et al., 2009).
6. For the details of the implementation and for the undefined notations see (Kégl and Busa-Fekete, 2009)

and (Busa-Fekete and Kégl, 2010).
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We used decision trees and decision products (Kégl and Busa-Fekete, 2009) as base learners.
The number of tree leaves, the number of product terms, and the number of boosting
iterations ranged from 8 to 25, from 2 to 6, and from 150000 to 106, respectively. Instead
of choosing the best hyperparameters, we only did a rough pre-validation to have an idea
about the range of the optimal hyperparameters, then we let the meta-ensemble technique
(Section 2.4) to find the best way to weight the different models.

Initial weights. Motivated by a one-against-all scheme for multi-class classification, the
standard way to weight the `th label of the ith instance in AdaBoost.MH is

w
(1)
i,` =

{
1/(2n) if `i = `,

1/(2n(K − 1)) otherwise,

where `i is the correct (grouped) label of the ith query-document pair, n is the number of
training instances, and K is the number of classes (grouped labels).7 Instead of this setup,
we further up-weighted relevant instances exponentially proportionally to their relevance,
so, for example, an instance xi with relevance `i = 4 was twice as important in the global
training cost than an instance with relevance `i = 3, and four times as important than an
instance with relevance `i = 2. Formally, the initial (unnormalized) weight of `th label of
the ith instance is

w
(1)
i,` =

{
2`i if `i = `,

2`i/(K − 1) otherwise.

The weights are then normalized to sum to 1. This weighting scheme was motivated by the
evaluation metric: the weight of an instance in the ERR score is exponentially proportional
to the relevance label of the instance itself.

Bandit boosting. Since the training datasets were prohibitively large to enable full fea-
ture search in each boosting iteration, we used bandit boosting (Busa-Fekete and Kégl,
2010), an accelerated version of AdaBoost.MH.

2.3 Calibration of the output of AdaBoost.MH.

AdaBoost.MH outputs a strong classifier f (T )(x) =
∑T

t=1 α(t)h(t)(x), where h(t)(x) is a
{−1,+1}K-valued base classifier (K is number of classes), and α(t) is its weight. In classical
multi-class classification, the elements of f (T )(x) =

(
f

(T )
1 (x), . . . , f (T )

K (x)
)

are treated as
posterior scores corresponding to the labels, and the predicted label is

̂̀(x) = arg max
`=1,...,K

f
(T )
` (x).

In case the labels are ordered, the simplest way to obtain a real-valued prediction is by first
normalizing the output vector into [0, 1]K using

f ′(T )(x) =
1
2

[
1 +

f (T )(x)∑T
t=1 α(t)

]
,

7. For a thorough explanation, see (2) in (Kégl and Busa-Fekete, 2009) or Section 7.2 in (Schapire and
Singer, 1999).
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computing posterior probabilities

f̃ (T )(x) =
f ′(T )(x)∑K

`=1 f ′
(T )
` (x)

,

and averaging the labels under the posterior to obtain a relevance estimate

r̂(x) =
K∑

`=1

`f̃
(T )
` (x). (1)

It is known that output calibration can improve the performance of AdaBoost, especially
when posterior scores need to be interpreted as probabilities (Niculescu-Mizil and Caruana,
2005). Thus, we decided to learn r̂ : RK → R using the raw K-dimensional output to obtain

r̂(x) = g
(
f (T )(x)

)
.

The output of the calibration function g is the scoring function using the ranking terminol-
ogy (Clémençon and Vayatis, 2009), thus the ranking task is solved by ordering the objects
of interest based on r̂(x).

The calibration was carried out by minimizing the classical squared error on a small
validation set taken from the training data. We used five different regression methods:
Gaussian process regression, logistic regression, linear regression, neural network regression,
and polynomial regression of degree between 2 and 5. As for other model parameters, we let
the final meta-ensemble technique (Section 2.4) to find the best way to weight the obtained
models in the final ranking.

2.4 Ensemble of ensembles.

The output of the first three steps is a set of relevance predictions {r̂j(x)}N
j=1 where N is in

the order of thousands. Each relevance prediction can be used as a scoring function to rank
the query-document pairs xi. Until this point it is a pure pointwise approach. To fine-tune
the algorithm and to make use of the diversity of our models, we decided to combine them
using an exponentially weighted forecaster (Cesa-Bianchi and Lugosi, 2006). The reason of
using this particular weighting scheme is twofold. First, it is simple and computationally
efficient to tune which is important when we have a large number of models. Second,
theoretical guarantees over the cumulative regret of a mixture of experts on individual
(model-less) sequences (Cesa-Bianchi and Lugosi, 2006) makes the technique robust against
overfitting the validation set.

The weights of the models were tuned on the ERR score of the ranking, giving a slight
listwise touch to our approach. Formally, the final scoring function was obtained by

̂̂r(x) =
∑

j:ωj>ωmin

exp(cωj)r̂j(x), (2)

where ωj is the ERR score of the ranking obtained using r̂j(x) as a scoring function. The
parameter c controls the dependence of the weights on the ERR values, and the ωmin

parameter determines the number of models participating in the ensemble. Both these
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parameters were tuned on the official validation set, and set to ωmin = 0.4 and c = 30 on
Track 1, and ωmin = 0.4 and c = 10 on Track 2.

During the contest we also tried out a few commonly used pairwise rank aggrega-
tion methods, i.e., Borda’s method (Borda, 1781) and Markov Chain Rank Aggregation
(MCRA) (Dwork et al., 2001). We calculated the transition matrix in MCRA in many
ways. First, we estimated the transitions based on the ratio of Borda counts. Then, we
tried to model the transitions using neural networks trained on a dataset where the feature
vectors were the pairs of raw output vectors f (T )(x) of AdaBoost.MH and the labels were
the pairwise order of the elements. These techniques worked significantly worse than the
combination of pointwise regression calibration and exponential weighting, so we did not
use them in the experiments.

3. Experiments

Our technique came in 6th on the larger and so computationally more challenging Track 1,
and 11th on Track 2. It is surprising that the Track 1 was more popular (Chapelle and
Chang, 2010), since the number of teams was higher and there were almost four times
more submissions in Track 1 than in Track 2, and thus the results were closer to each
other. Our ERR score was within 0.003 to the winner in both tracks (Table 1), although
the characteristics of the two tasks were quite different. This proves the robustness of our
approach.

In the rest of this section, we examine what worked and to what extent certain algorith-
mic choices affected the final results. We use the same analysis methodology in Figures 1–3:
each point in the scatterplot is one run of the algorithm with everything unchanged except
for the (binary) decision we are examining. By looking at the cloud of points, one can assess
qualitatively the effect of the algorithmic decision on the performance of the algorithm.

Figure 1 shows the effects of query-wise standardization. Most of the points lie above
the diagonal line indicating that this preprocessing step did improve the individual models.
The whitening transformation turned out to be equally effective (results are similar so not
shown).

Figures 2 and 3 show the effect of label groupings. The Three classes (1) model in
Table 2) seems to be definitely better than keeping the original five labels, whereas the
binary classification setup did not work. It is also interesting that the different calibration
techniques affected the ERR score much more on the five-label sets than on the two- or
three-label sets.

Figures 1–3 all show that individually, models using boosted decision trees are slightly
better than models using boosted decision products. On the other hand, when we combined
only product-based models and only tree-based models, products had a slight edge (see
Table 3). Most importantly, the best results came when we combined both types of models,
indicating that they capture different aspects of the data.

In Figures 1–3, we encircled the uncalibrated models. In general, calibration did not
improve individual models much, especially on Track 2. This is somewhat at odds with
the findings of Niculescu-Mizil and Caruana (2005), but note that the error functionals
that Niculescu-Mizil and Caruana (2005) used may be more sensitive to miscalibration
of individual class-posteriors than the estimate of expected relevance (1). Note also that
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Figure 1: The scatterplot of ERR scores calculated by using only the original feature set (X-
axis) versus ERR scores calculated by using the original feature set augmented
with standardized features (Y-axis). The rectangles indicate the performance
of calibrated models. The horizontal and vertical “Best model” magenta lines
denote the performance of our best combined model (official submission). The
points corresponding to the uncalibrated scoring function (1) are encircled.
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Figure 2: Comparison of performances obtained by using label groupings vs. original labels.
The notation is the same as in Figure 1

even though the individual models were not much improved by calibration, using different
calibration methods did generate diversity, and so implicitly they did improve the final
model. Using only uncalibrated models in the pool would have generated significantly
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Figure 3: Comparison of performances obtained by using binary labels and original labels.
The notation is the same as in Figure 1

Dataset Uncalibrated Product Tree All

Valid Test Valid Test Valid Test Valid Test
Track 1 0.4482 0.4564 0.4582 0.4651 0.4555 0.4639 0.4580 0.4657
Track 2 0.4398 0.4502 0.4488 0.4599 0.4488 0.4591 0.4501 0.4605

Table 3: The ERR scores of the best combined models using only uncalibrated models, only
decision products, only decision trees, and all models. Our best performance is
shown on the rightmost column where we combined all boosted models.

worse results (Table 3). It is also apparent that there is no effect of the calibration on
the binary models (Figure 3). This is in fact what we expected since in the binary case
the ordering is strictly determined by the raw output f

(T )
1 (x) = −f

(T )
2 (x), and, unless the

calibrating function g is non-monotonic, this order cannot be changed by the calibration.

The two hyperparameters of the last exponential forecaster step, the base parameter
c and the threshold parameter ωmin were validated manually on the official validation set
during the contest. In post-challenge experiments we executed the same grid search on the
test set. Figure 4 indicates that the optimal parameters almost coincide on the two sets, so
we successfully avoided overfitting. The difference between the tracks is also interesting to
note. On Track 1, the ERR score was very insensitive to the threshold ωmin, which means
that including bad models did not have a detrimental effect. The base c was relatively
large, so these relatively bad models were effectively down-weighted. On the other hand,
Track 2 preferred a more uniform weighting among good models, so the threshold had a
more important role of eliminating bad models from the pool.
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(a) Track 1, validation set
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Figure 4: The dependence of the final combined ERR score on the base parameter c and
on the threshold parameter ωmin.

3.1 Time and memory requirements

The training time for a single model was about two weeks on Track 1 (300000 iterations)
and about ten days for Track 2 (106 iterations). The running time of one iteration is not
affected by the number of features using bandit-based AdaBoost.MH (Busa-Fekete and
Kégl, 2010). The memory requirements were about 6 GB per model. We ran our code
parallel on 10 CPUs, so we had about 40 full runs of AdaBoost.MH. The calibration and
the combination steps required virtually no time.

4. Conclusions

Our main objective in participating in the contest was to test our recently developed fast
boosting algorithm (Busa-Fekete and Kégl, 2010) on a large, real-world problem. Having
had little prior experience in ranking, and given that our AdaBoost.MH implementation
is designed for multi-class classification, we naturally settled in a pointwise approach with
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Ranking by calibrated AdaBoost

regression calibration. Learning from previous challenges (e.g., (Dror et al., 2009)), we de-
cided to use a model combination method rather than optimizing the individual performance
in terms of the hyperparameters. The flexible exponential forecaster approach allowed us
to use the official ERR score in this final step, giving a listwise flavor to our technique. In
post-challenge analysis we found that this listwise ensemble step was a key to our success.
The querywise normalization idea and good individual performance of AdaBoost.MH was
also important, whereas regression calibration only helped in creating more diversity.
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