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Abstract. We consider the nonparametric kernel estimation of the conditional cumula-
tive distribution function given a functional covariate. Given the bias-variance trade-o�
of the risk, we �rst propose a totally data-driven bandwidth selection device in the spirit
of the recent Godenshluger-Lepski method and of model selection tools. The resulting
estimator is shown to be adaptive and minimax optimal: we establish nonasymptotic
risk bounds and compute rates of convergence under various assumptions on the decay
of the small ball probability of the functional variable. We also prove lower bounds.
Both pointwise and integrated criterion are considered. Finally, the choice of the norm
or semi-norm involved in the de�nition of the estimator is also discussed, as well as the
projection of the data on �nite dimensional subspaces.
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1. Introduction

The aim of Functional Data Analysis (FDA) is to analyse information on curves or
functions. This �eld has attracted a lot of attention over the past decades, thanks to
its numerous applications. We refer to Ramsay and Silverman (2005); Ferraty and Vieu
(2006) for case studies and Ferraty and Romain (2011) for a recent overview. Here, we
are interested in explaining the relationship between a functional random variable X and
a scalar quantity Y . We suppose that the random variable X takes values in a separable
in�nite-dimensional Hilbert space (H, 〈·, ·〉, ‖ · ‖). The latter can be L2(I), the set of
squared-integrable functions on a subset I of R, or a Sobolev space. The link between the
predictor X and the response Y is classically described by regression analysis. However,
this can also be achieved by estimating the entire conditional distribution of the variable Y
givenX. The target function we want to recover is the conditional cumulative distribution
function (conditional c.d.f. in the sequel) of Y given X de�ned by

(1) F x(y) := P(Y ≤ y|X = x), (x, y) ∈ H× R.

To estimate it, we have access to a data sample {(Xi, Yi), i = 1, ..., n} distributed like the
couple (X, Y ).
In the sequel, we consider kernel estimators similar to the ones de�ned by Ferraty et al.

(2006, 2010), for which we provide a detailed non-asymptotic adaptive and minimax study.
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2 G. CHAGNY AND A. ROCHE

The pioneering works on conditional distribution when the covariate is functional are
the one of Ferraty and Vieu (2002); Ferraty et al. (2006), completed by Ferraty et al.
(2010). Kernel estimators, which depend on a smoothness parameter, the so-called band-
width, are built to address several estimation problems: regression function, conditional
c.d.f., conditional density and its derivatives, conditional hazard rate, conditional mode
and quantiles. A lot of research has then been carried out to extend or adapt the previous
procedures to various statistical models. For instance, the estimation of the regression
function is studied by Rachdi and Vieu (2007); Ferraty et al. (2007); Dabo-Niang and
Rhomari (2009). The case of dependent data is the subject of the works of Masry (2005);
Aspirot et al. (2009); Laib and Louani (2010); Dabo-Niang et al. (2012) under several
assumptions (α-mixing, ergodic or non-stationary processes). Demongeot et al. (2010)
consider local-linear estimators of the conditional density and conditional mode. Robust
versions of the previous strategies are proposed by Crambes et al. (2008); Azzedine et al.
(2008); Gheriballah et al. (2013). Gijbels et al. (2012) investigate the estimation of the
dependence between two variables conditionally to a functional covariate through copula
modelling. Most of this literature focuses on asymptotic results (almost-complete conver-
gence, asymptotic normality,...). Bias-variance decompositions are provided. However,
only two papers tackle the problem of bandwidth selection: Ferraty and Vieu (2002)
and Rachdi and Vieu (2007) suggest cross-validation procedures which are shown to be
asymptotically optimal in regression contexts.
To our knowledge, adaptive estimation procedures in a nonasymptotic framework can

only be found in conditional distribution estimation with real or multivariate covariates.
We refer to Brunel et al. (2010) and Plancade (2013) for c.d.f estimation with a real
covariate and to Akakpo and Lacour (2011) and references therein for conditional den-
sity estimation with a multivariate covariate. Nevertheless, these works are based on
projection estimators which cannot be extended directly to a functional framework in a
non-parametric setting.

In keeping with the studies of functional conditional distribution, we investigate the
properties of the nonparametric Nadaraya-Watson-type estimators of Ferraty et al. (2006),
but with a new perspective, only used so far for real and multivariate covariates. To
estimate the c.d.f. de�ned by (1), we consider

(2) F̂ x
h (y) :=

n∑
i=1

W
(i)
h (x)1{Yi≤y} where W

(i)
h (x) :=

Kh(d(Xi, x))∑n
j=1Kh(d(Xj, x))

,

for any (x, y) ∈ H × R, with d a general semi-metric on the Hilbert space H, Kh : t 7→
K(t/h)/h, for K a kernel function (that is

∫
RK(t)dt = 1) and h a parameter to be chosen,

the so-called bandwidth. We focus on the metric associated to the norm of the Hilbert
space

(3) d(x, x′) := ‖x− x′‖, x, x′ ∈ H.
The main goal is to de�ne a fully data-driven selection rule for the bandwidth h, which
satis�es nonasymptotic adaptive results. The criterion we propose draws inspiration from
both the so-called Lepski method (see the recent paper of Goldenshluger and Lepski
2011) and model selection tools. We show that the bias-variance trade-o� is realized and
that the selected estimator automatically adapts to the unknown regularity of the target
function. As usual, the variance term of the risk depends on asymptotic properties of the
small ball probability ϕ(h) = P(d(X, 0) ≤ h) when h → 0. The behaviour of the small
ball probability is a di�cult problem which is still the subject of research studies. We
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 3

compute precise rates for our estimator under several assumptions on the distribution of
the process X, ful�lled e.g. by a large class of Gaussian processes. Consistently with
the previous works, the rates we obtain are quite slow. However, we prove that they are
minimax optimal. The results are also shown to be coherent with lower bounds computed
by Mas (2012) for the estimation of the regression function.
To bypass the di�culties inherent to the in�nite dimensional nature of the data, some

researchers (see e.g. Masry 2005; Ferraty et al. 2006; Geenens 2011) have suggested
replacing the norm ‖ · ‖ in the de�nition of the estimator (2) by a semi-norm. The case of
projection semi-norms has received particular attention. In that case the estimator can
be rede�ned this way

(4) F̂ x
h,p(y) :=

n∑
i=1

W
(i)
h,p(x)1{Yi≤y} with W

(i)
h,p(x) :=

Kh(dp(Xi, x))∑n
j=1Kh(dp(Xj, x))

,

where d2
p(x, x

′) :=
∑p

j=1〈x − x′, ej〉2 and (ej)j≥1 is a basis of H. De�ning this estimator
amounts to project the data into a p-dimensional space. We show that it does not im-
prove the convergence rates of the Nadaraya-Watson estimator since the lower bounds
are still valid. In order to understand what is going on, we brie�y study a bias-variance
decomposition of the risk of this estimator.

The paper is organized as follows: in Section 2, we provide a bias-variance decomposi-
tion of the estimator (2) in terms of two criteria, a pointwise and an integrated risk. The
bandwidth h is shown to in�uence signi�cantly the quality of estimation. In Section 3, we
de�ne a bandwidth selection criterion achieving the best bias-variance trade-o�. Rates of
convergence of the resulting estimator are computed in Section 4. To ensure that these
rates are optimal, we also prove lower bounds. Properties of the estimator de�ned with a
projection semi-metric are investigated in Section 5. Finally, the proofs are gathered in
Section 6.

2. Integrated and pointwise risk of an estimator with fixed bandwidth

2.1. Considered risks. We consider two types of risks for the estimation of (x, y) 7→ F x(y).
Both are mean integrated squared error with respect to the response variable y.
The �rst criterion is a pointwise risk in x, integrated in y:

E
[
‖F̂ x0

h − F
x0‖2

D

]
,

for a �xed x0 ∈ H, D a compact subset of R and

‖f‖2
D :=

∫
D

f(t)2dt,

keeping in mind that the Hilbert norm of H is ‖.‖. We also denote by |D| :=
∫
D
dt the

Lebesgue measure of the set D.
Next, we introduce a second criterion, which is an integrated risk with respect to the

product of the Lebesgue measure on R and the probability measure PX of X, de�ned by

(5) E
[
‖F̂X′

h − FX′‖2
D1B(X ′)

]
=

∫
D

∫
B

(
F̂ x
h (y)− F x(y)

)2

dydPX(x),

where X ′ is a copy of X independent of the data sample and B is a subset of H.
The motivation for studying the two risks is twofold. First, in practice, we can either

be interested in the estimation of FXn+1 where Xn+1 is a copy of X independent of the
sample or we can be interested in estimating the c.d.f conditionally to X = x0 where
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4 G. CHAGNY AND A. ROCHE

x0 is a point chosen in advance. Such an approach is rather classical in functional linear
regression (Ramsay and Silverman, 2005; Cardot et al., 1999) where either prediction error
on random curves (Crambes et al., 2009) or prediction error over a �xed curve (Cai and
Hall, 2006) are considered. Second, integrated risks have been relatively unexplored in
non-parametric functional data analysis. Indeed, there is no measure universally accepted
as the Lebesgue measure in �nite-dimensional setting (see e.g. Delaigle and Hall 2010;
Dabo-Niang and Yao 2013). The only measure at hand is the probability measure of X.

2.2. Assumptions. Hereafter, we denote by ϕx the shifted small ball probability:

ϕx(h) = P(‖X − x‖ ≤ h), h > 0, x ∈ H.
We write ϕ(h) instead of ϕ0(h). If X ′ is a random variable, ϕX

′
is the conditional small

ball probability: ϕX
′
(h) = PX′(‖X − X ′‖ ≤ h), where hereafter the notation PX′ (resp.

EX′ , VarX′) stands for the conditional probability (resp. expectation, variance) given
X ′. For simplicity, we assume that the curve X is centred that is to say the function
t 7→ E [X(t)] is supposed to be identically equal to 0. We also consider the following
assumptions. The �rst one is related to the choice of the kernel, the two following are
regularity assumptions for the function to estimate and the process X.

HK The kernel K is of type I (Ferraty and Vieu, 2006) i.e. its support is in [0, 1] and
there exist two constants cK , CK > 0 such that

cK1[0,1] ≤ K ≤ CK1[0,1].

HF There exists β > 0 such that F belongs to the functional space Fβ, the class of
the maps (x, y) ∈ H× R 7→ F x(y) such that:
� for all x ∈ H, F x is a c.d.f;
� there exists a constant CD > 0 such that, for all x, x′ ∈ H

‖F x − F x′‖D ≤ CD‖x− x′‖β.
Hϕ There exist two constants cϕ, Cϕ > 0 such that for all h ∈ R,

cϕϕ(h)1B(X ′) ≤ ϕX
′
(h)1B(X ′) ≤ Cϕϕ(h)1B(X ′) a.s.,

where X ′ is an independent copy of X.

AssumptionHK is quite classical in kernel methods for functional data (see Ferraty et al.
2006; Burba et al. 2009; Ferraty et al. 2010). We are aware that this is a strong assumption
but alleviate it in a functional data context requires a lot of technical di�culties and it is
still, to our knowledge, an open problem.
Assumption HF is an Hölder-type regularity condition on the map x 7→ F x. This type

of condition is natural in kernel estimation. It is very similar to Assumption (H2) of
Ferraty et al. (2006) or Assumption (H2') of Ferraty et al. (2010). Note, however, that,
since both considered risks are integrated with respect to y, no regularity condition on
the map y 7→ F x(y) is required here. A similar phenomenon appears for the estimation
of the c.d.f when the covariate is real: for instance, the convergence rate given by Brunel
et al. (2010, Corollary 1) only depends on the regularity of F with respect to x.
Assumption Hϕ is very similar to assumptions made by Ferraty et al. 2006; Burba et al.

2009; Ferraty et al. 2010. This condition Hϕ is reasonable, since the class of Gaussian
processes ful�ll it provided that B is a bounded subset of H. Indeed the upper bound
is veri�ed with Cϕ = 1 thanks to Anderson's Inequality (Anderson, 1955) (see also Li
and Shao 2001, Theorem 2.13 or Ho�mann-Jørgensen et al. 1979, Theorem 2.1, p.322)
and from Ho�mann-Jørgensen et al. (1979, Theorem 2.1, p.322) we know that the lower
bound is veri�ed with cϕ := e−R

2/2 where R := max{‖x‖, x ∈ B} .
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 5

2.3. Upper bound. Under the assumptions above we are able to obtain a non-asymptotic
upper bound for the risk:

Theorem 1. Suppose assumptions HK and HF are ful�lled. Let h > 0 be �xed.

(i) For all x0 ∈ H we have

(6) E
[∥∥∥F̂ x0

h − F
x0
∥∥∥2

D

]
≤ C

(
h2β +

1

nϕx0(h)

)
,

where C > 0 only depends on cK, CK, |D| and CD.
(ii) If, in addition, Assumption Hϕ is ful�lled,

(7) E
[
‖F̂X′

h − FX′‖2
D1B(X ′)

]
≤ C

(
h2β +

1

nϕ(h)

)
,

where C > 0 only depends on cK, CK, cϕ, Cϕ, |D| and CD.

The �rst term of the right-hand-side of inequalities (6) and (7) corresponds to a bias
term, and the second is a variance term, which increases when h goes to 0 (since ϕx0(h)
and ϕ(h) decrease to 0 when h → 0). Note that the upper bounds are very similar to
the results of Ferraty et al. (2006, Theorem 3.1) and Ferraty et al. (2010, Corollary 3).
However, we do not have an extra-lnn factor in the variance term.
We deduce from Theorem 1 that the usual bias-variance trade-o� must be done if one

wants to choose h in a family of possible bandwidths. The ideal compromise h∗ is called
the oracle, and is de�ned by

(8) h∗ = argmin
h

E
[∥∥∥F̂X′

h − FX′
∥∥∥2

D
1B(X ′)

]
.

It cannot be used as an estimator since it both depends on the unknown regularity index
β of F and on the rate of decrease of the small ball probability ϕ(h) of X to 0. The
challenge is to propose a fully data-driven method to perform the trade-o�.

3. Adaptive estimation

In this section, we focus on the integrated risk. We refer to Remark 1 below for the
extension of the results for the pointwise criterion.

3.1. Bandwidth selection. We have at our disposal the estimators F̂h de�ned by (2)
for any h > 0. Let Hn be a �nite collection of bandwidths, with cardinality depending on
n and properties precised below. For any h ∈ Hn, an empirical version for the small ball
probability ϕ(h) = P(‖X‖ ≤ h) is

(9) ϕ̂(h) =
1

n

n∑
i=1

1{‖Xi‖≤h}.

For any h ∈ Hn, we de�ne

(10) Â(h) = max
h′∈Hn

(∥∥∥F̂X′

h′ − F̂X′

h∨h′

∥∥∥2

D
− V̂ (h′)

)
+

, V̂ (h) =

κ
ln(n)

nϕ̂(h)
if ϕ̂(h) 6= 0

+∞ otherwise,

where κ is a constant speci�ed in the proofs which depends neither on h, nor on n, nor
on FX′ . The quantity V̂ (h) is an estimate of the upper bound for the variance term (see
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6 G. CHAGNY AND A. ROCHE

(7)) and Â(h) is proved to be an approximation of the bias term (see Lemma 6). This
motivates the following choice of the bandwidth:

ĥ = argminh∈Hn

{
Â(h) + V̂ (h)

}
.

The selected estimator is F̂ĥ.

This selection rule is inspired both on the recent version of the so-called Lepski method
(see Goldenshluger and Lepski 2011) and model selection tools. The main idea is to
estimate the bias term by looking at several estimators. Goldenshluger and Lepski (2011)

propose to �rst de�ne �intermediate� estimates F̂X′

h,h′ (h, h
′ ∈ Hn), based on a convolution

product of the kernel with the estimators with �xed bandwidths. However, this can only
be done when the bias of the estimator is written as the convolution product of the
kernel with the target function. Since it is not the case in our problem, we perform the
bandwidth selection with F̂X′

h,h′ = F̂X′

h∨h′ in (10). This is similar to the procedure proposed
by Chagny (2013a) or Comte and Johannes (2012) for model selection purpose. Thus,
V (h) can also be seen as a penalty term. We also refer to the phD of Chagny (2013b,
p.170) for technical details leading to this choice.

3.2. Theoretical results. To prove our main results, we consider the following hypoth-
esis, in addition to the assumptions de�ned in Section 2.2.

Hb The collection Hn of bandwidths is such that:
Hb1 its cardinality is bounded by n,
Hb2 for any h ∈ Hn, ϕ(h) ≥ C0 ln(n)/n, where C0 > 12 is a purely numerical

constant (speci�ed in the proofs).

AssumptionHb1 �xes the size of the bandwidth collection: compared to the assumptions
of Goldenshluger and Lepski (2011), we consider a discrete set and not an interval, which
permits to use the classical tools of model selection theory in the proofs. We now state
the following result.

Theorem 2. Assume HK, Hϕ, HF , Hb and that n ≥ 3. There exist two constants c, C > 0
depending on cK, CK, cϕ, Cϕ, |D|, CD such that

(11) E
[∥∥∥F̂X′

ĥ
− FX′

∥∥∥2

D
1B(X ′)

]
≤ c min

h∈Hn

{
h2β +

ln(n)

nϕ(h)

}
+
C

n
.

The optimal bias-variance compromise is reached by the estimator, which is thus adap-
tive with respect to the unknown smoothness of the target function F . The selected

bandwidth ĥ is performing as well as the unknown oracle h∗ de�ned in (8), up to the
multiplicative constant c, up to a remainding term of order 1/n which is negligible, and
up to the ln(n) factor. This extra-quantity also appears in the term V (h). The loss is
due to adaptation. In Section 4, we prove that it does not a�ect the convergence rates of
the estimator which is nevertheless optimal in the minimax sense in most of the cases.

The proof of Theorem 2 is mainly based on model selection tools, speci�cally concen-
tration inequalities. A speci�c di�culty comes from the fact that the variance term in (7)
depends on the unknown distribution of X, through its small ball probability. Thus, the
penalty term V (h) = κ ln(n)/(nϕ(h)), which may have been classically de�ned cannot

be used in practice. This explains why we de�ne and plug in V̂ (h) the estimator (9).

However, for the sake of clarity, we begin the proof by establishing the result with V̂ (h)
replaced by its theoretical counterpart V (h) = κ ln(n)/(nϕ(h)).
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 7

Remark 1. • In practice, it is impossible to verify Assumption Hb2 since the func-
tion ϕ and the constant C0 are unknown. However, this di�culty can be cir-
cumvented by introducing a random collection of bandwidths Ĥn verifying, for all
h ∈ Ĥn, ϕ̂(h) ≥ 2Ĉ0 ln(n)/n where ϕ̂ and Ĉ0 are some estimators of ϕ (see Equa-
tion (9)) and C0. However, since it does not add signi�cant di�culty (see Comte
and Johannes 2012; Brunel et al. 2013) but would complicate the understandability
of proofs, we choose to keep Assumption Hb2 .
• We could build an adaptive estimator for the pointwise risk. To do so, replace
ϕ̂(h) in (10) by ϕ̂x0(h) =

∑n
i=1 1{‖Xi−x0‖)≤h}/n and X ′ by x0 in the de�nition of

Â(h).

4. Minimax rates

In this section, we compute the convergence rate of the oracle F̂h∗ with h
∗ de�ned by

(8), the rate of the selected estimator F̂ĥ, and prove lower bounds for the conditional c.d.f.
estimation problem under various assumptions on the rate of decrease of the small ball
probability of the covariate X.

4.1. Small ball probabilities. The computation of the oracle h∗, as well as the compu-
tation of the minimum in the right-hand-side of (11) require to �x conditions on the rate
of decrease of the small ball probability ϕ(h). The choice of the assumptions is crucial and
determines the rates of convergence to zero of our estimators. Small ball problems have
aroused considerable interest and attention in the past decades, and lots of studies propose
to compute lower and upper bounds for ϕ(h), in the case of particular types of process
X. If much attention has been given to Gaussian processes (see for example the clear
account provided by Li and Shao 2001), systematic studies have also been undertaken to
handle the general case of (in�nite) sum of independent random variables (Lifshits, 1997;
Dunker et al., 1998; Mas, 2012). We consider in the sequel one of the three following
hypothesis which allow to understand how the small ball probability decay in�uences the
rates (see Section 4.2) and which are frequently used in the literature. We describe below
large class of processes for which they are ful�lled.

HX There exist some constants c1, C1 > 0 such that ϕx0(h) satis�es one of the following
three assumptions, for any h > 0:
HX,L There exist some constants γ1, γ2 ∈ R, and α > 0 such that

c1h
γ1 exp(−c2h

−α) ≤ ϕx0(h) ≤ C1h
γ2 exp(−c2h

−α);
HX,M There exist some constants γ1, γ2 ∈ R, and α > 1, such that

c1h
γ1 exp(−c2 lnα(1/h)) ≤ ϕx0(h) ≤ C1h

γ2 exp(−c2 lnα(1/h));
HX,F There exists a constant γ > 0, such that c1h

γ ≤ ϕx0(h) ≤ C1h
γ,

where we set x0 = 0 if we consider the integrated risk.

Such inequalities are heavily connected with the rate of decrease of the eigenvalues of
the covariance operator Γ : f ∈ H 7→ Γf ∈ H with Γf(s) = 〈f,Cov(X., Xs)〉. Recall the
Karhunen-Loève decomposition of the process X, which can be written

(12) X =
∑
j≥1

√
λjηjψj,

where (ηj)j≥1 are uncorrelated real-random variables, (λj)j≥1 is a non-increasing sequence
of positive numbers (the eigenvalues of Γ) and (ψj)j≥1 an orthonormal basis of H. When
X really lies in an in�nite dimensional space, the set {j ≥ 1, λj > 0} is in�nite, and
under mild assumptions on the distribution of X, it is known that ϕ(h) decreases faster

ha
l-0

09
31

22
8,

 v
er

si
on

 1
 - 

15
 J

an
 2

01
4



8 G. CHAGNY AND A. ROCHE

than any polynomial of h (see e.g. Mas 2012, Corollary 1, p.10). This is the case in
Assumptions HX,L and HX,M . Moreover, the faster the decay of the eigenvalues is, the
more the data are concentrated close to a �nite dimensional space, and the slower ϕ(h)
decreases.
For example, when X is a Gaussian process with eigenvalues (λj)j such that cj−2a ≤

λj ≤ Cj−2a, a ≥ 1/2 (c, C > 0), Assumption HX,L is satis�ed with γ1 = γ2 = (3−a)/(2a−
1), c2 = a(2a/(2a − 1))1/(2a−1) and α = 1/(a − 1/2) (Ho�mann-Jørgensen et al. 1979,
Theorem 4.4 and example 4.5, p.333-334). This classical situation of such polynomial
decay covers the example of the Brownian motion, with a = 1 (see Ash and Gardner
1975). More generally, if X is de�ned by a random series X =

∑
j≥1 j

−2aZj, for variables
Zi with a c.d.f. regularly varying at 0 with positive index, one can also de�ne γ1, γ2,
and α such that HX,L is ful�lled (see Dunker et al. 1998, Proposition 4.1 p.11 and also
Mas 2012, (19) p.9). The second case HX,M typically happens when the eigenvalues of
the covariance operator exponentially decrease (see Dunker et al. 1998, Proposition 4.3
p.12). In the case of a Gaussian process with c exp(−2j)/j ≤ λj ≤ C exp(−2j)/j, we
have c2 = 1/2 and α = 2 in HX,L (Ho�mann-Jørgensen et al., 1979, Theorem 4.4 and
example 4.7, pp. 333 and 336).
Finally, it also results of the above considerations that HX,F only covers the case of

�nite dimensional processes (the set {j, λj > 0} is �nite, that is the operator Γ has a
�nite rank). This is the extreme case of HX,M (with α = 1, γ1 = γ2 = 0). Nevertheless,
even if our main purpose is to study functional data, the motivation to keep this case is
twofold. First, we show below that our estimation method allows to recover the classical
rates (upper and lower bounds) obtained for c.d.f. estimation with multivariate covariates.
Then, processes which ful�ll HX,F can still be considered as functional data since the �nite
space to whom X belongs is unknown for the statistician.

4.2. Convergence rates of kernel estimators. We now compute the upper bounds
for the pointwise and integrated risks of the estimators, under the previous regularity
assumptions.

Theorem 3. (a) Under the assumptions of Theorem 1, the convergence rates of the

pointwise risk E[‖F̂ x0
h∗ − F x0‖2], and the integrated risk E[‖F̂X′

h∗ − FX′‖2
D] of the

oracle F̂h∗ are given in Table 1, line (a).
(b) Under the assumptions of Theorem 2, the convergence rates of the integrated risk

E[‖F̂X′

ĥ
− FX′‖2

D1B(X ′)] of the estimator F̂ĥ are given in Table 1, line (b).
For both cases, the upper bounds are given up to a multiplicative constant, and for the

di�erent cases HX,L, HX,M , and HX,F .

Let us comment the results. The faster the small ball probability decreases (that is the
more concentrated the measure ofX is), the slower the rate of convergence of the estimator
is. In the generic case of a process X which satis�es HX,L, the rates are logarithmic, which
is not surprising. It re�ects the curse of dimensionality which a�ects the functional data.
Similar rates are obtained by Ferraty et al. (2006) (section 5.3) in the same framework, and
by Mas (2012) for regression estimation (section 2.3.1). However, we show that the results
can be improved when the process X is more regular, although still in�nite dimensional.
Under Assumption HX,M , the rates we compute have the property to decrease faster than
any logarithmic function. Assumption HX,F is the only one which yields to the faster
rate, that is the polynomial one.
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 9

HX,L HX,M HX,F

(lower rate) (medium rate) (fast rate)

(a) Rates for F̂h∗ (ln(n))−2β/α exp

(
− 2β

c
1/α
2

ln1/α(n)

)
n
− 2β

2β+γ
(upper bounds)

(b) Rates for F̂
ĥ (ln(n))−2β/α exp

(
− 2β

c
1/α
2

ln1/α(n)

) (
n

ln(n)

)− 2β
2β+γ

(upper bounds)

(c) Minimax risk
(ln(n))−2β/α exp

(
− 2β

c
1/α
2

ln1/α(n)

)
n
− 2β

2β+γ
(lower bounds)

Table 1. Rates of convergence of the oracle estimator (line (a)) and the
adaptive estimator (line (b)). Minimax lower bounds (line (c)).

Remark 2. We thus obtain various rates, depending on the regularity assumptions on X.
This phenomenom also occurs in a deconvolution model: the rates for the kernel estimators
are logarithmic if the noise is �supersmooth� and the signal to recover �ordinarysmooth�,
but can be improved by considering the case of a �supersmooth� signal, to recover at least
rates which are intermediate between logarithmic and polynomial (see e.g. Lacour 2006;
Comte and Lacour 2010).

We have already noticed that our adaptive procedure leads to the loss of a logarithm
factor (see the comments following Theorem 2). Nevertheless, by comparing line (a) to
line (b) in Table 1, we obtain that the adaptive estimator still achieves the oracle rate if
HX,L or HX,M are ful�lled. The loss is actually negligible with respect to the rates.

4.3. Lower bounds. We now establish lower bounds for the risks under mild additional
assumptions, showing that the estimators suggested above attain the optimal rates of
convergence in a minimax sense over the class of conditional c.d.f. Fβ (de�ned in Sec-
tion 2.2). The results for the integrated risk are obtained through non-straightforward
extensions of the pointwise case.

Theorem 4. Suppose that HX is ful�lled, and that n ≥ 3.

(i) The minimax risk inf F̂ supF∈Fβ EF [‖F̂ x0 − F x0‖2], is lower bounded by a quantity

proportional to the ones in line (c) in Table 1.
(ii) Assume moreover that B contains the ball {x ∈ H, ‖x‖ ≤ ρ} where ρ > 0 is a

constant to be speci�ed in the proof, and that there exist two constants c2, C2 > 0
such that, for all h > 0, for all x ∈ B,

(13) ϕ(h) > 0 and c2ϕ(h) ≤ ϕx(h) ≤ C2ϕ(h).

Then the minimax risk inf F̂ supF∈Fβ EF [‖F̂X′−FX′‖2
D1B(X ′)], is also lower bounded

by a quantity proportional to the ones in line (c) in Table 1.

For both cases, the in�mum is taken over all possible estimators obtained with the data-
sample (Xi, Yi)i=1,...,n. In (i), EF is the expectation with respect to the law of {(Xi, Yi), i =
1, . . . , n} and in (ii), EF is the expectation with respect to the law of {{(Xi, Yi), i =
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10 G. CHAGNY AND A. ROCHE

1, . . . , n}, X ′} when, for all i = 1, . . . , n, for all x ∈ H, the conditional c.d.f. of Yi
given Xi = x is F x.

Theorem 4 proves that the upper bounds of Theorem 3 cannot be improved, not only
among kernel estimators but also among all estimators, under assumptions HX,L and

HX,M . The estimator F̂ĥ is thus both adaptive in the oracle and in the minimax senses.
The computations are new for conditional c.d.f. estimation with a functional covariate.

Under HX,F , with γ = 1, the lower bounds we obtain are consistent with Theorem 2 of
Brunel et al. (2010) or Proposition 4.1 of Plancade (2013) for c.d.f. estimation with a
one-dimensional covariate, over Besov balls. In the functional framework, the results can
only be brought close to those of Mas (2012) (Theorem 3) for regression estimation.

5. Impact of the projection of the data onto finite-dimensional spaces

We have seen in Section 4.2 that, when X lies in an in�nite dimensional space (assump-
tions HX,M and HX,L), the rates of convergence are slow. This �curse of dimensionality�
phenomenon is well known in kernel estimation for high or in�nite dimensional datasets.
The introduction of the projection semi-metrics dp, leading to the estimators (4), has thus
been proposed in order to circumvent this problem. De�ning such estimators amounts to
project the data into a p-dimensional space. Indeed, this permits to address the problem
of variance reduction since ϕp(h) := P (dp(x, 0) ≤ h) ∼h→0 C(p)hp and then the variance is
of order 1/(nhp). Notice that, even if the variances order are the same, the situation here
is di�erent from Assumption HX,F with γ = p: HX,F amounts to suppose that the curve
X lies a.s. in an unknown �nite-dimensional space (see Section 4.1) whereas, here, the
data are projected into a �nite-dimensional space but may lie in an in�nite-dimensional
space.
A �rst thing we can say is that, under our regularity assumptionHF , Theorem 4 remains

true and the convergence rate of the risk of F̂h,p cannot be better than the lower bounds

given in Table 1, line (c). This implies that, in our setting, the estimator F̂h,p cannot

converge at signi�cantly better rates than our adaptive estimator F̂ĥ even if the couple of
parameters (p, h) is well chosen. Precisely, as shown in the following proposition, project
data also adds an additional bias term which compensates for the decrease of the variance.

5.1. Assumptions. In order to state the result, we need the following assumptions.

H ′ϕ There exist two constants cϕ, Cϕ > 0 such that for all h ∈ R, for all p ∈ N∗,

cϕϕp(h)1B(X ′) ≤ ϕX
′

p (h)1B(X ′) ≤ Cϕϕp(h)1B(X ′) a.s.,

where X ′ is an independent copy of X and ϕX
′

p (h) := PX′ (dp(X,X ′) ≤ h).
Hξ Let ξj := 〈X, ej〉/σj where σj := Var(〈X, ej〉). One of the two following assump-

tions is veri�ed:
H ind
ξ the sequence of random variables (ξj)j≥1 is independent and there exists a

constant Cξ such that, for all j ≥ 1

E
[
ξβj

]
≤ Cξ;

Hb
ξ there exists a constant Cξ such that, for all j ≥ 1,

|ξj| ≤ Cξ a.s.

Remark that Assumption H ′ϕ is the equivalent of Assumption Hϕ replacing d by dp.
If X is a Gaussian process, the vector (〈X, e1〉, . . . , 〈X, ep〉) is a Gaussian vector and
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 11

Assumption Hϕ is also veri�ed provided that B is bounded. Assumption H ind
ξ is true if

X is a Gaussian process and (ej)j≥1 is the Karhunen-Loève basis of X (see (12) above),
and also Ash and Gardner 1975) and Assumption Hb

ξ is equivalent to suppose that X is

bounded a.s. We are aware that both assumptions H ind
ξ and Hb

ξ are strong since in most
cases the Karhunen-Loève basis is unknown. We give here Proposition 1 below in the
only aim of better understanding the bias-variance decomposition of the risk when the
data are projected. A further study would be needed to obtain weaker assumptions but
this is beyond the scope of this paper.

5.2. Upper bound.

Proposition 1. Suppose assumptions HK, HF and Hξ are ful�lled. Let h > 0 and p ∈ N∗
be �xed.

(i) For all x0 ∈ H we have

(14) E
[∥∥∥F̂ x0

h,p − F
x0
∥∥∥2

D

]
≤ C

h2β +

(∑
j>p

σ2
j

)β

+

(∑
j>p

〈x0, ej〉2
)β

+
1

nϕx0p (h)

 ,

where C > 0 only depends on Cξ, β, cK, CK, |D| and CD.
(ii) If, in addition, Assumption Hϕ is ful�lled,

(15) E
[
‖F̂X′

h,p − FX′‖2
D1B(X ′)

]
≤ C

h2β +

(∑
j>p

σ2
j

)β

+
1

nϕp(h)

 ,

where C > 0 only depends on Cξ, β, cK, CK, cϕ, Cϕ, |D| and CD.

We have additional bias terms compared to Ferraty et al. (2006, 2010). This is due
to the fact that our regularity assumption HF (see Section 2.2) is here di�erent from
Assumption (H2) of Ferraty et al. (2006) or Assumption (H2') of Ferraty et al. (2010).
Our assumption is expressed with the norm of H whereas their assumptions are expressed
with the semi-norm used in the de�nition of the estimator (here dp). Remark that,
with projection semi-norms, the assumptions of Ferraty et al. (2006, 2010) imply that
the function F x only depends on (〈x, ej〉)1≤j≤p. Indeed, if we take x and x′ such that
〈x, ej〉 = 〈x′, ej〉 for j = 1, . . . , p (but 〈x, ej〉 6= 〈x′, ej〉 for a j > p), both (H2) and (H2')
imply that F x(y) = F x′(y) for all y. Our assumption is then less restrictive.

Remark 3. Notice that the estimator (4) is not consistent when p is �xed. This is also
noted by Mas (2012) (see Remark 2, p.4). It is coherent with the fact that we loose
information when we project the data. Indeed, suppose that the signal X lies a.s. in

(span{e1, . . . , ep})⊥, then dp(Xi, x) =
√∑p

j=1〈x, ej〉2 a.s. and F̂ x
h,p(y) = 1

n

∑n
i=1 1{Yi≤y} if

Kh

(√∑p
j=1〈x, ej〉2

)
6= 0 and 0 otherwise. The bias of such an estimator is then constant

and non null as soon as there exists F x(y) 6= P(Y ≤ y) on a subset of D of positive
Lebesgue measure. Hence in order to obtain a consistent estimator in the case where
σj > 0 for all j, we have to impose that limn→+∞ p = +∞.

5.3. Discussion. The rates obtained can be compared to the lower bounds given in
Table 1 in the Gaussian case under assumptions HX,F and HX,M .
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12 G. CHAGNY AND A. ROCHE

5.3.1. Comparison with rates obtained under Assumption HX,F . We start from the Karhunen-
Loève decomposition of X de�ned in (12). For a Gaussian process, the variables ηj are
independent standard normal, (λj)j≥1 is a non-increasing sequence of positive numbers
and (ψj)j≥1 a basis of H. If λγ+1 = 0 and λγ > 0 and if the law of (η1, . . . , ηγ) is
non-degenerate then Assumption HX,F is ful�lled. Two cases may then occur.

• If ej = ±ψj for all j, then σ2
j = E[〈X, ej〉2] = E[〈X,ψj〉2] = λj and σj = 0 for

j > γ. Then from Inequality (15), with a good choice of (p, h), the integrated risk
is upper bounded by Cn−2β/(2β+γ) which �ts with the lower bound. According to
Inequality (14), the pointwise risk is penalized by the term

∑
j>p〈x0, ej〉2 and the

minimax rate is attained only if x0 ∈ span{e1, . . . , ep}.
• However, if the basis (ej)j≥1 is not well-chosen for instance if ej = ψj for j /∈
{γ, γ + l} (l > 0), eγ = ψγ+l and eγ+l = ψγ, the integrated risk of the estimator is
upper bounded by Cn−2β/(2β+γ+l) whereas the minimax rate is n−2β/(2β+γ).

5.3.2. Comparison with rates obtained under Assumption HX,M . Thanks to Proposition 1,
we are able to obtain the rate of convergence for the estimator.

Corollary 1. Suppose that the assumptions of Proposition 1 are ful�lled and that (ξ1, . . . , ξp)
admits a density fp with respect to the Lebesgue measure on Rp such that there exists a
constant cf verifying

fp(0) ≥ cpf .

Assume also that there exist δ > 1, c > 0 such that
∑

j>p σ
2
j ≤ cp−2δ+1.

(i) Then, for all x0 ∈ H such that there exist δ′ > 1, c′ > 0 such that
∑

j>p〈x0, ej〉2 ≤
c′p−δ

′+1 we have

E
[
‖F̂ x0

h,p − F
x0‖2

D

]
≤ C

(
ln(n)

ln(ln(n))

)β(1−2 min{δ,δ′})

,

for a well-chosen bandwidth h and a good choice of p, and where C > 0 is a
numerical constant.

(ii) We also have

E
[
‖F̂X′

h,p − FX′‖2
D

]
≤ C

(
ln(n)

ln(ln(n))

)β(1−2δ)

,

for a well-chosen bandwidth h and a good choice of p, and where C > 0 is a
numerical constant.

If cj−2a ≤ λj ≤ Cj−2a, for two constants c, C > 0, then Assumption HX,M is ful�lled
with α = 1/(a − 1/2), the estimator converges with the minimax rate if δ = a (adding
the condition δ′ ≥ a for the pointwise risk). The conclusion is similar to Paragraph 5.3.1:
if ej = ±ψj for all j ≥ 1 (recall that this condition is unrealistic since in most cases the
basis (ψj)j≥1 is unknown) then we can choose p and h such that the minimax rate is
achieved, up to a logarithmic factor, for the integrated risk and the pointwise risk under
an additional condition on x0. Otherwise, we do not know if the minimax rate can be
achieved.

Concluding remarks

• The estimation procedure we propose is not restricted to the case where the co-
variate X is functional. Indeed the adaptive estimator F̂ĥ can be calculated as
soon as the covariate X takes values in a general Hilbert space (H, ‖ · ‖). The
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 13

results can be applied to a function space such as L2(I) (I ⊂ R), L2(Rd) or a
Sobolev space but also Rd, Cd, `2(N),... The results given in sections 2 and 3
remain valid. For instance, in the case where X ∈ Rd, an immediate consequence
of Theorem 1, is that both pointwise and integrated risks of F̂ĥ converge to 0 at

the rate (n/ ln(n))−2β/(2β+d).
• Is there a solution to the curse of dimensionality ? We prove that, under our
assumptions, the classical Nadaraya-Watson estimator (2) with d(x, x′) = ||x−x′||
attains the minimax rate of convergence. Then, in our setting, even if these rates
are slow, they cannot be signi�cantly improved by changing the semi-norm d in the
kernel. A re�exion is under way on determining if it is possible to modify the rates
considering more regular functions F than the ones of the class Fβ, for instance
taking into account the derivatives of the covariate X in the spirit of Ferraty and
Vieu (2002).Another approach may be to reduce the structural complexity of the
model considering e.g. single or multiple-index models (Chen et al. 2011; Ait-Saïdi
et al. 2008) .

6. Proofs

We will mainly focus on the proof of the results for the integrated risk (since it is the
one for which adaptation results are provided), and only highlight the di�erences when
choosing the pointwise criterion.
We denote by EX′ (resp. PX′ , VarX′) the conditional expectation (resp. probabil-

ity, variance) given X ′. We also introduced the classical norm ‖.‖Lq(R) of the space of
integrable function Lq(R) (the notation will be used with q = 2 and q =∞).
Recall that Kh(x) := h−1K(h−1x). Assumptions HK and Hϕ imply that, for all l ≥ 1,

(16) h−lmlϕ(h)1B(X ′) ≤ EX′
[
K l
h(d(X,X ′))

]
1B(X ′) ≤ h−lMlϕ(h)1B(X ′) a.s.

where ml := clKcϕ and Ml := C l
KCϕ. These inequalities are useful in the sequel.

6.1. A preliminary result. One of the key arguments in the proofs of Theorems 1, 2,
and Proposition 1 is the control of the deviations (in probability and expectation) of the
process Rx

h, for x ∈ H, de�ned by

(17) Rx
h =


1

n

n∑
i=1

Kh(d(Xi, X
′))

EX′ [Kh(d(X,X ′))]
, if x = X ′,

1

n

n∑
i=1

Kh(d(Xi, x))

E [Kh(d(X, x))]
, if x ∈ H is �xed.

The following lemma establishes the result which is useful to control the integrated risk
of the estimators. The proof can be found below.

Lemma 1. Assume HK and Hϕ. For any η > 0, on the set {X ′ ∈ B}, the following
inequality holds a.s.

(18) PX′
(∣∣∣RX′

h − 1
∣∣∣ > η

)
≤ 2 exp

− nη2ϕ(h)

2
(
M2

m2
1

+ CKη
m1

)
 .

Moreover, assume also Hb2, and denote by VR(h) = κR ln(n)/(nϕ(h)), we have a.s.

(19) EX′
[((

RX′

h − 1
)2

− VR(h)

)
+

]
≤ min

(
4M2

m2
1

,
64C2

K

m2
1

)
1

nα
,
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14 G. CHAGNY AND A. ROCHE

for any α > 0, as soon as κR > max(4M2α/m
2
1, 32C2

Kα
2/m2

1C0).
Fix a point x0 ∈ H. Then Inequality (18) becomes

(20) P (|Rx0
h − 1| > η) ≤ 2 exp

− nη2ϕx0(h)

2
(
M2

m2
1

+ CKη
m1

)
 .

6.1.1. Proof of Lemma 1. To prove Inequality (18), the guideline is to apply Bernstein's
Inequality (see Birgé and Massart 1998), for the conditional probability PX′ .

Lemma 2. Let T1, T2, . . . , Tn be independent random variables and Sn(T ) =
∑n

i=1(Ti − E[Ti]).
Assume that

Var(T1) ≤ v2 and ∀l ≥ 2,
1

n

n∑
i=1

E
[
|Ti|l

]
≤ l!

2
v2bl−2

0 .

Then, for η > 0,

P
(

1

n
|Sn(T )| ≥ η

)
≤ 2 exp

(
− nη2/2

v2 + b0η

)
,

≤ 2 min

{
exp

(
−nη

2

4v2

)
, exp

(
− nη

4b0

)}
.(21)

Here, Ti = Kh(d(Xi, X
′))/EX′ [Kh(d(Xi, X

′))], and RX′

h − 1 = Sn(T )/n (recall that
we consider here conditional expectation and probability with respect to X ′). Let us
compute the quantities v and b0 involved in the inequality. First, on the set {X ′ ∈ B},
Inequality (16) implies that

VarX′(T1) ≤ EX′
[
T 2

1

]
=

EX′ [K2
h(d(X1, X

′))]

(EX′ [Kh(d(X1, X ′))])
2 ≤

h−2M2ϕ(h)

(h−1m1ϕ(h))2 =
M2

m2
1

1

ϕ(h)
:= v2.

Similarly, for l ≥ 2,

1

n

n∑
i=1

EX′
[
|Ti|l

]
= EX′

[
|T1|l

]
=

EX′
[
K l
h(d(X1, X

′))
]

(EX′ [Kh(d(X1, X ′))])
l
≤ hlMlϕ(h)

(hϕ(h)m1)l
=
Ml

ml
1

1

ϕl−1(h)
.

By splitting Ml = C l
KCϕ = M2C

l−2
K , the last upper bound can be written

1

n

n∑
i=1

EX′
[
|Ti|l

]
≤ M2

m2
1

1

ϕ(h)

C l−2
K

ml−2
1

1

(ϕ(h))l−2
= v2bl−2

0 ,

with b0 = CK/(m1ϕ(h)). We now apply the �rst inequality of Lemma 2, this complete the
proof of Inequality (18). The proof may be adapted easily to demonstrate Inequality (20).
For Inequality (19), we follow the same strategy as Comte and Genon-Catalot (2012),
pages 20-21. First

EX′
[((

RX′

h − 1
)2

− VR(h)

)
+

]
=

∫ ∞
0

PX′
(((

RX′

h − 1
)2

− VR(h)

)
+

≥ u

)
du,

≤
∫ ∞

0

PX′
(∣∣∣RX′

h − 1
∣∣∣ ≥√VR(h) + u

)
du,

≤ 2 min

{∫ ∞
0

exp

(
−n(u+ VR(h))

4v2

)
du,∫ ∞

0

exp

(
−
n
√
u+ VR(h)

4b0

)
du

}
,
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 15

thanks to Inequality (21). Now,

n(u+ VR(h))

4v2
= nϕ(h)u

m2
1

4M2

+ ln(n)
m2

1κR
4M2

,

which leads to∫ ∞
0

exp

(
−n(u+ VR(h))

4v2

)
du = n

−m
2
1κR

4M2

∫ ∞
0

exp

(
−nϕ(h)

m2
1

4M2

u

)
du,

≤ 4M2

m2
1

1

n1+κRm
2
1/4M2

1

ϕ(h)
.

Since, by Assumption Hb2 , ϕ(h) ≥ C0 ln(n)/n, we obtain∫ ∞
0

exp

(
−n(u+ VR(h))

4v2

)
du ≤ 4M2

C0m2
1

1

ln(n)nκRm
2
1/4M2

,

and the last upper bound is smaller than (4M2/C0m
2
1)/nα as soon as κR > 4M2α/m

2
1.

For the other integral, we begin with a lower bound for n
√
u+ VR(h)/4b0,

n
√
u+ VR(h)

4b0

≥ m1

4CK
nϕ(h)

1√
2

(√
VR(h) +

√
u
)
,

=
m1

4
√

2CK

√
κR
√

ln(n)
√
nϕ(h) +

m1

4
√

2CK
nϕ(h)

√
u,

≥ m1

√
C0

4
√

2CK

√
κR ln(n) +

m1C0

4
√

2CK
ln(n)

√
u,

by using ϕ(h) ≥ C0 ln(n)/n another time. Thus,∫ ∞
0

exp

(
−
n
√
u+ VR(h)

4b0

)
du ≤ n

−m1
√
C0
√
κR

4
√
2CK

∫ ∞
0

exp

(
−m1C0 ln(n)

4
√

2CK

√
u

)
du

=
64C2

K

m2
1C

2
0

∫ ∞
0

s exp(−s)ds 1

ln2(n)n
m1
√
C0
√
κR

4
√
2CK

=
64C2

K

m2
1C

2
0

1

ln2(n)n
m1
√
C0
√
κR

4
√
2CK

≤ 64C2
K

m2
1C

2
0

1

nα
.

as soon as κR > 32C2
Kα

2/m2
1C0. This ends the proof of Lemma 1.

6.2. Proof of Theorem 1.

6.2.1. Main part of the proof of the Inequality (7). Following Ferraty et al. (2006, 2010),
we de�ne

F̃X′

h (y) :=
n∑
i=1

W̃
(i)
h (X ′)1{Yi≤y}, where W̃

(i)
h (X ′) =

Kh (d(Xi, X
′))

nEX′ [Kh (d(X1, X ′))]
.(22)

We also have RX′

h :=
∑n

i=1 W̃
(i)
h (X ′) (see De�nition (17)). First, notice that since F̂X′

h ≤ 1
and FX′ ≤ 1 a.s.,

E
[
‖F̂X′

h − FX′‖2
D1{RX′h <1/2}1B(X ′)

]
≤ 2E

[(
‖F̂X′

h ‖2
D + ‖FX′‖2

D

)
1{RX′h <1/2}1B(X ′)

]
,

≤ 4|D|P
({
RX′

h < 1/2
}
∩ {X ′ ∈ B}

)
.
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16 G. CHAGNY AND A. ROCHE

Now, with P({RX′

h < 1/2} ∩ {X ′ ∈ B}) ≤ P({|RX′

h − 1| > 1/2} ∩ {X ′ ∈ B}) and with
Lemma 1 we get

E
[
‖F̂X′

h − FX′‖2
D1{RX′h <1/2}1B(X ′)

]
≤ 8|D| exp

(
− m1

8 (M2/m1 + CK/2)
nϕ(h)

)
≤ C

nϕ(h)
,

where C = 64|D|e−1M2/m1+CK/2
m1

.

The last inequality comes from the bound xe−x ≤ e−1, x > 0.

We must now control E
[
‖F̂X′

h − FX′‖2
D1B(X ′)1{RX′h ≥1/2}

]
. Recall that F̂X′

h = F̃X′

h /RX′

h .

We thus have,

E
[
‖F̂X′

h − FX′‖2
D1B(X ′)1{RX′h ≥1/2}

]
≤ 3E

∥∥∥∥∥ F̃X′

h

RX′
h

− EX′
[
F̃X′

h

RX′
h

]∥∥∥∥∥
2

D

1B(X ′)1{RX′h ≥1/2}


+3E

∥∥∥∥∥EX′
[
F̃X′

h

RX′
h

]
− FX′

RX′
h

∥∥∥∥∥
2

D

1B(X ′)1{RX′h ≥1/2}

+ 3E

[∥∥∥∥FX′

RX′
h

− FX′
∥∥∥∥2

D

1B(X ′)1{RX′h ≥1/2}

]

≤ 12E
[∥∥∥F̃X′

h − EX′
[
F̃X′

h

]∥∥∥2

D
1B(X ′)

]
+ 12E

[∥∥∥EX′ [F̃X′

h

]
− FX′

∥∥∥2

D

]
+12E

[(
1−RX′

h

)2 ∥∥∥FX′
∥∥∥2

D
1B(X ′)

]
.(23)

The �rst and third terms are variance terms, bounded by Lemmas 3 and 4 proved below.
The second one is a bias term, controlled by Lemma 5.

Lemma 3. Under Assumptions HK and Hϕ, on the set {X ′ ∈ B},

EX′
[∥∥∥F̃X′

h − EX′
[
F̃X′

h

]∥∥∥2

D

]
≤ |D|M2

m2
1

1

nϕ(h)
.

Lemma 4. Under Assumptions HK and Hϕ

E
[(
RX′

h − 1
)2

1B(X ′)

]
≤ M2

m2
1

1

nϕ(h)
.

Lemma 5. Under Assumption HF ,

E
[∥∥∥FX′ − EX′

[
F̃X′

h

]∥∥∥2

D

]
≤ C2

Dh
2β.

This ends the proof of Inequality (7). The scheme can easily be adapted to prove (6).

�

6.2.2. Proof of Lemmas 3 and 4 (upper bounds for the variance terms).
Proof of Lemma 3. By Fubini's Theorem

EX′
[∥∥∥F̃X′

h − EX′
[
F̃X′

h

]∥∥∥2

D

]
=

∫
D

EX′
[(
F̃X′

h (y)− EX′
[
F̃X′

h (y)
])2
]
dy

=

∫
D

VarX′
(
F̃X′

h (y)
)
dy.
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 17

Since, for all y ∈ D, F̃X′

h (y) is a mean of independent and identically distributed random
variables (conditionally to X ′), we have, on the set {X ′ ∈ B},

EX′
[∥∥∥F̃X′

h − EX′
[
F̃X′

h

]∥∥∥2

D

]
=

1

n

∫
D

VarX′

(
Kh (d(X1, X

′))1{Y1≤y}
EX′ [Kh (d(X1, X ′))]

)
dy

≤ |D|
n

EX′
[

K2
h (d(X1, X

′))

(EX′ [Kh (d(X1, X ′))])
2

]
≤ |D|

n

M2

m2
1

1

nϕ(h)
,

where the last inequality comes from Inequality (16).

�

Proof of Lemma 4. Since EX′
[
RX′

h

]
= 1, remark that,

E
[(
RX′

h − 1
)2

1B(X ′)

]
= E

[
VarX′

(
RX′

h

)
1B(X ′)

]
=

1

n
E
[
VarX′

(
Kh(d(X1, X

′))

EX′ [Kh(d(X1, X ′))]

)
1B(X ′)

]
,

and the result comes also from Inequality (16).

6.2.3. Proof of Lemma 5 (upper bound for the bias term). First remark that, for y ∈ D,
a.s.

EX′
[
F̃X′

h (y)
]

= nEX′
[
E
[
W̃

(1)
h (X ′)1{Y1≤y}|X1

]]
= nEX′

[
W̃

(1)
h (X ′)FX1(y)

]
and since nEX′

[
W̃

(1)
h (X ′)FX′

]
= FX′ ,

FX′(y)− EX′
[
F̃X′

h (y)
]

= nEX′
[
W̃

(1)
h (X ′)

(
FX′(y)− FX1(y)

)]
.

Then,

E
[∥∥∥FX′ − EX′

[
F̃X′

h

]∥∥∥2

D

]
≤ n2E

[
EX′

[
W̃

(1)
h (X ′)

∥∥∥FXi − FX′
∥∥∥
D

]2
]

≤ C2
Dn

2E
[
EX′

[
W̃

(1)
h (X ′) ‖X1 −X ′‖β

]2
]
,(24)

by HF . Now, since K is supported on [0, 1], if d2(X1, X
′) = ‖X1 − X ′‖2 > h then

W̃
(1)
h (X ′) = 0,

E
[∥∥∥FX′ − EX′

[
F̃X′

h

]∥∥∥2

D

]
≤ C2

Dn
2E
[
EX′

[
W̃

(1)
h (X ′)hβ

]2
]
.

But EX′
[
W̃

(1)
h (X ′)

]
= 1/n, which ends the proof:

E
[∥∥∥FX′ − EX′

[
F̃X′

h

]∥∥∥2

D

]
≤ C2

Dh
2β.

�
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18 G. CHAGNY AND A. ROCHE

6.3. Proof of an intermediate result for Theorem 2: the case of known small

ball probability. This section is an introduction to the proof of Theorem 2: we �rst deal
with the toy case of known small ball probability. It is thus possible to de�ne a selection
rule by h̃ = argminh∈Hn{A(h) + V (h)}, with

(25) V (h) = κ
ln(n)

nϕ(h)
and A(h) = max

h′∈Hn

(∥∥∥F̂X′

h′ − F̂X′

h∨h′

∥∥∥2

D
− V (h′)

)
+

.

Compared to the data-driven criterion (10), the variance term V (h) is deterministic here.

Assume that HK , Hϕ, HF , Hb1 and Hb2 hold. The pseudo-estimator F̂h̃ is such that

(26) E
[∥∥∥F̂X′

h̃
− FX′

∥∥∥2

D
1B(X ′)

]
≤ c min

h∈Hn

{
h2β +

ln(n)

nϕ(h)

}
+
C

n
,

where c and C are constants which depend on cK , CK , cϕ, Cϕ, |D|, and CD.
The proof of such inequality is simpler than Theorem 2, and is a good illustration of the

model selection tools required to deal with a data-driven selected bandwidth. To prove
Theorem 2, we will then come down to Inequality (26).

6.3.1. Main part of the proof of Inequality (26). Let h ∈ Hn be �xed. We start with the

following decomposition for the loss of the estimatorF̂X′

h̃
:

∥∥∥F̂X′

h̃
− FX′

∥∥∥2

D
≤ 3

∥∥∥F̂X′

h̃
− F̂X′

h̃∨h

∥∥∥2

D
+ 3

∥∥∥F̂X′

h̃∨h − F̂
X′

h

∥∥∥2

D
+ 3

∥∥∥F̂X′

h − FX′
∥∥∥2

D
.

The de�nitions of A(h), A(h̃) and then the one of h̃ enable to write

3
∥∥∥F̂X′

h̃
− F̂X′

h̃∨h

∥∥∥2

D
+ 3

∥∥∥F̂X′

h̃∨h − F̂
X′

h

∥∥∥2

D
≤ 3

(
A(h) + V

(
h̃
))

+ 3
(
A
(
h̃
)

+ V (h)
)
,

≤ 6 (A(h) + V (h)) .

Besides, the quantity ‖F̂X′

h − FX′‖2
D is the loss of an estimator with �xed bandwidth h

and has already been bounded (see Theorem 1 Inequality (7)). Hence we obtain

(27) E
[∥∥∥F̂X′

h̃
− FX′

∥∥∥2

D
1B(X ′)

]
≤ 6E [A(h)1B(X ′)] + 6V (h) + 3C

(
h2β +

1

nϕ(h)

)
,

where C is the constant of Theorem 1 (Inequality (7)). The remainding part of the proof
is the result of the lemma hereafter, the proof of which is postponed to the following
section.

Lemma 6. Let h ∈ Hn be �xed. Under the assumptions of Theorem 2, there exist two
constants C and C1 such that,

(28) E [A(h)1B(X ′)] ≤ Ch2β +
C1

n
.

The constant C1 depends on C0, |D|, M2, m1 and CK and the constant C only depends
on CD.

Applying Inequality (28) in (27) implies Inequality (26) by taking the in�mum over
h ∈ Hn.

�
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 19

6.3.2. Proof of Lemma 6 (Upper bound for A(h)). Fix h, h′ ∈ Hn. We de�ne the set
Ωh,h′ = {RX′

h′ ≥ 1/2} ∩ {RX′

h∨h′ ≥ 1/2} and split∥∥∥F̂X′

h′ − F̂X′

h∨h′

∥∥∥2

D
≤
∥∥∥F̂X′

h′ − F̂X′

h∨h′

∥∥∥2

D

(
1Ωh,h′

+ 1Ωc
h,h′

)
.

Recall that we write the estimator F̂X′

h (y) = F̃X′

h (y)/RX′

h , with F̃X′

h de�ned by (22) and
RX′

h by (17). We split again∥∥∥F̂X′

h′ − F̂X′

h∨h′

∥∥∥2

D
1Ωh,h′

=

∥∥∥∥∥ F̃X′

h′

RX′
h′
− F̃X′

h∨h′

RX′
h∨h′

∥∥∥∥∥
2

D

1Ωh,h′
≤ 4

(
T ah′ +Bh,h′ + T̃h∨h′ + T bh∨h′

)
,

where
(29)

T ah′ =

∥∥∥∥ 1

RX′
h′

(
F̃X′

h′ − EX′
[
F̃X′

h′

])∥∥∥∥2

D

1Ωh,h′
, T bh∨h′ =

∥∥∥∥ 1

RX′
h∨h′

(
F̃X′

h∨h′ − EX′
[
F̃X′

h∨h′

])∥∥∥∥2

D

1Ωh,h′

Bh,h′ =
1(

RX′
h′

)2

∥∥∥EX′ [F̃X′

h′

]
− EX′

[
F̃X′

h∨h′

]∥∥∥2

D
1Ωh,h′

,

T̃h∨h′ =

(
1

RX′
h′
− 1

RX′
h∨h′

)2 ∥∥∥EX′ [F̃X′

h∨h′

]∥∥∥2

D
1Ωh,h′

.

Thus, by subtracting V (h′) and taking the maximum over h′ ∈ Hn, we obtain

A(h) = max
h′∈Hn

(∥∥∥F̂X′

h′ − F̂X′

h∨h′

∥∥∥2

D
− V (h′)

)
+

(30)

≤ max
h′∈Hn

(
4T ah′ −

V (h′)

3

)
+

+ max
h′∈Hn

(
4T bh∨h′ −

V (h′)

3

)
+

+ max
h′∈Hn

(
4T̃h∨h′ −

V (h′)

3

)
+

+4 max
h′∈Hn

Bh,h′ + max
h′∈Hn

(∥∥∥F̂X′

h′ − F̂X′

h∨h′

∥∥∥2

D
1Ωc

h,h′

)
.

We have not subtracted V (h′) to two of the above terms: we show below that they are
directly negligible. We now deal with each of the terms involving in (30) on the set
{X ′ ∈ B}.

• Upper bound for the term depending on Bh,h′ . We �rst use the de�nition of the
set Ωh,h′ , and split the term to obtain the bias terms:

max
h′∈Hn

Bh,h′ ≤ 4 max
h′∈Hn

∥∥∥EX′ [F̃X′

h′

]
− EX′

[
F̃X′

h∨h′

]∥∥∥2

D

= 4 max
h′∈Hn
h′≤h

∥∥∥EX′ [F̃X′

h′

]
− EX′

[
F̃X′

h∨h′

]∥∥∥2

D

≤ 8 max
h′∈Hn
h′≤h

{∥∥∥EX′ [F̃X′

h′

]
− FX′

∥∥∥2

D
+
∥∥∥FX′ − EX′

[
F̃X′

h∨h′

]∥∥∥2

D

}

≤ 8

max
h′∈Hn
h′≤h

C2
D(h′)2β + C2

Dh
2β

 ≤ 16C2
Dh

2β,(31)
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20 G. CHAGNY AND A. ROCHE

thanks to Lemma 5.
• Upper bound for the term depending on 1Ωc

h,h′
. It is the second term which does

not depend on V (h′):

max
h′∈Hn

(∥∥∥F̂X′

h′ − F̂X′

h∨h′

∥∥∥2

D
1Ωc

h,h′

)
≤ 2 max

h′∈Hn
1Ωc

h,h′

(∥∥∥F̂X′

h′

∥∥∥2

D
+
∥∥∥F̂X′

h∨h′

∥∥∥2

D

)
,

since |F̂X′

h′ (y)| ≤ 1 and
∣∣∣F̂X′

h′∨h(y)
∣∣∣ ≤ 1. Thus,

E
[

max
h′∈Hn

(∥∥∥F̂X′

h′ − F̂X′

h∨h′

∥∥∥2

D
1Ωc

h,h′
1B(X ′)

)]
≤ 4|D|

∑
h′∈Hn

P
(
Ωc
h,h′ ∩ {X ′ ∈ B}

)
.

Moreover,

P
(
Ωc
h,h′ ∩ {X ′ ∈ B}

)
≤ P

({
RX′

h′ <
1

2

}
∩ {X ′ ∈ B}

)
+ P

({
RX′

h∨h′ <
1

2

}
∩ {X ′ ∈ B}

)
≤ P

({∣∣∣RX′

h′ − 1
∣∣∣ > 1

2

}
∩ {X ′ ∈ B}

)
+ P

({∣∣∣RX′

h′∨h − 1
∣∣∣ > 1

2

}
∩ {X ′ ∈ B}

)
.

Thus we apply Inequality (18) of Lemma 1, with η = 1/2:

∑
h′∈Hn

P
(
Ωc
h,h′ ∩ {X ′ ∈ B}

)
≤

∑
h′∈Hn

2 exp

− nϕ(h′)

8
(
M2

m2
1

+ CK
2m1

)
+ 2 exp

− nϕ(h ∨ h′)

8
(
M2

m2
1

+ CK
2m1

)
 .

Recall now that thanks to Hb2 , ϕ(h) ≥ C0 ln(n)/n for all h ∈ Hn, with C0 > 16(M2/m
2
1 +

CK/2m1). Use also Hb1 to deduce

∑
h′∈Hn

P
(
Ωc
h,h′ ∩ {X ′ ∈ B}

)
≤ 4× n× n

− C0

8

(
M2
m2

1

+
CK
2m1

)
<

4

n
.

Thus, we have proved that

(32) E
[

max
h′∈Hn

(∥∥∥F̂X′

h′ − F̂X′

h∨h′

∥∥∥2

D
1Ωc

h,h′

)
1B(X ′)

]
≤ 16|D|

n
.

• Upper bound for the term depending on T̃h,h′ . The de�nition of this term implies
that

T̃h,h′ =

(
RX′

h∨h′ −RX′

h′

RX′
h′ R

X′
h∨h′

)2 ∥∥∥EX′ [F̃X′

h∨h′

]∥∥∥2

D
1Ωh,h′

,

≤ 16
(
RX′

h∨h′ −RX′

h′

)2 ∥∥∥EX′ [F̃X′

h∨h′

]∥∥∥2

D
,

≤ 16|D|
(
RX′

h∨h′ −RX′

h′

)2

,

≤ 32|D|
{(

RX′

h∨h′ − 1
)2

+
(
RX′

h′ − 1
)2
}
,
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 21

using that E
[
F̃X′

h∨h′

]
≤ 1. We roughly bound the supremum over h′ ∈ Hn by a sum over

h′ and use the last inequality:

E
[

max
h′∈Hn

(
4T̃h∨h′ −

V (h′)

3

)
+

1B(X ′)

]
≤ 4

∑
h′∈Hn

E
[(
T̃h∨h′ −

V (h′)

12

)
+

1B(X ′)

]
,

≤ 4
∑
h′∈Hn

E
[(

32|D|
{(

RX′

h∨h′ − 1
)2

+
(
RX′

h′ − 1
)2
}
− V (h′)

12

)
+

1B(X ′)

]
,

≤ 4

{ ∑
h′∈Hn

E
[(

32|D|
(
RX′

h∨h′ − 1
)2

− V (h′)

24

)
+

1B(X ′)

]

+
∑
h′∈Hn

E
[(

32|D|
(
RX′

h′ − 1
)2

− V (h′)

24

)
+

1B(X ′)

]}
,

≤ 128|D|

{ ∑
h′∈Hn

E
[((

RX′

h∨h′ − 1
)2

− V (h′)

768|D|

)
+

1B(X ′)

]

+
∑
h′∈Hn

E
[((

RX′

h′ − 1
)2

− V (h′)

768|D|

)
+

1B(X ′)

]}
.

Then, Inequality (19) of Lemma 1 (with α = 2) proves that, on the set {X ′ ∈ B}, a.s.,

EX′
[((

RX′

h′ − 1
)2

− VR(h′)

)
+

]
≤ min

(
4M2

m2
1

,
64C2

K

m2
1

)
1

n2
,

with VR(h′) = κR ln(n)/nϕ(h′) and κR > max(8M2/m
2
1, 128C2

K/m
2
1C0). Choosing κ >

768|D|κR in the de�nition of V (h′) (see (25)) leads to V (h′)/768|D| ≥ VR(h′), and hence
we also have∑

h′∈Hn

E
[((

RX′

h′ − 1
)2

− V (h′)

768|D|

)
+

1B(X ′)

]
≤ min

(
4M2

m2
1

,
64C2

K

m2
1

)
1

n
,

thanks to Assumption Hb1 . Since ϕ(h) ≤ ϕ(h ∨ h′), V (h′) ≥ V (h ∨ h′), the other term is
bounded as follows

E
[((

RX′

h∨h′ − 1
)2

− V (h′)

768|D|

)
+

1B(X ′)

]
≤ E

[((
RX′

h∨h′ − 1
)2

− V (h ∨ h′)
768|D|

)
+

1B(X ′)

]
,

and same computations allow to deal with it. We thus deduce that

E
[

max
h′∈Hn

(
4T̃h∨h′ −

V (h′)

3

)
+

1B(X ′)

]
≤ 256|D|min

(
4M2

m2
1

,
64C2

K

m2
1

)
1

n
.(33)

• Upper bound for the terms depending on T ah′ or T
b
h′ . First, by de�nition of Ωh,h′ ,

T ah′ ≤ 4‖F̃X′

h′ − EX′ [F̃X′

h′ ]‖2
D. Furthermore, noticing that F̃X′

h′ belongs to L1(D) ∩ L2(D),
the following equality is classical:∥∥∥F̃X′

h′ − EX′ [F̃X′

h′ ]
∥∥∥2

D
= sup

t∈S̄D(0,1)

〈F̃X′

h′ − EX′ [F̃X′

h′ ], t〉2D,
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22 G. CHAGNY AND A. ROCHE

where S̄D(0, 1) is a dense countable subset of the sphere {t ∈ L1(D) ∩ L2(D), ‖t‖D = 1}
(such a set exists thanks to the separability of L2(D)). Moreover, we write the scalar

product 〈F̃X′

h′ − EX′ [F̃X′

h′ ], t〉D1B(X ′) = νn,h(t), for t ∈ S̄D(0, 1), where

νn,h(t) =
1

n

n∑
i=1

ψt,h(Xi, Yi)− EX′ [ψt,h(Xi, Yi)] ,(34)

with ψt,h(Xi, Yi) =
Kh(d(Xi, X

′))

EX′ [Kh(d(Xi, X ′))]
〈1[Yi;∞[, t〉D1B(X ′).

Consequently,

E
[

max
h′∈Hn

(
4T ah′ −

V (h′)

3

)
+

1B(X ′)

]
≤ 16

∑
h′∈Hn

E

[(
sup

t∈S̄D(0,1)

ν2
n,h′(t)−

V (h′)

48

)
+

1B(X ′)

]
.

We use the following lemma, which permits to control the empirical process de�ned by
(34).

Lemma 7. Under the assumptions of Theorem 2, for δ0 > max(3528C2
K |D|/M2C0, 12),

there exists a constant C > 0 (depending only on m1, M2, δ0, C0 and |D|) such that∑
h∈Hn

E

[(
sup

t∈S̄D(0,1)

ν2
n,h(t)− 6δ0

|D|M2

m2
1

ln(n)

nϕ(h)

)
+

1B(X ′)

]
≤ C

n
.

Choosing κ > 288δ0|D|M2/m
2
1 in the de�nition of V (h′) (see (25)) leads to V (h′)/48 ≥

6δ0|(D|M2/m
2
1) ln(n)/(nϕ(h)). This proves that

(35) E
[

max
h′∈Hn

(
4T ah′ −

V (h′)

3

)
+

1B(X ′)

]
≤ 16C

n
.

Recall �nally that V (h′) ≥ V (h∨ h′), similar computations allow to also obtain the same
bound for E[maxh′∈Hn

(
4T bh∨h′ − V (h′)/3

)
+

].

Gathering Inequalities (31), (32), (33), and (35) in Inequality (30) completes the proof
of Lemma 6.

�

6.3.3. Proof of Lemma 7 (concentration of the empirical process). The aim is to control
the deviations of the supremum of the empirical process νn,h de�ned by (34). Since it is
centred and bounded, the guiding idea is to apply the following concentration inequality.

Lemma 8. [Talagrand's Inequality] Let ξ1, . . . , ξn be i.i.d. random variables, and de�ne
νn(r) = 1

n

∑n
i=1 r(ξi) − E[r(ξi)], for r belonging to a countable class R of real-valued

measurable functions. Then, for δ > 0, there exists a universal constant C such that

E
[(

sup
r∈R

(νn (r))2 − c(δ)(Hν)2

)
+

]
≤ C

{
vν

n
exp

(
−δ

6

n(Hν)2

vν

)
+

(Mν
1 )2

C2(δ)n2
exp

(
− 1

21
√

2
C(δ)

√
δ
nHν

Mν
1

)}
,

with, C(δ) = (
√

1 + δ − 1) ∧ 1, c(δ) = 2(1 + 2δ) and

sup
r∈R
‖r‖L∞ ≤Mν

1 , E
[
sup
r∈R
|νn(r)|

]
≤ Hν, and sup

r∈R
Var (r (ξ1)) ≤ vν .
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 23

Inequality (8) is a classical consequence of the Talagrand Inequality given in Klein and
Rio (2005): see for example Lemma 5 (page 812) in Lacour (2008).

We �rst compute Hν , Mν and vν , involved in Lemma 8.

• For Mν , let t ∈ S̄D(0, 1), x ∈ H and y ∈ R be �xed. By the Cauchy-Schwarz
Inequality,

|ψt,h(x, y)| ≤ |D|‖t‖D
‖Kh‖L∞(R)

m1h−1ϕ(h)
≤ |D|CK
m1ϕ(h)

:= Mν
1 ,

thanks to (16).
• For Hν , recall that

EX′
[

sup
t∈S̄D(0,1)

ν2
n,h(t)

]
= EX′

[∥∥∥F̃X′

h′ − EX′ [F̃X′

h′ ]
∥∥∥2

D

]
≤ |D|M2

m2
1

1

nϕ(h)
:= (Hν)2

a.s. on the set {X ′ ∈ B} with the same computation as for the variance term, see
Lemma 3.
• For vν , we also �x t ∈ S̄D(0, 1), and compute,

VarX′ (ψt,h(X1, Y1)) ≤ EX′
[
ψ2
t,h(X1, Y1)

]
,

= EX′
[(∫

D

1Y1≤yt(y)dy

)2
K2
h(d(x,X ′))

(EX′ [Kh(d(x,X ′))])2

]
1B(X ′).

The integral is controlled with the Cauchy-Schwarz Inequality: (
∫
D
1Y1≤yt(y)dy)2 ≤

|D|‖t‖2
D = |D|, and the other quantity has already been bounded: we obtain

VarX′ (ψt,h(X1, Y1)) ≤ vν :=
|D|M2

m2
1ϕ(h)

.

Then, Lemma 8 gives, for δ > 0,

E

[(
sup

t∈S̄D(0,1)

ν2
n,h(t)− 2(1 + 2δ) (Hν)2

)
+

1B(X ′)

]
≤ C

{
|D|M2

m2
1

1

nϕ(h)
exp

(
−δ

6

)

+
1

C2(δ)

C2
K |D|2

m2
1

1

n2ϕ2(h)
exp

(
− 1

21
√

2
C(δ)

√
δ

√
M2

√
nϕ(h)√

|D|CK

)}
.

We choose δ = δ0 ln(n), for a δ0 large enough, and given below. We compute the order
of magnitude of the last upper bound, using Assumptions Hb1 and Hb2 . Recall that they
imply

∑
h∈Hn 1/ϕ(h) ≤ n2/C0 ln(n) and

∑
h∈Hn 1/ϕ2(h) ≤ n3/C2

0 ln2(n). First,∑
h∈Hn

1

nϕ(h)
exp

(
−δ

6

)
=

1

n1+δ0/6

∑
h∈Hn

1

ϕ(h)
≤ 1

C0nδ0/6−1 ln(n)
≤ 1

C0n
,

as soon as δ0 ≥ 12 since we can reasonably assume n ≥ 3. Then, C(δ0 ln(n)) =√
1 + δ0 ln(n) − 1 ≥ 1, if δ0 ln(n) ≥ 3, that is ln(n) ≥ 3/δ0. This is satis�ed since

δ0 > 12 and n ≥ 2. Hence
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24 G. CHAGNY AND A. ROCHE

1

n2C2(δ)

∑
h∈Hn

1

ϕ2(h)
exp

(
− 1

21
√

2
C(δ0 ln(n))

√
δ0 ln(n)

√
M2√
|D|CK

√
nϕ(h)

)

≤ 1

n2

∑
h∈Hn

1

ϕ2(h)
exp

(
− 1

21
√

2

√
δ0 ln(n)

√
M2√
|D|CK

√
nϕ(h)

)
,

≤ 1

n2

∑
h∈Hn

1

ϕ2(h)
exp

(
−
√
C0

21
√

2

√
δ0

√
M2√
|D|CK

ln(n)

)
,

= n
−2−

√
C0M2δ0

21
√

2|D|CK
∑
h∈Hn

1

ϕ2(h)
≤ 1

C2
0 ln2(n)

n
−
√
C0M2δ0

21
√

2|D|CK
+1 ≤ 1

C2
0n
,

as soon as
√
C0M2δ0/(21

√
2|D|CK) − 1 > 1 that is δ0 > 3528C2

K |D|/C0M2 with C > 0
depending only on m1, M2, δ0, C0 and |D|. This shows that

∑
h∈Hn

E

[(
sup

t∈S̄D(0,1)

ν2
n,h(t)− 2(1 + 2δ0 ln(n)) (Hν)2

)
+

1B(X ′)

]
≤ C

n
,(36)

for (Hν)2 = |D|(M2/m
2
1)/(nϕ(h)) and C > 0 depending only on m1, M2, δ0, C0 and |D|.

Since

2(1 + 2δ0 ln(n)) (Hν)2 ≤ 6δ0
|D|M2

m2
1

ln(n)

nϕ(h)
,

Inequality (36) is also satis�ed when we replace 2(1+2δ0 ln(n)) (Hν)2 by this upper bound.
Thus, the proof of Lemma 7 is completed.

�

6.4. Proof of Theorem 2. The idea is to come down to Inequality (26). Let Λ be the
set

Λ =
⋂
h∈Hn

{∣∣∣∣ ϕ̂(h)

ϕ(h)
− 1

∣∣∣∣ < 1

2

}
.

We split the loss function of the estimator∥∥∥F̂X′

ĥ
− FX′

∥∥∥2

D
≤
∥∥∥F̂X′

ĥ
− FX′

∥∥∥2

D
(1Λ + 1Λc) .

We will argue as follows: �rst, on the set Λ, ϕ̂(h) is close to ϕ(h), and we use the same
arguments as for (26). Second, the probability of the set Λc is negligible. Let us prove
these two claims.

• Upper bound for ‖F̂X′

ĥ
− FX′‖2

D1Λ. It follows from the same arguments as in the

beginning of the proof of Inequality (26) (see Section 6.3.1), that

∥∥∥F̂X′

ĥ
− FX′

∥∥∥2

D
1Λ ≤

{
6Â(h) + 6V̂ (h) + 3

∥∥∥F̂X′

h − FX′
∥∥∥2

D

}
1Λ.
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 25

Note that

Â(h) = max
h′∈Hn, V̂ (h′)<∞

{∥∥∥F̂X′

h − F̂X′

h′

∥∥∥2

D
− V (h′) +

(
V (h′)− V̂ (h′)

)}
+

,

≤ max
h′∈Hn, V̂ (h′)<∞

{∥∥∥F̂X′

h − F̂X′

h′

∥∥∥2

D
− V (h′)

}
+ max

h′∈Hn, V̂ (h′)<∞

(
V (h′)− V̂ (h′)

)
+
,

≤ A(h) + max
h′∈Hn

(
V (h′)− V̂ (h′)

)
+
.

We obtain the following decomposition:

∥∥∥F̂X′

ĥ
− FX′

∥∥∥2

D
1Λ ≤

{
6A(h) + 6V (h) + 3

∥∥∥F̂X′

h − FX′
∥∥∥2

D
(37)

6 max
h′∈Hn

(
V (h′)− V̂ (h′)

)
+

+ 6
(
V̂ (h)− V (h)

)}
1Λ.

For h′ ∈ Hn, such that V̂ (h′) <∞, we have

V (h′)− V̂ (h′) = κ
ln(n)

n

(
1

ϕ(h′)
− 3

2

1

ϕ̂(h′)

)
.

But on the set Λ, for any h′ ∈ Hn, |ϕ̂(h′)− ϕ(h′)| < ϕ(h′)/2. In particular, we thus have

ϕ̂(h′)− ϕ(h′) < ϕ(h′)/2, that is ϕ̂(h′) < (3/2)ϕ(h′). This proves that V (h′)− V̂ (h′) < 0,
and hence

max
h′∈Hn

(
V (h′)− V̂ (h′)

)
+

= 0.

Moreover, on Λ, we also have, for h ∈ Hn, ϕ(h)−ϕ̂(h) < ϕ(h)/2, that is 2/ϕ(h) > 1/ϕ̂(h).
Thus,

V̂ (h)− V (h) = κ
ln(n)

n

(
3

2

1

ϕ̂(h)
− 1

ϕ(h)

)
≤ κ

ln(n)

n
2

1

ϕ(h)
= 2V (h).

Gathering the two bounds in (37) leads to∥∥∥F̂X′

ĥ
− FX′

∥∥∥2

D
1Λ ≤ 6A(h) + 8V (h) + 3

∥∥∥F̂X′

h − FX′
∥∥∥2

D
.

We thus obtain, like in the proof of Inequality (26),

E
[∥∥∥F̂X′

ĥ
− FX′

∥∥∥2

D
1Λ1B(X ′)

]
≤ 8V (h) + 3C

(
h2β +

1

nϕ(h)

)
.

• Upper bound for ‖F̂X′

ĥ
− FX′‖2

D1Λc. We roughly bound∥∥∥F̂X′

ĥ
− FX′

∥∥∥2

D
1Λc ≤ 2

(∥∥∥F̂X′

ĥ

∥∥∥2

D
+
∥∥∥FX′

∥∥∥2

D

)
1Λc ≤ 4|D|1Λc .

It remains to control P(Λc):

P(Λc) ≤
∑
h∈Hn

P
(
|ϕ̂(h)− ϕ(h)| ≥ ϕ(h)

2

)
,

=
∑
h∈Hn

P

(∣∣∣∣∣ 1n
n∑
i=1

1{d(0,Xi)≤h} − E
[
1{d(0,Xi)≤h}

]∣∣∣∣∣ ≥ ϕ(h)

2

)
.
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26 G. CHAGNY AND A. ROCHE

We apply Bernstein's Inequality (Lemma 2), with Ti = 1{d(0,Xi)≤h} and η = ϕ(h)/2. Since
0 ≤ Ti ≤ 1, we set b0 = 1, and v2 = Var(T1) = ϕ(h)(1− ϕ(h)). We derive

P(Λc) ≤ 2 exp

(
− nϕ2(h)/8

ϕ(h)(1− ϕ(h)) + ϕ(h)/2

)
= 2 exp

(
− nϕ(h)

8(1− ϕ(h)) + 4

)
≤ 2 exp

(
−nϕ(h)

12

)
.

We thus obtain

E
[∥∥∥F̂X′

ĥ
− FX′

∥∥∥2

D
1Λc1B(X ′)

]
≤ 8|D|

∑
h∈Hn

exp

(
−nϕ(h)

12

)
≤ 8|D|n1−C0/12.

thanks to Assumptions Hb1 and Hb2. Since C0 > 12, n1−C0/12 < n−1 which ends the proof.

�

6.5. Proof of Theorem 3.

6.5.1. Proof of (a). We have to compute the convergence under three regularity assump-
tions (HX,L, HX,M and HX,F ), and for the two criteria (pointwise and integrated). It
follows from (7) of Theorem 1 that the risk of the estimator is bounded by

R̃(h) = h2β + 1/(nϕx0(h)),

up to a multiplicative constant. To obtain the convergence rates, it is thus su�cient to
compute the bandwidth h which minimizes the bound R̃(h) when assuming HX , or at
least to choose a good value for it.
Convergence rate under Assumption HX,F . With the lower bound on ϕ of HX,F , the quan-

tity R̃(h) and thus also the risks are upper bounded by a quantity with order of magnitude

R(h) := h2β + h−γ exp
(
c2h
−α)n−1.

Choosing the bandwidth h0 such that

h0 =

(
lnn

c2

− κ ln

(
lnn

c2

))−1/α

,

with κ := c−1
2 (γ/α + 2β/α) ends the proof, since R(h0) has the announced order.

�

Convergence rate under Assumption HX,M or HX,F . First assume HX,M . The risk is
bounded (up to a multiplicative constant) by the quantity

R(h) = h2β + n−1h−γ1 exp (c2 lnα(1/h)) .

Choosing

h0 = exp

(
−
(

1

c2

lnn− c−(α+1)/α
2 (2β − γ1) ln1/α n

)1/α

+

)
,

leads to what we want to prove, that is

(38) R(h0) ≤ C exp

(
− 2β

c
1/α
2

ln1/α n

)
.

Indeed, if n > exp
(
c

1/(1−α)
2 (2β − γ1)

α/(α−1)
+

)
, we have

1

c2

lnn− c−(α+1)/α
2 (2β − γ1) ln1/α n > 0
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 27

and

h0 = exp

(
−
(

1

c2

lnn− c−(α+1)/α
2 (2β − γ1) ln1/α n

)1/α
)
.

Now, let sn := exp

(
− 2β

c
1/α
2

ln1/α n

)
, we have

h2β
0

sn
= exp

(
2β

c
1/α
2

ln1/α n

(
1−

(
1− c−1/α

2 (2β − γ1) ln1/α−1
)1/α

))
→n→∞ 1,

using that,

(1− c−1/α
2 (2β − γ1) ln1/α−1 n)1/α = 1− 1

α
c
−1/α
2 (2β − γ1) ln1/α−1 n+ o(ln1/α−1 n).

Then h2β
0 ≤ Csn. We deal similarly with the second term of R(h),

n−1h−γ10 exp(c2 lnα(1/h))

sn

= exp

(
γ1c
−1/α
2 ln1/α n

(
1−

(
1− c−1/α

2 (2β − γ1) ln1/α−1
)1/α

))
→n→∞ 1,

which leads to (38), and ends the computation of the rate under HX,M .

When assumingHX,F , the optimal h can be computed: the one which minimizes R(h) =
h2β + h−γ has the order n1/(2β+γ) and immediatly gives R(h) ≤ Cn−2β/(2β+γ).

�

6.5.2. Proof of (b). The proof comes down to the proof of (a) since Theorem 1 gives a

bound of the risks of F̂ĥ with the form minh R̃(h) (R̃(h) de�ned in the proof of (a)).
The computation of the (a) bound for this minimum has thus been done in the previous
section.

�

6.6. Proof of Theorem 4.

6.6.1. Proof of (i), under Assumption HX,L. The proof is based on the general reduction
scheme described in Section 2.2 of Tsybakov (2009). Let x0 ∈ H be �xed and rn =
(ln(n))−β/α the rate of convergence. We de�ne two functions F0 and F1, called hypotheses,
such that

(A) Fl belongs to Fβ, for l = 0, 1,
(B) ‖F x0

0 − F x0
1 ‖2

D ≥ crn for a constant c > 0,
(C) K(P⊗n1 ,P⊗n0 ) ≤ α for a real number α <∞ (which does not depend on x0), where

P⊗n0 (resp. P⊗n1 ) is the probability distribution of a sample (X0,i, Y0,i)i=1,...,n (resp.
(X1,i, Y1,i)i=1,...,n) for which the conditional c.d.f. of Y0,i ∈ R given X0,i ∈ H (resp.
of Y1,i given X1,i) is F0 (resp. F1). K(P,Q) is the Kullback distance between two
probability distributions P and Q: K(P,Q) =

∫
ln(dP/dQ)dP if P << Q, and

K(P,Q) = +∞ otherwise.

Then, thanks to Theorem 2.2 in Tsybakov (2009) (p.90), the results hold with c′ indepen-
dent on x0. In the sequel, we de�ne F0 and F1 and check the three conditions.
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28 G. CHAGNY AND A. ROCHE

Construction of F0 and F1 and of the associated samples. For (x, y) ∈ H × R, let F x
0 be

the c.d.f. of the uniform distribution on D, that is F x
0 (y) = y

|D|1y∈D + 1y>supD. Choose a

real random variable Y0 with a uniform distribution PUD on the compact set D, and take
any process X0 on H, independent on Y0, with distribution PX verifying HX,L. For the
second function, set

F x
1 (y) = F x

0 (y) + LηβnH

(
‖x− x0‖

ηn

)∫ y

−∞
ψ(t)dt,

where

• ψ : R→ R is a non-zero continuous function with support D with
∫
R ψ(t)dt = 0.

• H : R+ → R+ is a function supported by [0; 1] such that |H(u)−H(v)| ≤ |u−v|β,
for any (u, v) ∈ R2

+.
• L is a real number such that 0 < L < 1/(supn∈N∗{ηβn}|D|‖K‖L∞(R)‖ψ‖L∞(R)).
• ηn is a non-negative real number such that

(39) η2β
n ≥ c(B)rn and η2β

n ϕ
x0(ηn) ≤

c(C)

n
,

for two constants c(B) > 0 and c(C) > 0.

From HX,L, a positive number ηn for which the properties above hold is given by

(40) ηn =

(
lnn− ((2β + γ)/α) ln lnn

C1

)−1/α

.

We also choose a variable Y1, such that, for any x ∈ H, the conditional distribution of
Y1 given X0 = x is characterized by the c.d.f. F x

1 . The notation P1 is the distribution of
(X0, Y1).

6.6.2. Checks of the conditions (A) to (C).
Check (A): belonging to the space Fβ. For any x ∈ H, the function F x

0 is a c.d.f. by
construction (it does not depend on x and is simply the c.d.f. of the uniform distribution
on D), and ‖F x

0 − F x′
0 ‖2 = 0 (x, x′ ∈ H). Thus, F0 belongs to Fβ.

Let x ∈ H be �xed. The function y 7→ F x
1 (y) is continuous, with limit 0 when y goes

to −∞ (recall that D is a bounded set), and 1 when y goes to +∞ (since
∫
R ψ(t)dt = 0).

If y /∈ D̄, (F x
1 )′(y) = 0 (the support of ψ is included in D) and if y ∈ D̊,

(F x
1 )′(y) =

1

|D|
+ LηβnH

(
‖x− x0‖

ηn

)
ψ(y) ≥ 1

|D|
− Lηβn‖H‖L∞(R)‖ψ‖L∞(R) > 0,

thanks to the de�nition of L above. Thus F x
1 is increasing, and F x

1 is a conditional
distribution function. Moreover, for any x, x′ ∈ H, denoting by Iψ =

∫
D

(
∫ y
−∞ ψ(t)dt)2dy,

‖F x
1 − F x′

1 ‖2
D = L2η2β

n Iψ

(
H

(
‖x− x0‖

ηn

)
−H

(
‖x′ − x0‖

ηn

))2

,

≤ L2η2β
n Iψ

(
‖x− x0‖

ηn
− ‖x

′ − x0‖
ηn

)2β

≤ L2Iψ‖x− x′‖2β,

thanks to the regularity property of the function H. Therefore, F1 also belongs to Fβ.
Check (B): condition on the loss ‖F x0

0 − F x0
1 ‖2

D. We have, thanks to the lower bound for
ηn,

‖F x0
1 − F x0

0 ‖2
D = L2η2β

n H
2(0)Iψ ≥ L2H2(0)Iψc(C)rn.
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 29

Check (C): Upper bound for the Kullback divergence K(P⊗n1 , P⊗n0 ). In a �rst step, we
prove that the measure P1 is absolutely continuous with respect to P0, and compute the
Radon-Nikodym derivative. First, notice that

F x
1 (y) =

∫ y

−∞

1

|D|
1D(t) + LηβnH

(
‖x− x0‖

ηn

)
ψ(t)dt.

Therefore, keeping in mind that
∫
R ψ(t)dt =

∫
D
ψ(t)dt = 0, the conditional distribution

of Y1 given X0 = x admits a density with respect to the Lebesgue measure on D given by

fx1 (y) =

(
1

|D|
+ LηβnH

(
‖x− x0‖

ηn

)
ψ(y)

)
1D(y).

We can thus compute the distribution P1 of the random couple (X0, Y1). For any test
function Φ on H× R,∫

H×R
Φ(x, y)dP1(x, y) = E [Φ(X0, Y1)] = E [E [Φ(X0, Y1)|X0]] ,

=

∫
H
E [Φ(x, Y1)|X0 = x] dPX0(x),

=

∫
H

(∫
R

Φ(x, y)fx1 (y)dy

)
dPX0(x),

=

∫
H×R

Φ(x, y)|D|fx1 (y)

(
1

|D|
1D(y)

)
dydPX0(x),

=

∫
H×R

Φ(x, y)|D|fx1 (y)dP0(x, y).

Consequently, P1 << P0, and dP1/dP0(x, y) = |D|fx1 (y). This enables to compute the
Kullback distance

K(P1,P0) =

∫
ln

(
dP1

dP0

)
dP1 =

∫
H×R

ln (|D|fx1 (y)) fx1 (y)dydPX0(x),

= E
[∫

D

ln
(
|D|fX0

1 (y)
)
fX0

1 (y)dy

]
,

= E
[∫

D

ln

(
1 + |D|LηβnH

(
‖X0 − x0‖

ηn

)
ψ(y)

)(
1

|D|
+ LηβnH

(
‖X0 − x0‖

ηn

)
ψ(y)

)
dy

]
.

Noting that ln(1 + u) ≤ u for every u > −1, we obtain

K(P1,P0) ≤ E
[∫

D

|D|LηβnH
(
‖X0 − x0‖

ηn

)
ψ(y)dy

]
+E

[∫
D

|D|
(
LηβnH

(
‖X0 − x0‖

ηn

)
ψ(y)

)2

dy

]
,

= 0 + |D|L2η2β
n

∫
D

ψ2(y)dyE
[
H2

(
‖X0 − x0‖

ηn

)]
,

≤ |D|L2η2β
n ‖ψ‖2

L2(R)‖H‖2
L∞(R)P (‖X0 − x0‖ ≤ ηn)

= |D|L2η2β
n ‖ψ‖2

L2(R)‖H‖2
L∞(R)ϕ

x0(ηn),

by using successively that
∫
R ψ(y)dy = 0 and that the support of H is [0; 1].
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30 G. CHAGNY AND A. ROCHE

Thus, thanks to the de�nition of ηn, we get K(P1,P0) ≤ |D|L2‖ψ‖2
L2(R)‖H‖2

L∞(R)c(C)/n,
and �nally,

K(P⊗n1 ,P⊗n0 ) = nK(P1,P0) ≤ |D|L2‖ψ‖2
L2(R)‖H‖2

L∞(R)c(C),

which completes the proof of (C).

�

6.6.3. Proof of (i), under Assumption HX,M or HX,F . The proofs exactly follow the same
scheme as for (i) under HX,L. The only di�erence is the choice of the sequence (ηn)n (see
(40)).

• Under HX,M , we set rn = exp

(
− 2β

c
1/α
1

ln1/α n

)
, and replace the previous choice

(40) of ηn by ηn = exp(−(c−1
1 lnn− c−(α+1)/α

1 (2β + γ2) ln1/α n)1/α). It veri�es both
of the required conditions (39).
• The case HX,F is the extreme case α = 1 in HX,M . We set ηn = n1/(2β+γ) and
attain the lower bound rn = n−2β/(2β+γ).

�

6.6.4. Proof of (ii). The risk (5) is an integral w.r.t the measure PX ⊗ PUD where PUD is
the uniform distribution on the set D. The tools de�ned to prove (i) are useful and we
refer to it. But it cannot be straightforwardly adapted, since for an integrated criterion,
two hypotheses are not su�cient. We focus on the case of Assumption HX,L (the switch to
Assumption HX,M and HX,F is the same as in (i)). Denote by rn = (ln(n))−2β/α the rate
of convergence again. We must build a set of functions (Fω)ω∈Ωn where Ωn is a non-empty
subset of {0, 1}mn and mn is a positive integer which will be precised later, such that,

(A') Fω belongs to Fβ, for all ω ∈ Ωn,
(B') For all ω, ω′ ∈ Ωn, ω 6= ω′, E

[
‖FX′

ω − FX′

ω′ ‖2
D1B(X ′)

]
≥ crn where c > 0 is a

constant,
(C') For all ω ∈ Ωn, Pω is absolutely continuous with respect to P0 and

1

Card(Ωn)

∑
ω∈Ωn

K(P⊗nω ,P⊗n0 ) ≤ ζ ln(Card(Ωn))

for a real number ζ, where P⊗nω is the probability distribution of a sample (Xω,i, Yω,i)i=1,...,n

for which the conditional c.d.f. of Yω,i given Xω,i is given by Fω.

Then the result comes from Theorem 2.5 of Tsybakov (2009) (p.85-86). We follow the
same steps as previously.

6.6.5. Construction of the set of hypotheses Fω and of the associated samples. The �rst
function (x, y) 7→ F x

0 (y) is de�ned as in the proof of (i). For all ω = (ω1, . . . , ωmn) ∈
{0, 1}mn , let

F x
ω (y) = F x

0 (y) + Lηβn

∫ y

−∞
ψ(t)dt

mn∑
k=1

ωkH

(
‖x− xk‖

ηn

)
,

where ψ, H, L, and (ηn)n are introduced in the proof of (i) (a good choice of ηn is (40)),
and with xj =

√
2 supn∈N∗{ηn}ej, for all j ≥ 1, where (ej)j≥1 is an orthonormal basis of

L2([0, 1]).
We also choose a variable Yω, such that, for any x ∈ H, the conditional distribution of

Yω given X = x is characterized by the c.d.f. F x
ω . The notation Pω is the distribution of

(X, Yω).
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 31

Remark that the de�nition of (xj)j=1,...,mn implies that,

(41) H

(
‖x− xk‖

ηn

)
H

(
‖x− xj‖

ηn

)
= 0 for all x ∈ H, as soon as j 6= k.

Indeed, suppose that H(‖x − xk‖/ηn) 6= 0, since H is supported on [0, 1], we have ‖x −
xk‖ ≤ ηn. Now remark that, as (ej)j≥1 is an orthonormal basis, for all j 6= k, ‖xj−xk‖2 =
2 supn∈N∗{η2

n} (‖ej‖2 − 2〈ej, ek〉+ ‖ek‖2) = 4 supn∈N∗{η2
n}. Then ‖x− xj‖ ≥ ‖xj − xk‖ −

‖x− xk‖ ≥ 2 supn∈N∗{ηn} − ηn > ηn and H(‖x− xk‖/ηn) = 0.

6.6.6. Checks of the conditions (A') to (C').
Check (A'). We have already checked that F0 belongs to Fβ. Let ω ∈ {0, 1}mn be �xed.
To prove that F x

ω is non increasing (x ∈ H �xed), as for F x
1 , we bound,

(F x
ω )′(y) ≥ 1

|D|
− Lηβn‖H‖L∞(R)‖ψ‖L∞(R)

≥ 1

|D|
− L sup

n∈N∗
{ηβn}‖H‖L∞(R)‖ψ‖L∞(R) > 0,

for y ∈ D, thanks to Property (41) and the de�nition of L above. Thus, as F1 in the proof
of (i), Fω is a conditional distribution function, and we also similarly obtain Fω ∈ Fβ.
Check (B'). For all ω, ω′ ∈ {0, 1}mn ,

E
[
‖FX′

ω − FX′

ω′ ‖2
D1B(X ′)

]
= L2η2β

n IψE

( mn∑
k=1

(ωk − ω′k)H
(
‖X ′ − xk‖

ηn

))2

1B(X ′)

 ,
with Iψ de�ned in the proof of (i). From Property (41), we get:

E
[
‖FX′

ω − FX′

ω′ ‖2
D1B(X ′)

]
= L2η2β

n Iψ

mn∑
k=1

(ωk − ω′k)2E
[
H2

(
‖X ′ − xk‖

ηn

)
1B(X ′)

]
.

Now set cH := minx,‖x‖≤1/2H(x), since H is continuous and H(x) > 0 for all x ∈ H,
such that ‖x‖ ≤ 1, we have cH > 0 and

E
[
H2

(
‖X ′ − xk‖

ηn

)
1B(X ′)

]
≥ E

[
H2

(
‖X ′ − xk‖

ηn

)
1{ ‖X′−xk‖

ηn
≤1/2

}1B(X ′)

]
≥ c2

HP ({‖X ′ − xk‖ ≤ ηn/2} ∩ {X ′ ∈ B}) .

Now recall that, by de�nition, ‖xk‖ =
√

2 supn∈N{ηn}, and that B contains the ball of

H centred at 0 and of radius ρ. Then, as soon as, ρ > (1/2 +
√

2) supn∈N{ηn}, we have
{‖X ′ − xk‖ ≤ ηn/2} ⊂ {‖X ′‖ ≤ ρ} ⊂ {X ′ ∈ B}. Then, since ‖xk‖ < ρ, we also have
xk ∈ B and we can apply Condition (13) to get a lower bound on the shifted small ball
probability P (‖X ′ − xk‖ ≤ ηn/2) = ϕxk(ηn/2). We get

E
[
H2

(
‖X ′ − xk‖

ηn

)
1B(X ′)

]
≥ c2

Hc2ϕ(ηn/2),

and

E
[
‖FX′

ω − FX′

ω′ ‖2
D1B(X ′)

]
≥ L2c2

Hc2η
2β
n Iψϕ(ηn/2)ρ(ω, ω′),

where ρ is the Hamming distance on {0, 1}mn de�ned by ρ(ω, ω′) =
∑mn

j=1 1{ωk 6=ωk}. Now,
from Varshamov-Gilbert bound (Lemma 2.7 of Tsybakov 2009), there exists a subset Ωn
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32 G. CHAGNY AND A. ROCHE

of {0, 1}mn such that

(42) ρ(ω, ω′) ≥ mn

8
, for all ω, ω′ ∈ Ωn, ω 6= ω′, and Card(Ωn) ≥ 2mn/8.

Then �x mn := bϕ(ηn/2)−1c where b·c is the integer part. For all ω 6= ω′, by de�nition of
ηn

E
[
‖FX′

ω − FX′

ω′ ‖2
D1B(X ′)

]
≥ 1

8
L2c2

Hc2η
2β
n Iψmnϕ(ηn/2) ≥ 1

8
L2c2

Hc2rn.

Check (C'). We also prove that the measure Pω is absolutely continuous with respect to
P0, with derivative dPω/dP0(x, y) = |D|fxω(y) and dPω(x, y) = fxω(y)dydPX(x), like in the
proof of (i). Arguing again as in (i), we get

K(Pω,P0) ≤ |D|L2η2β
n

∫
D

ψ2(y)dy
mn∑
k=1

ωkE
[
H2

(
‖X − xk‖

ηn

)]
,

≤ mn|D|L2η2β
n ‖ψ‖2

L2(R)‖H‖2
L∞(R)P (‖X − xk‖ ≤ ηn) .

Now, arguing again as in Check (A'), we can apply Assumption (13) and get that P(‖X−
xk‖ ≤ ηn) ≤ C2P(‖X‖ ≤ ηn) = C2ϕ(ηn). Thanks to the de�nition of ηn, we now obtain
(as in (i))

K(P⊗nω ,P⊗n0 ) ≤ C2mn|D|L2‖ψ‖2
L2(R)‖H‖2

L∞(R)c(C).

Finally, condition (42) on the cardinal of Ωn leads to mn ≤ (8/ ln 2) ln(Card(Ωn)), which
completes the proof of (C'), and at the same time the proof of all the lower bounds.

�

6.7. Proof of Proposition 1.

6.7.1. Main part of the proof. The proof starts like the proof of Theorem 1. For Inequality
(ii), we �rst bound E[‖F̂X′

h −FX′‖2
D1{RX′h <1/2}1B(X ′)] by C/(nϕp(h)), with d replaced by

dp in the de�nition of RX′

h . For E[‖F̂X′

h −FX′‖2
D1{RX′h ≥1/2}1B(X ′)] we obtain the splitting

(23). Lemmas 3 and Lemmas 4 remain valid (by replacing again d by dp in every terms,
and by using H ′ϕ instead of Hϕ). This �rst part is also easily adapted to the proof of
Inequality (i).

The di�erence lies in the control of the bias term. We substitute to Lemma 5 the
following result, the proof of which can be found below. This ends the proof.

Lemma 9. Suppose that Assumptions HF and Hξ are ful�lled. Then

E
[∥∥∥FX′ − EX′

[
F̃X′

h,p

]∥∥∥2

D

]
≤ C

h2β +

(∑
j>p

σ2
j

)β


and

E
[∥∥∥F x0 − E

[
F̃ x0
h,p

]∥∥∥2

D

]
≤ C

h2β +

(∑
j>p

σ2
j

)β

+

(∑
j>p

〈x0, ej〉2
)β


where C > 0 only depends on CD, β, and Cξ.

�
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ESTIMATION OF THE C.D.F GIVEN A FUNCTIONAL COVARIATE 33

6.7.2. Proof of Lemma 9. Let us begin with the �rst inequality (integrated risk). Like in
the proof of Lemma 5, we also obtain (24). Then,

E
[∥∥∥FX′ − EX′

[
F̃X′

h,p

]∥∥∥2

D

]
≤ C2

Dn
2E

EX′
W̃ (1)

h (X ′)

(
d2
p(X1, X

′) +
∑
j>p

σ2
j (ξ

(1)
j − ξ′j)2

)β/2
2 ,

where ξ
(1)
j := (〈X1, ej〉−µj)/σj and ξ′j := (〈X1, ej〉−µj)/σj are the standardized versions

of 〈X1, ej〉 and 〈X ′, ej〉. The same arguments as in Lemma 5 lead to

E
[∥∥∥FX′ − EX′

[
F̃X′

h,p

]∥∥∥2

D

]
≤ C2

Dn
2E

EX′
W̃ (1)

h (X ′)

(
h2 +

∑
j>p

σ2
j (ξ

(1)
j − ξ′j)2

)β/2
2 .

Now, �rstly, for all a, b > 0, (a+ b)β/2 ≤ (2 max{a, b})β/2 ≤ 2β/2(aβ/2 + bβ/2) and secondly

EX′
[
W̃

(1)
h (X ′)

]
= 1/n. We thus obtain

E
[∥∥∥FX′ − EX′

[
F̃X′

h,p

]∥∥∥2

D

]
≤

2β+1C2
D

h2β + n2E

EX′
W̃ (i)

h

(∑
j>p

σ2
j (ξ

(i)
j − ξ′j)2

)β/2
2 .(43)

Under Assumption Hb
ξ , the results comes from the following bound

E

EX′
W̃ (1)

h (X ′)

(∑
j>p

σ2
j (ξ

(1)
j − ξ′j)2

)β/2
2 ≤ 4βC2β

ξ

(∑
j>p

σ2
j

)β
1

n2
.

Under Assumption H ind
ξ , remark that

E

EX′
W̃ (1)

h (X ′)

(∑
j>p

σ2
j (ξ

(1)
j − ξ′j)2

)β/2
2

= E

EX′ [W̃ (1)
h (X ′)

]2

EX′

(∑
j>p

σ2
j (ξ

(1)
j − ξ′j)2

)β/2
2

≤ n−2E

(∑
j>p

σ2
j (ξ

(1)
j − ξ′j)2

)β/2
2

.

Now applying Lemma 10 below with ηj = ξ
(1)
j − ξ′j and CM = 2βCξ, we get

E

(∑
j>p

σ2
j (ξ

(1)
j − ξ′j)2

)β/2
2

≤ 24βC2
ξ

(∑
j>p

σ2
j

)β

,

and the result comes from Inequality (43). The proof of the �rst inequality of Lemma 9
is completed.
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34 G. CHAGNY AND A. ROCHE

For the second inequality (pointwise risk), the only di�erence is that, from (24), we
rather use

‖X1 − x0‖β =

(
d2
p (X1, x0) +

∑
j>p

(σjξj − 〈x0, ej〉)2

)β/2

≤ 3β/2

dβp (X1, x0) + 2β/2

(∑
j>p

σ2
j ξ

2
j

)β/2

+ 2β/2

(∑
j>p

〈x0, ej〉2
)β/2

 .

The �nal bound then follows similarly.

�

Lemma 10. Let (ηj)j≥1 a sequence of real random variables and (σj)j≥1 a sequence a real
numbers verifying, for β > 0,∑

j≥1

σ2
j < +∞ and ∀j ≥ 1, E

[
ηβj

]
≤ CM ,

for a constant CM > 1, then, for all p ∈ N

E

(∑
j>p

σ2
j η

2
j

)β/2
 ≤ CM

(∑
j>p

σ2
j

)β/2

.

Proof of Lemma 10. First suppose that β/2 ∈ N∗, we have(∑
j>p

σ2
j η

2
j

)β/2

=
∑

j1,...,jβ/2>p

β/2∏
l=1

σ2
jl
η2
jl
,

and, by a classical generalization of Hölder's Inequality

E

(∑
j>p

σ2
j η

2
j

)β/2
 =

∑
j1,...,jβ/2>p

β/2∏
l=1

σ2
jl
E

β/2∏
l=1

η2
jl

 ≤ ∑
j1,...,jβ/2>p

β/2∏
l=1

σ2
jl

β/2∏
l=1

E
[
ηβjl

]2/β

≤ CM
∑

j1,...,jβ/2>p

β/2∏
l=1

σ2
jl
≤ CM

(∑
j>p

σ2
j

)β/2

.

Now suppose that β ∈ Q∩]0,+∞[, we can write without loss of generality that β/2 = p/q
with p ∈ N∗ and q > 1 (if q = 1, β/2 ∈ N∗). Then the function x 7→ x1/q is concave and
by Jensen's Inequality:

E

(∑
j>p

σ2
j η

2
j

)β/2
 ≤ E

[(∑
j>p

σ2
j η

2
j

)p]1/q

≤ C
1/q
M

(∑
j>p

σ2
j

)β/2

≤ CM

(∑
j>p

σ2
j

)β/2

.

The case β > 0 follows immediately from the density of Q into R.
�

6.8. Proof of Corollary 1. The proof is based on the same ideas as the ones used to
prove Theorem 3 in Section 6.5. We begin with the result (ii) (integrated risk).
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6.8.1. Proof of (ii). Thanks to Proposition 1 (ii), the risk of the estimator is bounded by
h2β + (

∑
j>p σ

2
j )
β + n−1ϕ−1

p (h), up to a multiplicative constant. Remark that

ϕp(h) =

∫
{x∈Rp, ∑p

j=1 σ
2
jx

2
j≤h2}

fp(x1, . . . , xp)dx,

where fp is the density of (ξ1, . . . , ξp). By noticing that{
x ∈ Rp,

p∑
j=1

σ2
jx

2
j ≤ h2

}
⊃

x ∈ Rp, |xj| ≤
h√∑p
j=1 σ

2
j

 ,

we get

ϕp(h) ≥ 2php
∫
[
0,(
∑p
j=1 σ

2
j )
−1/2

]p fp(hx1, . . . , hxp)dx ≥ cphp,

where c only depends on
∑

j≥1 σ
2
j and cf . With the assumption on σj, we thus obtain the

following upper bound for the risk, up to a constant R(h, p) := h2β +pβ(1−2δ) +c−pn−1h−p.
We then compute the partial derivatives

∂R

∂h
(h, p) = 2βh2β−1 − pc−pn−1h−p−1,

∂R

∂p
(h, p) = β(1− 2δ)pβ(1−2a)−1 − ln(ch)c−pn−1h−p.

If (h∗, p∗) is the minimizer of R we have ∂R
∂h

(h∗, p∗) = 0, which leads to

h∗ =

(
p∗c−p

∗

2β

)1/(2β+p∗)

n−1/(2β+p∗).

Moreover, for all p ∈ N∗,

R(h∗, p∗) =

(
p∗c−p

∗

2β

)2β/(2β+p∗)

n−2β/(2β+p∗) + (p∗)β(1−2δ)

+c−pn−1

(
p∗c−p

∗

2β

)−p∗/(2β+p∗)

n−p
∗/(2β+p∗)

≤
(
pc−p

2β

)2β/(2β+p)

n−2β/(2β+p) + pβ(1−2δ)

+c−pn−1

(
pc−p

2β

)−p/(2β+p)

n−p/(2β+p),

and this last bound has the order n−2β/(2β+p)+pβ(1−2δ). Choosing h = (pc−p/2β)
1/(2β+p)

n−1/(2β+p)

and p = [ln(n)/(δ − 1/2) ln ln(n)− 2β] gives the result.

6.8.2. Proof of (i). We deduce from Proposition 1 (ii), from the assumption
∑

j>p〈x0, ej〉 ≤
C
∑

j>p σ
2
j , and from the left-hand-side inequality of Hϕ that the risk is upper bounded

by h2β + (
∑

j>p σ
2
j )
β + n−1ϕ−1

p (h), up to a multiplicative constant. Thus, the reasoning is
the same as for (ii).

�
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