Gene Selection in Cancer Classification using GPSO/SVM and GA/SVM Hybrid Algorithms

Abstract : In this work we compare the use of a Particle Swarm Optimization (PSO) and a Genetic Algorithm (GA) (both augmented with Support Vector Machines SVM) for the classification of high dimensional Microarray Data. Both algorithms are used for finding small samples of informative genes amongst thousands of them. A SVM classifier with 10- fold cross-validation is applied in order to validate and evaluate the provided solutions. A first contribution is to prove that PSOSVM is able to find interesting genes and to provide classification competitive performance. Specifically, a new version of PSO, called Geometric PSO, is empirically evaluated for the first time in this work using a binary representation in Hamming space. In this sense, a comparison of this approach with a new GASVM and also with other existing methods of literature is provided. A second important contribution consists in the actual discovery of new and challenging results on six public datasets identifying significant in the development of a variety of cancers (leukemia, breast, colon, ovarian, prostate, and lung).
Type de document :
Communication dans un congrès
Congress on Evolutionary Computation, Sep 2007, Singapor, Singapore. IEEE, 2007


https://hal.inria.fr/inria-00269967
Contributeur : Laetitia Jourdan <>
Soumis le : jeudi 3 avril 2008 - 13:06:21
Dernière modification le : jeudi 3 avril 2008 - 13:34:35

Fichier

cec2007ok.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00269967, version 1

Collections

Citation

Enrique Alba, José Garcia-Nieto, Laetitia Jourdan, El-Ghazali Talbi. Gene Selection in Cancer Classification using GPSO/SVM and GA/SVM Hybrid Algorithms. Congress on Evolutionary Computation, Sep 2007, Singapor, Singapore. IEEE, 2007. <inria-00269967>

Exporter

Partager

Métriques

Consultation de
la notice

204

Téléchargement du document

380

  翻译: