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Abstract

Let h : [0,∞) 7→ [0,∞) be continuous and nondecreasing, h(t) > 0 if t > 0,

and m,q be positive real numbers. We investigate the behavior when k → ∞

of the fundamental solutions u = uk of ∂tu − ∆um + h(t)uq = 0 in Ω × (0, T )

satisfying uk(x, 0) = kδ0. The main question is wether the limit is still a solution

of the above equation with an isolated singularity at (0, 0), or a solution of the

associated ordinary differential equation u′ +h(t)uq = 0 which blows-up at t = 0.
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1 Introduction

Let m and q positive parameters and h : [0,∞) 7→ [0,∞) a nondecreasing continuous. If one
consider a reaction-diffusion equation such as

∂tu− ∆um + h(t)uq = 0 (1.1)

(u > 0 for simplicity) in a cylindrical domain QT = R
N × (0, T ) (N ≥ 1), the behaviour of u

is subject to two competing features: the diffusion associated to the partial differential operator,
here −∆, and the absorption which is represented by the term h(t)uq. When q > 1 and h(t) > 0
for t > 0, the absorption term is strong enough in order positive solution to satisfy an universal
bound

0 ≤ u(x, t) ≤ Uh(t) =

(
(q − 1)

∫ t

0

h(s) ds

)−1/(q−1)

(1.2)

for every (x, t) ∈ QT . In addition, the function Uh which appears above is a particular solution of
(1.1 ). The associated diffusion equation

∂tv − ∆vm = 0 (1.3)
∗To appear in Rend. Lincei, Mat. Appl.
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admits fundamental solutions v = vk (k > 0) which satisfy vk(x, 0) = kδ0 if m > (N − 2)+/N . If

∫ T

0

∫

BR

h(t)vq
k dx dt <∞, BR := {|x| < R}, (1.4)

for any R ∈ (0,∞], it is shown that (1.1 ) admits fundamental solutions u = uk in QT which satisfy
initial condition uk(x, 0) = kδ0. The maximum principle holds and therefore the mapping k 7→ uk

is increasing. If h > 0 on (0,∞) then due to universal bound(1.2 ) there exists u∞ = limk→∞ uk,
and u∞ is a solution of (1.1 ) in QT . A natural question is whether u∞ admits a singularity only
at the origin (0, 0) or at other points too. Actually, in the last case it will imply u∞ ≡ U since the
following alternative occurs:

(i) either u∞ = U . (complete initial blow-up);

(ii) or u∞ is a solution singular at (0, 0) and such that limt→0 u(x, t) = 0 for all x 6= 0. (single-point
initial blow-up).

This phenomenon is observed for the first time by Marcus and Véron. They considered the
semilinear equation

∂tu− ∆u + h(t)uq = 0 (1.5)

and proved [8, Prop. 5.2]

Theorem 1.1 If h(t) = e−κ/t (κ > 0), then the complete initial blow-up occurs.

However they raised the question whether this type of degeneracy of the absorption is sharp
or not. The method of [8] relies on the construction of subsolutions associated to very singular
solutions of equations

∂tu− ∆u+ cǫt
αuq = 0 (1.6)

for suitable α > 0 and cǫ > 0, and on the study of asymptotics of these solutions. One the main
result of present paper states that if the degeneracy of the absorption terms is lightly smaller
respectivelly to Th. 1.1, then localization occurs.

Theorem 1.2 If h(t) = exp(−ω(t)/t), where ω is continuous, nondecreasing and satisfies

∫ 1

0

√
ω(s)

s
ds <∞, (1.7)

then u∞ has single-point initial blow-up at (0, 0).

The method of the proof is totally different from the one of Marcus and Véron and based upon
local energy estimates in the spirit of the famous Saint-Venant ’s principle (see [5, 12, 13]). Using
appropriate test functions we prove by induction that the energy of the fundamental solutions uk

remains uniformly locally bounded in Q
T \ {(0, 0)}.

In the case of equation
∂tu− ∆u+ h(t)(eu − 1) = 0 (1.8)

the same type of phenomenon occurs, but at a different scale of degeneracy. We prove the following

Theorem 1.3 1) If h(t) = e−eκ/t

for some κ > 0, then the complete initial blow-up occurs.

2) If h(t) = e−eω(t)/t

for some ω ∈ C(0,∞) positive, nondecreasing and satisfying (1.7 ), then u∞
has single-point initial blow-up at (0, 0).
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In this paper we also extend the study of equation (1.1 ) to the case m 6= 1. The situation
differs completely corresponding to m > 1, the porous media equation with slow diffusion, and
to (N − 2)+/N < m < 1, the fast diffusion equation. Concerning the porous media equation, we
prove

Theorem 1.4 If q > m > 1 and h is nondecreasing and satisfies h(t) = O(t(q−m)/(m−1)) as t→ 0,
then u∞ ≡ Uh.

We give two proofs. The first one, valid only in the subscritical case 1 < m < q < m+ 2/N , is
based upon the construction of suitable subsolutions, as in the semilinear case. The second one,
based upon scaling transformations, is valid in all the cases q + 1 > 2m > 2 where the uk exists.
It reduces to proving that the equation

−∆Ψ − Ψ1/m + Ψq/m = 0 in R
N

admits only one positive solution, the constant 1. The localization counter part is as follows,

Theorem 1.5 Assume q > m > 1, in Equation (1.1 ). If h(t) = t(q−m)/(m−1)ω−1(t) with ω(t) → 0
as t→ 0, and ∫ 1

0

ωθ(s)
ds

s
<∞ (1.9)

where

θ =
m2 − 1

[N(m− 1) + 2(m+ 1)](q − 1)
,

then u∞ has single-point initial blow-up at 0, 0).

Actually, the method is applicable to a much more general class of equations.

In the fast diffusion case there is always localization.

Theorem 1.6 Assume (N − 2)+/N < m < 1 and q > 1, in Equation (1.1 ). Then

u∞(x, t) ≤ min




Uh(t), C∗

(
t

|x|2

)1/1−m)



 (1.10)

where

C∗ =

(
(1 −m)3

2m(mN + 2 −N

)1/(1−m)

.

This type of problem has an elliptic counterpart which is initiated in [10] where the following
question is considered: suppose Ω is a C2 bounded domain in R

N , q > 1 and h ∈ C(0,∞) is
positive. What is the limit, when k → ∞ of the solutions (when they exist) u = uk of the following
problem {

−∆u+ h(ρ(x))uq = 0 in Ω

u = kδ0 in ∂Ω,
(1.11)

where ρ(x) = dist (x, ∂Ω). It is proved in [10] that, if h(t) = e−1/t, then u∞(:= limk→∞ uk) is the
maximal solution of the equation in Ω, that is the function which satisfies

{
−∆u+ h(ρ(x))uq = 0 in Ω

limρ(x)→0 u(x) = ∞.
(1.12)
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On the contrary, if h(t) = tα, for α > 0 and 1 < q < (N + 1 + α)/(N − 1), it is proved in [11] that
u∞ has an isolated singularity at 0, and vanishes everywhere outside 0. In a forthcoming article we
shall study this localization of singularity phenomenon for the complete nonlinear elliptic problem,
replacing the powers by more general functions, and the ordinary Laplacian by the p-Laplacian
operator.

Our paper is organized as follows: §1 Introduction. In §2 we study sufficient conditions of complete
initial blow-up for semilinear heat equation. In §3 we prove sharp sufficient condition of existence
of single point initial blow-up for heat equation with power nonlinear absorption. In §4 local energy
method from §3 is adapted to the heat equation with nonpower absorption nonlinearity. §5 deals
with porous media equation with power nonlinear absorption, §6 — the fast diffusion equation
with nonlinear absorption.

2 Complete initial blow-up for semilinear

heat equation

We recall the standard result concerning the existence of a fundamental solution u = uk (k > 0)
to the following problem

{
∂tu− ∆u+ g(x, t, u) = 0 in QT = R

N × (0, T )

u(x, 0) = kδ0.
(2.1)

If v is defined in QT , we denote by g̃(v) the function (x, t) 7→ g(x, t, v(x, t)). By a solution we

mean a function u ∈ L1
loc(Q

T
) such that g̃(u) ∈ L1

loc(Q
T
), which verifies

∫ ∫

QT

(−u∂tφ− u∆φ+ g̃(u)φ) dxdt = kφ(0, 0), (2.2)

for any φ ∈ C2,1
0 (RN × [0, T ) × R). We denote by E(x, t) = (4πt)−N/2e−|x|2/4t the fundamental

solution of the heat equation in Q∞, by BR(a) an open ball of center a and radius R, and BR(0) =
BR. The following result is classical

Theorem 2.1 Let g ∈ C(RN × [0, T ]×R) such that g(x, t, r) ≥ 0 on R
N × [0, T ]×R+, and assume

that g = g1 + g2 where g1 and g2 are respectively nondecreasing and locally Lipschitz continuous
with respect to the r-variable functions. Let k > 0 be such that

∫ T

0

∫

BR

g(x, t, kE(x, t))dxdt <∞. (2.3)

for any R > 0. Then there exists a solution u = uk to problem (2.1 ). Furthermore, if g2 = 0,
then uk is unique.

Function g(x, t, r) = e−κ/t|r|q−1
r, with κ > 0 and q > 1, satisfies (2.3 ). Thus the problem

{
∂tu− ∆u+ e−κ/t |u|q−1 u = 0 in Q∞

u(x, 0) = kδ0.
(2.4)

admits a unique solution. The next result is proved in [8], but we recall the proof both for the sake
of completeness and to present the key-lines of the method in a simple case.
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Theorem 2.2 For k > 0, let uk denote the solution of (2.4 ) in Q∞. Then uk ↑ US as k → ∞,
where

US(t) =

(
(q − 1)

∫ t

0

e−κ/sds

)1/(1−q)

, ∀t > 0. (2.5)

Proof. Case 1. 1 < q < 1 + 2/N . For any ǫ > 0, uk = u satisfies

∂tu− ∆u+ e−κ/ǫuq ≥ 0 (2.6)

on Qǫ. Therefore if v = vk is the solution of

{
∂tv − ∆v + e−κ/ǫvq = 0 in Q∞

v(x, 0) = kδ0,
(2.7)

there holds uk ≥ vk. Passage to the limit k → ∞, yields

lim
k→∞

uk := u∞ ≥ v∞ = lim
k→∞

vk in Qǫ. (2.8)

If we write v∞(x, t) = eκ/ǫ(q−1)t−1/(q−1)f(x/
√
t), then f is radial and satisfies





f ′′ +

(
N − 1

r
+
r

2

)
f ′ +

1

q − 1
f − f q = 0 on (0,∞),

f ′(0) = 0 , limr→∞ r2/q−1)f(r) = 0.

Furthermore the asymptotics of f is given in [2],

f(r) = Cr2/(q−1)−Ne−r2/4(1 + ◦(1))) , as r → ∞,

for some C = C(N, q) > 0. Therefore

f(r) ≥ C̃(r + 1)2/(q−1)−Ne−r2/4 ∀r ≥ 0, (2.9)

for some C̃ = C̃(N, q) > 0. If we take t = ǫ, we derive from (2.8 )

u∞(x, t) ≥ eκ/t(q−1)t−1/(q−1)f(x/
√
t) in R

N . (2.10)

Let 0 < ℓ < 2
√
κ/(q − 1). Inequalities (2.9 ) and (2.10 ) imply

u∞(x, t) ≥ C̃t−1/(q−1)e(κ/(q−1)−ℓ2/4)t−1

, ∀x ∈ B̄ℓ. (2.11)

Therefore limt→0 u∞(x, t) = ∞ , ∀x ∈ B̄ℓ. We pick some point x0 in Bℓ. Since for any k > 0,
the solution ukδx0

of (2.4 ) with initial value kδx0 can be approximated by solutions with bounded
initial data and support in Bσ(x0) (0 < σ < ℓ− |x0|), the previous inequality implies

u∞(x, t) ≥ u∞(x − x0, t).

Reversing the role of 0 and x0 yields to

u∞(x, t) = u∞(x − x0, t).

If we iterate this process we derive

u∞(x, t) = u∞(x− y, t) , ∀y ∈ R
N . (2.12)



6

Since ukδy is radial with respect to y, (2.12 ) implies that u∞(x, t) is independent of x and therefore

it is solution of {
z′ + e−κ/tzq = 0 on (0,∞)

limt→0 z(t) = ∞.
(2.13)

Thus u∞ = US where US is defined by (2.5 ).

Case 2. q ≥ 1 + 2/N . Let α > 0 such that q < qc,α = 1 + 2(1 + α)/N . We write e−κ/t = tαh̃(t)

with h̃(t) = t−αe−κ/t. The function h̃ is increasing on (0, κ/α] and we extend it by h̃(0) = 0. Let
0 < ǫ ≤ κ/α, then the solution u = uk of (2.4 ) verifies

∂tu− ∆u + h̃(ǫ)tαuq ≥ 0,

in R
N × (0, ǫ]. As in Case 1, u is bounded from below on R

N × (0, ǫ] by
(
h̃(ǫ)

)−1/(q−1)

v∞ where

v∞ = v is is the very singular solution of

∂tv − ∆v + tαvq = 0. (2.14)

Then v∞(x, t) = t−(1+α)/(q−1)fα(|x| /
√
t), and fα = f satisfies





f ′′ +

(
N − 1

r
+
r

2

)
f ′ +

1 + α

q − 1
f − f q = 0 on (0,∞),

f ′(0) = 0 , limr→∞ r2(1+α)/q−1)f(r) = 0.

The asymptotics of fα is given in [9]

fα(r) = Cr2(1+α)/(q−1)−Ne−r2/4(1 + ◦(1)) as r → ∞,

thus
fα(r) ≥ C̃(1 + r)2(1+α)/(q−1)−Ne−r2/4 ∀r ∈ R+.

Consequently

u(x, t) ≥ C̃e(κ/(q−1)−ℓ2/4)t−1

, ∀x ∈ B̄ℓ. (2.15)

Taking again 0 < ℓ < 2
√
κ/(q − 1), we derive

lim
t→0

u(x, t) = ∞ , ∀x ∈ B̄ℓ.

As in the Case 1, it yields to u∞(x, t) = u∞(x− y, t) for any y ∈ R
N , and finally u∞(x, t) = US(t).

�

Next we consider Cauchy problem for diffusion equation with an exponential type absorption
term {

∂tu− ∆u+ h(t)eu = 0 in Q∞

u(x, 0) = kδ0
(2.16)

where h ∈ C(R+) is nonnegative. Theorem 2.1 yields the following existence result:

Proposition 2.3 Assume h satisfies

lim
t→0

tN/2 lnh(t) = −∞. (2.17)

Then for any k > 0 problem (2.16 ) admits a unique solution u = uk. Furthermore

uk(x, t) ≤ VS(t) := − ln

(∫ t

0

h(s)ds

)
∀(x, t) ∈ Q∞. (2.18)
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Notice that estimate (2.18 ) is a consequence of the fact that VS satisfies the associated O.D.E.

y′ + h(t)ey = 0 in (0,∞),

with infinite initial value. Our main result concerning nonexistence of localized singularities for
equation (2.16 ) is

Theorem 2.4 Let h(t) = e−eσ/t

for some σ > 0 and any t > 0. Then uk ↑ VS as k → ∞.

Proof. Step 1. Construction of an approximate very singular solution. For n > 1 and cn > 0 to
be defined later on, let v = Vn be the very singular solution of

∂tv − ∆v + cnt
αnvn = 0. (2.19)

The necessary and sufficient condition for the existence of a Vn is

n < 1 +N(αn + 1)/2.

This function is obtained in the form

Vn(x, t) = t−(1+αn)/(n−1)F (x/
√
t),

where F solves

∆F +
1

2
ξ.DF +

1 + αn

n− 1
F − cnF

n = 0.

We fix
1 + αn

n− 1
= 1 +

N

2
⇐⇒ αn = (2 +N)(n− 1)/2 − 1, (2.20)

and set
fn = c1/(n−1)

n F.

Then fn solves

∆fn +
1

2
ξ.Dfn +

N + 2

2
fn − fn

n = 0.

We prove that fn has an asymptotic expansion essentially independent of n, in the following form

fn(ξ) ≥ δ(|ξ|2 + 1)e−|ξ|2/4 =⇒ Vn(x, t) ≥ δc−1/(n−1)
n t−2−N/2(|x|2 + t)e−|x|2/4t (2.21)

It order to see that, we put

f̃n =

(
2

N + 2

)1/(n−1)

fn

then

∆f̃n +
1

2
ξ.Df̃n +

N + 2

2
f̃n − N + 2

2
f̃n

n = 0.

By the maximum principle 0 ≤ f̃n ≤ 1 so that 0 ≤ f̃n′

n ≤ f̃n
n for n′ > n. Thus

∆f̃n +
1

2
ξ.Df̃n +

N + 2

2
f̃n − N + 2

2
f̃n′

n ≥ 0,

which implies that f̃n is a subsolution of the equation for f̃n′ and therefore,

n′ > n =⇒ f̃n ≤ f̃n′ ⇐⇒ fn ≤
(
N + 2

2

)(n′−n)/(n−1)(n′−1)

fn′ . (2.22)
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In the particular case n = n∗ = (N + 4)/(N + 2), the equation falls into the scoop of Brezis-
Peletier-Terman study since it can also be written in the form

∆fn∗ +
1

2
ξ.Dfn∗ +

1

n∗ − 1
fn∗ − fn∗

n∗ = 0.

and their asymptotic expansion applies (with 2/(n∗ − 1) −N = 2) as |ξ| → ∞:

fn∗(ξ) = C |ξ|2 e−|ξ|2/4(1 + ◦(1)) =⇒ fn∗(ξ) ≥ δ∗(|ξ|2 + 1)e−|ξ|2/4 ∀ξ. (2.23)

Combining (2.22 ) with n = n∗ and n′ replaced by n, and (2.23 ), we get

fn(ξ) ≥ δ∗

(
2

N + 2

)(n−n∗)/(n−1)(n∗−1)

(|ξ|2 + 1)e−|ξ|2/4 ∀ξ. (2.24)

Since n 7→ (2/(N + 2)(n−n∗)/(n−1)(n∗−1) is bounded from below independently of n > n∗, we get
(2.21 ).

Step 2. Some estimates from below for a related problem. In order to have vn ≤ u in the range of
value of u, which is

u(t) ≤ VS(t) = − ln

(∫ t

0

h(s)ds

)
∀t > 0, (2.25)

we need v = vn to be a subsolution near t = 0 of the equation that u verifies. Furthermore this
can be done up to some bounded function. It is sufficient to have

cnt
αn(xn + 1) ≥ h(t)ex, ∀t ∈ (0, τn], x ∈ [0, VS(t)] (2.26)

where τn has to be defined. In particular, at the end points of the interval,






(i) cnt
αk ≥ h(t)

(ii) cnt
αn

(
lnn

(
1

∫ t

0 a(s)ds

)
+ 1

)
≥ h(t)
∫ t

0 h(s) ds
.

(2.27)

We write (2.26 ) in the form
ex

1 + xn
≤ cnt

αn

h(t)
, (2.28)

and set

φ(x) =
ex

1 + xn
.

Then

φ′(x) = ex 1 + xn − nxn−1

(1 + xn)2
.

The sign of φ′ is the same as the one of ψ(x) = 1 + xk − nxn−1, a function which decreasing then
increasing, is positive near 0, vanishes somewhere between 0 and 1 and again between n− 1 and
n. The first maximum of φ is less than e/2. This is not important in (2.28 ) since we can always
assume that the minimum of ckt

αk/h(t) is larger than e/2. Therefore, it is sufficient to have

eVS(t)

1 + V n
S (t)

≤ cnt
αn

h(t)
, (2.29)
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in order to have (2.28 ). This is exactly (2.27 )-ii. If we express h(t) in the form

h(t) = −ω′(t)e−ω(t),

then (2.27 )-ii is equivalent to
cnt

αn (ωn(t) + 1) ≥ −ω′(t). (2.30)

Since
ωn(t) + 1 ≥ 21−n(ω(t) + 1)n,

we associate the following O. D. E. on R+

cnt
αn = 21−n −η′

(η + 1)n
,

the maximal solution of which is

η(t) =
1

2

(
1

cn(n− 1)

)1/(n−1)

t−(αn+1)/(n−1) =
1

2

(
1

cn(n− 1)

)1/(n−1)

t−1−N/2.

If we write ω in the form
ω(t) = eα(t),

with α(0) = ∞, α′ < 0, then (2.27 )-ii becomes

cnt
αn

(
enα(t) + 1

)
≥ −α′(t)eα(t),

and this inequality is ensured provided

cnt
αne(n−1)α(t) ≥ −α′(t) ⇐⇒ cn ≥ −α′(t)e(1−n)α(t)−αn ln t = −tα′(t)e(1−n)(α(t)+2−1(N+2) ln t),

(2.31)
by replacing αn by its value. Next we fix

α(t) = ασ(t) =
σ

t
∀t > 0 (2.32)

where σ > 0 is a parameter, thus

−tα′(t)e(1−n)(α(t)+2−1(N+2) ln t) = e(1−n)σ/t−(2−1(n−1)(N+2)+1) ln t = eρ(t).

In order to have (2.31 ) it is sufficient to have the monotonicity of the function ρ and

ρ′(t) =
σ(n− 1)

t2
− n(N + 2) −N

2t

Then there exist γ > 0, independent of k and σ such that ρ′(t) > 0 on (0, σγ]. Consequently,
inequality (2.31 ) is ensured on (0, ǫ] ⊂ (0, σγ] as soon as

cn ≥ eρ(ǫ) = e(1−n)σ/ǫ−2−1(n(N+2)−N) ln ǫ. (2.33)

Step 3. Complete initial blow-up for a related problem. Assume now

h(t) = σ̃t−2eσ̃t−1−eσ̃/t

(2.34)

for some σ̃ > 0. For n > 2, we fix ǫ < σ̃γ and take cn = eρ(ǫ). On (0, ǫ] we have

cnt
αn(enα(t) + 1) ≥ −α′(t)eα(t).
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Therefore, if u = uk is the solution of (2.16 ) with h(t) given by (2.34 ), it satisfies u(t) ≤ VS(t),
where VS is given by (2.25 ), and

∂tu− ∆u+ cnt
αn(un + 1) ≥ 0 in Qǫ.

Therefore u is larger that the solution v = ṽk of

∂tv − ∆v + cnt
αn(vn + 1) = 0 in Qǫ,

with ṽk(0) = kδ0. Furthermore ṽk ≥ vk − cnt
αn+1/(αn + 1), where v = vk solves

∂tv − ∆v + cnt
αnvn = 0 in Qǫ,

with vk(0) = kδ0. If we let k → ∞, we derive from (2.21 ) and by replacing cn = eρ(ǫ) by its precise

value e(1−n)σ/ǫ−2−1(n(N+2)−N) ln ǫ, that

u∞(x, t) ≥ Vn(x, t) − cnt
αn+1

αn + 1
≥ δt−2−N/2(|x|2 + t)e

σ
ǫ + (n(N+2)−N ln ǫ

n−1 − |x|2

4t

on (0, ǫ]. In particular

u∞(x, ǫ) ≥ δǫ−2−N/2(|x|2 + ǫ)e
σ
ǫ + (n(N+2)−N ln ǫ

n−1 − |x|2

4ǫ . (2.35)

Taking |x|2 < σ/4 yields to

lim
ǫ→0

ǫ−2−N/2(|x|2 + ǫ)e
σ
ǫ + (n(N+2)−N ln ǫ

n−1 − |x|2

4ǫ = ∞.

Thus
lim
ǫ→0

u∞(x, ǫ) = ∞, ∀x ∈ B√
σ/2.

As in the proof of Theorem 2.2, it implies u∞ = VS .

Step 4. End of the proof. Since for any σ > σ̃ > 0 there exists an interval (0, θ] on which

σ̃t−2eσ′t−1−eσ′/t ≥ e−eσ/t

,

any solution of (2.16 ) with h(t) given by (2.34 ) is a subsolution in Qθ of the same equation with

h(t) = e−e−σ/t

. This implies the claim. �

3 Single point initial blow-up for semilinear

heat equation

We consider the following Cauchy problem
{

∂tu− ∆u+ h(t) |u|q−1
u = 0 in Q∞

u(x, 0) = kδ0.
(3.1)

The first result dealing with the localization of the blow-up that we prove is the following.

Theorem 3.1 Assume h(t) = e−ω(t)/t where ω ∈ C([0,∞)) is positive, nondecreasing function
which satisfies ω(s) ≥ sα0 for some α0 ∈ [0, 1) and any s > 0, and the following Dini like condition
holds: ∫ 1

0

√
ω(s)

s
ds <∞. (3.2)

Then uk always exists and u∞ := limk→∞ uk has a point-wise singularity at (0, 0).
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Proof. The proof is based on the study of asymptotic properties as k → ∞ of solutions u = uk of
the regularized Cauchy problem

{
ut − ∆u+ h(t)|u|q−1u = 0 in QT ,

u(x, 0) = u0,k(x) = M
1/2
k k−N/2δk(x) ∀x ∈ R

N ,
(3.3)

where δk ∈ C(RN ), supp δk ⊂
{
|x| ≤ k−1

}
, δk ⇀ δ(x) weakly in the sense of measures as k → ∞

and {Mk} is some sequence tending to ∞ as k → ∞ fast enough so that

M
1/2
k k−N/2 → ∞ as k → ∞. (3.4)

Without loss of generality we will suppose that

‖δk(x)‖2
L2(RN ) ≤ c0k

N ∀ k ∈ N, c0 = const. (3.5)

Our method of analysis is some variant of the local energy estimates method (also called Saint-
Venant principle), developed, particulary, in [12, 13, 15–17] (see also review in [5]). Let introduce
the families of subdomains

Ω(τ) = R
N ∩ {|x| > τ} ∀ τ > 0,

Qr(τ) = Ω(τ) × (0, r) ∀ r ∈ (0, T ),

Qr(τ) = Ω(τ) × (r, T ) ∀ r ∈ (0, T ).

Step 1. The local energy framework. We fix arbitrary k ∈ N and consider solution u = uk of
(3.3 ), but for convenience we will denote it by u. Firstly we deduce some integral vanishing
properties of solution u in the family of subdomains Qr := R

N × (r, T ). Multiplying (3.3 ) by

u(x, t) exp

(
− t− r

1 + T − r

)
and integrating in Qr, we get

(
2 exp

(
T − r

1 + T − r

))−1 ∫

RN

|u(x, T )|2 dx

+

∫

Qr

(
|Dxu|2 + h(t)|u|q+1

)
exp

(
− t− r

1 + T − r

)
dxdt

+
1

1 + T − r

∫

Qr

|u|2 exp

(
− t− r

1 + T − r

)
dxdt

= 2−1

∫

Ω(τ)

|u(x, r)|2 dx+ 2−1

∫

RN\Ω(τ)

|u(x, r)|2dx, (3.6)

where τ > 0 is arbitrary parameter. Using Hölder’s inequality, it is easy to check that

∫

RN\Ω(τ)

|u(x, r)|2 dx ≤ cτ
N(q−1)

q+1 h(r)−
2

q+1

(∫

RN\Ω(τ)

|u(x, r)|q+1h(r) dx

) 2
q+1

. (3.7)

Here and further we will denote by c, ci different positive constants which do not depend on
parameters k, τ, r, but the precise value of which may change from one ocurrence to another. Let
us consider now the energy functions

I1(r) =

∫

Qr

|Dxu|2 dx dt, I2(r) =

∫

Qr

h(t)|u(x, t)|q+1 dxdt, I3(r) =

∫

Qr

|u|2 dxdt. (3.8)
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It is easy to check that

−dI2(r)
dr

=

∫

RN

h(r)|u(x, r)|q+1 dx ≥
∫

RN\Ω(τ)

h(r)|u(x, r)|q+1 dx ∀ τ > 0.

Therefore it follows from (3.6 ) and (3.7 )

∫

RN

|u(x, T )|2 dx+ I1(r) + I2(r) + I3(r) ≤ cτ
N(q−1)

q+1 h(r)−
2

q+1 (−I ′2(r))
2

q+1 + c

∫

Ω(τ)

|u(x, r)|2 dx

∀ τ > 0, ∀ r : 0 < r < T. (3.9)

Next we introduce additional energy functions

f(r, τ) =

∫

Ω(τ)

|u(x, r)|2 dx, E1(r, τ) =

∫

Qr(τ)

|Dxu|2 dxdt, E2(r, τ) =

∫

Qr(τ)

|u|2 dxdt. (3.10)

Now we deduce some vanishing estimates of these energy functions. Let µ be some nondecreasing
smooth function defined on (0,∞), µ(τ) > 0 for τ > 0 (a more precise definition will be fixed
later on). Then multiplying the equation (3.3 ) by u(x, t) exp(−µ2(τ)t) and integrating in domain
Qr(τ) with τ > k−1 (remember that suppu0,k ⊂

{
|x| < k−1

}
) we deduce easily

2−1fµ,r(τ) + Jµ,r(τ) := 2−1

∫

Ω(τ)

|u(x, r)|2 exp(−µ2(τ)r) dx+

∫

Qr(τ)

(
|∇xu|2 + µ2(τ)|u|2

)
exp(−µ2(τ)t) dxdt

≤ µ(τ)−1

∫

∂Ω(τ)×(0,r)

(
|∇xu|2 + µ2(τ)|u|2

)
exp(−µ2(τ)t) dsdt ∀ τ > k−1. (3.11)

Clearly there holds

dJµ,r(τ)

dτ
= −

∫

∂Ω(τ)×(0,r)

(
|∇xu|2 + µ2(τ)|u|2

)
exp(−µ2(τ)t) dsdt

+

∫

Qr(τ)

2µµ′(τ)|u|2 exp(−µ2(τ)t) dxdt

− 2

∫

Qr(τ)

µµ′(τ)t
(
|∇xu|2 + µ2(τ)|u|2

)
exp(−µ2(τ)t) dxdt.

Since µ′(τ) > 0, it follows from (3.11 ),

2−1fµ,r(τ) + Jµ,r(τ) ≤ µ(τ)−1

[
− d

dτ
Jµ,r(τ) + 2

∫

Qr(τ)

µ(τ)µ′(τ)|u|2 exp(−µ2(τ)t) dxdt

]
. (3.12)

If we suppose

1 − 2µ′(τ)

µ2(τ)
≥ 2−1, (3.13)

we derive from (3.12 )

fµ,r(τ) + Jµ,r(τ) ≤ −2µ(τ)−1 dJµ,r(τ)

dτ
.
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It is easy to check that this last inequality is equivalent to

µ(τ)

2
exp

(∫ τ

τ1

µ(s)

2
ds

)
fµ,r(τ) ≤ − d

dτ

(
Jµ,r(τ) exp

(∫ τ

τ1

µ(s)

2
ds

))
∀ τ > τ1 > k−1.

By integrating this inequality and using monotonicity of the function fµ,r(τ) we get

fµ,r(τ2)

∫ τ2

τ1

µ(τ)

2
exp

(∫ τ

τ1

µ(s)

2
ds

)
dτ+Jµ,r(τ2) exp

(∫ τ2

τ1

µ(s)

2
ds

)
≤ Jµ,r(τ1) ∀ τ2 > τ1 > k−1.

Since
µ(τ)

2
exp

(∫ τ2

τ1

µ(s)

2
ds

)
=

d

dτ

(
exp

(∫ τ

τ1

µ(s)

2
ds

))
,

it follows from last the relation

fµ,r(τ2)

[
exp

(∫ τ2

τ1

µ(s)

2
ds

)
− 1

]
+ Jµ,r(τ2) exp

(∫ τ2

τ1

µ(s)

2
ds

)
≤ Jµ,r(τ1) ∀ τ2 > τ1 > k−1.

(3.14)
Now we have to define µ(τ). Let ε > 0 and

µ(τ) = εr−1(τ − k−1) ∀ τ > k−1. (3.15)

One can easily verify that condition (3.13 ) is equivalent to

τ ≥ k−1 + 2ε−1/2r1/2. (3.16)

Now from (3.14 ) follow two inequalities

A(τ2) :=

∫

Qr(τ2)

(
|∇xu|2 +

ε2(τ2 − k−1)2

r2
|u|2
)
dxdt ≤ A(τ1)

× exp

[
−ε
(
(τ2 − k−1)2 − (τ1 − k−1)2

)

4r
+
ε2(τ2 − k−1)

r

]

∀ τ2 > τ1 > k−1 + 2ε−1/2r1/2, (3.17)

and

f(r, τ2) ≤ A(τ1)

[
exp

(
ε
(
(τ2 − k−1)2 − (τ1 − k−1)2

)

4r

)
− 1

]−1

exp

(
ε2(τ2 − k−1)2

r

)

∀ τ2 > τ1 > k−1 + 2ε−1/2r1/2. (3.18)

In particular, for ε = 8−1 we obtain from (3.17 ) and (3.18 ),

∫

Qr(τ)

(
|∇xu|2 +

(τ − k−1)2

64r2
|u|2
)
dxdt ≤ e exp

(
− (τ − k−1)2

64r

)∫

Qr(τ
(k)
0 )

(
|∇xu|2 +

|u|2
2r

)
dxdt

∀ τ ≥ τ
(k)
0 (r) := k−1 + 4

√
2
√
r, (3.19)

and

f(r, τ) ≤ e2

e− 1
exp

(
− (τ − k−1)2

64r

)∫

Qr(τ
(k)
0 )

(
|∇xu|2 +

u2

2r

)
dxdt ∀ τ ≥ τ̃

(k)
0 (r) := k−1 + 8

√
r.

(3.20)
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In order to have an estimate from above of the last factor in the right-hand side of (3.19 ), (3.20 ),
we return to the equation satisfied by u, multiply it by the test function uk(x, t) exp (−t) and
integrate over the domain Qr = R

N × (0, r). As result of standard computations we obtain, using
(3.5 ),

∫

RN

|uk(x, r)|2 dx+

∫

Qr

(
|∇xuk|2 + |uk|2 + h(t)|uk|q+1

)
dxdt

≤ c ‖u0,k‖2
L2(RN ) ≤ cMk → ∞ as k → ∞, ∀ r ≤ T. (3.21)

Due to (3.20 ), (3.21 ) it follows from (3.9 )

∫

RN

|u(x, T )|2 dx+ I1(r) + I2(r) + I3(r)

≤ c1τ
N(q−1)

q+1 h(r)−
2

q+1 (−I ′2(r))
2

q+1 + c2Mkr
−1 exp

(
− (τ − k−1)2

64r

)
∀ τ ≥ τ̃

(k)
0 (r). (3.22)

Relationships (3.19 ), (3.20 ) due to (3.21 ) yield:

f(r, τ) + E1(r, τ) +
(τ − k−1)2

64r2
E2(r, τ) ≤ c2Mkr

−1 exp

(
− (τ − k−1)2

64r

)
∀ τ > τ̃

(k)
0 (r). (3.23)

Step 2. The first round of computations. Next we construct some sequences {τj}, {rj}, j =
k, k − 1, . . . , 1. First we explicit the choice of Mk from condition (3.3 ), let namely

Mk = eek

. (3.24)

Then we choose τk, rk such that the following relation is true,

c2 r
−1
k exp

(
− τ2

k

64rk

)
Mk = M ε0

k , 0 < ε0 < e−1 (3.25)

where c2 is from (3.22 ), (3.23 ). As consequence of (3.25 ) and (3.24 ) we get

τk = 8r
1/2
k

[
(1 − ε0)e

k + ln r−1
k + ln c2

]1/2
. (3.26)

In inequality (3.22 ) we fix τ = τk + k−1, then due to definition (3.25 ) it follows from (3.22 ),

∫

RN

|u(x, T )|2 dx+ I1(r) + I2(r) + I3(r)

≤ c1(k
−1 + τk)

N(q−1)
q+1 h(r)−

2
q+1 (−I ′2(r))

2
q+1 +M ε0

k ∀ r : 0 < r ≤ rk. (3.27)

I1(r), I2(r), I3(r) are nonincreasing functions which satisfy, due to global a’ priori estimate (3.21 ),

I1(0) + I2(0) + I3(0) ≤ cMk. (3.28)

Let us define the number rk by

rk = sup {r : I1(r) + I2(r) + I3(r) ≥ 2M ε0

k } . (3.29)

Then it follows from (3.27 ) the following differential inequality

I1(r) + I2(r) + I3(r) +

∫

RN

|u(x, T )|2 dx ≤ 2c1(τk + k−1)
N(q−1)

q+1 h(r)−
2

q+1 (−I ′2(r))
2

q+1 ∀ r ≤ rk.

(3.30)
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Solving it, we get

I1(r) + I2(r) + I3(r) ≤ c3(τk + k−1)NH(r)−
2

q−1 ∀ r ≤ rk, (3.31)

where

H(r) =

∫ r

0

h(s) ds and c3 =

(
2

q − 1

)2/(q−1)

(2c1)
(q+1)/(q−1)

Next we will use more specific functions

h(t) = exp

(
−ω(t)

t

)
,

where ω(t) is nondecreasing and satisfies the following technical assumption

tα0 ≤ ω(t) ≤ ω0 = const ∀ t : 0 < t < t0, 0 ≤ α0 < 1. (3.32)

It is easy to show by integration by parts the following relation

∫ r

0

exp

(
−aω(t)

t

)
dt ≥ 1 − δ(r)

(1 − α0)a
· r2

ω(r)
exp

(
−aω(r)

r

)
∀ r > 0,

where δ(r) → 0 if r → 0. Therefore

H(r) ≥ c
r2

ω(r)
h(r), c = const > 0. (3.33)

As a consequence we derive from (3.31 ), using (3.26 ),

I1(r) + I2(r) + I3(r) ≤ c4

[
8r

1
2

k

(
(1 − ε0)e

k + ln r−1
k + ln c2

) 1
2 + k−1

]N

× ω(r)
2

q−1

r
4

q−1

exp

(
2ω(r)

(q − 1)r

)
∀ r ≤ rk. (3.34)

Comparing (3.29 ) and estimate (3.34 ) we deduce that rk satisfies

rk ≤ bk, (3.35)

where bk is solution of equation

c4

[
8b

1
2

k

(
(1 − ε0)e

k + ln b−1
k + ln c2

) 1
2 + k−1

]N
ω(bk)

2
q−1 b

− 4
q−1

k exp

(
2ω(bk)

(q − 1)bk

)

= 2M ε0

k = 2 exp(ε0e
k).

This equation may be rewritten in the form

ln c4 +
2

q − 1
ln

(
ω(bk)

bk

)
+

2

q − 1
· ω(bk)

bk

+N ln

[
8b

N(q−1)−4
2(q−1)N

k

(
(1 − ε0) exp k + ln b−1

k + ln c2
) 1

2 + k−1b
− 2

(q−1)N

k

]
= ln 2 + ε0e

k ∀ k ∈ N.

(3.36)
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Since s−1 ln s→ 0 as s→ ∞, it follows from equality (3.36 ) that

(1 + cγ(k))ε0e
k ≥ Ak +

2

q − 1

ω(bk)

bk

:= N ln

[
8b

N(q−1)−4
2(q−1)N

k

(
(1 − ε0)e

k + ln b−1
k + ln c2

) 1
2 + k−1b

− 2
N(q−1)

k

]

+
2

q − 1

ω(bk)

bk
≥ (1 − γ(k))ε0e

k ∀ k ∈ N, (3.37)

where 0 < γ(k) < 1, γ(k) → 0 as k → ∞. Keeping in mind condition (3.32 ), we obtain easily

ω(bk)

bk
≥ b

−(1−α0)
k , |Ak| ≤ c (| ln bk| + k) ∀ k ∈ N. (3.38)

Due to properties (3.38 ), it follows from (3.37 )

cek >
ω(bk)

bk
≥ d1e

k ∀ k ∈ N, d1 > 0. (3.39)

As a consequence of (3.39 ), (3.38 ) we obtain also

ln b−1
k ≤ ck ∀ k ∈ N. (3.40)

Now using estimate (3.39 ) we are able to obtain suitable upper estimate of τk. Thanks to (3.35 ),
(3.39 ) and (3.40 ) we deduce from (3.26 )

τk ≤ cb
1/2
k exp

(
k

2

)
≤ c exp

(
k

2

)(
ω(bk)

d1 exp k

)1/2

=
c

d
1/2
1

ω(bk)1/2.

Using again estimate (3.39 ) and the monotonicity of the function ω(s), we deduce from the above
relation

τk ≤ c

[
ω

(
ω0

d1ek

)]1/2

, ω0 is from (3.32 ). (3.41)

Therefore, from inequalities (3.23 ) and (3.34 ), definitions (3.25 ), (3.29 ) and property (3.35 ),
we derive the following estimates

I1(rk) + I2(rk) + I3(rk) ≤ 2M ε0

k where rk is from (3.35 ), (3.29 ), (3.42)

f(rk, τk + k−1) + E1(rk, τk + k−1) +
τ2
k

64r2k
E2(rk, τk + k−1) ≤M ε0

k , (3.43)

where τk is from (3.26 ), (3.41 ). Because ε0 < e−1, it follows from definition (3.24 ) of sequence
Mk that

3M ε0

k < cMk−1 ∀ k ≥ k0(c), (3.44)

where c > 0 is arbitrary constant. Therefore, adding estimates (3.42 ) and (3.43 ), we obtain
thanks to (3.44 ) and the fact that τk ≫ rk (which follows from (3.25 )), the inequality

f(rk, τk + k−1) +

3∑

i=1

Ii(rk) +

2∑

i=1

Ei(rk, τk + k−1) < cMk−1 ∀ k ≥ k0(c). (3.45)



17

Step 3. The second round of computations. Next we introduce the terms rk−1, τk−1. Firstly we
come back to inequality (3.14 ). Fixing here the function

µ(t) = εr−1(τ − k−1 − τk) ∀ τ > k−1 + τk (3.46)

instead of (3.15 ) and using estimates (3.16 )–(3.20 ), we obtain

∫

Qr(τ)

(
|∇xu|2 +

(τ − k−1 − τk)2|u|2
64r2

)
dxdt

≤ e exp

(
− (τ − k−1 − τk)2

64r

)∫

Qr(τ
(k−1)
0 (r))

(
|∇xu|2 +

|u|2
2r

)
dxdt

∀ τ > τ
(k−1)
0 (r) := k−1 + τk + 4

√
2
√
r,

(3.47)

and

f(r, τ) ≤ e2

e− 1
exp

(
− (τ − k−1 − τk)2

64r

)∫

Qr(τ
(k−1)
0 (r))

(
|∇xu|2 +

|u|2
2r

)
dxdt

∀ τ ≥ τ̃
(k−1)
0 := k−1 + τk + 8

√
r. (3.48)

The integral term in the right-hand side of (3.47 ), (3.48 ) is estimated now by using estimate
(3.45 ) obtained in the first round of computation. So, we have

∫

Qr(τ
(k−1)
0 (r))

(
|∇xu|2 +

u2

2r

)
dxdt ≤ (2r)−1

[
3∑

i=1

Ii(rk) +

2∑

i=1

Ei(rk, τk + k−1)

]
≤ c(2r)−1Mk−1

∀ k > k0(c), ∀ r ≥ rk. (3.49)

Using this estimate we deduce from (3.47 ) and (3.48 )

f(r, τ) + E1(r, τ) +
(τ − τk − k−1)2

64r2
E2(r, τ) ≤ c2r

−1Mk−1 exp

(
− (τ − τk − k−1)2

64r

)

∀ τ ≥ τ̃
(k−1)
0 (r). (3.50)

This estimate is similar to estimate (3.23 ) from first round. Now we have to deduce the analogue
of estimate (3.31 ). For this we return to the starting relation (3.9 ), where we now estimate last
term in right-hand side by estimate (3.48 ), using additionally (3.49 ). As a result we have

3∑

i=1

Ii(r) ≤ c1τ
N(q−1)

q+1 h(r)−
2

q+1 (−I ′2(r))
2

q+1 + c2Mk−1r
−1 exp

(
− (τ − τk − k−1)2

64r

)

∀ r ≥ rk, ∀ τ ≥ τ̃
(k−1)
0 (r), (3.51)

which is analogous of estimate (3.22 ) from first round. Next we define the numbers τk−1 and rk−1

by inequalities analogous to (3.26 ) and (3.29 ),

c2r
−1
k−1Mk−1 exp

(
−

τ2
k−1

64rk−1

)
= M ε0

k−1, 0 < ε0 < e−1 (3.52)

rk−1 = sup{r : I1(r) + I2(r) + I3(r) ≥ 2M ε0

k−1}. (3.53)
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Now combining inequalities (3.30 ) and (3.44 ), and using definitions (3.52 ), (3.53 ), we obtain
the following differential inequality

3∑

i=1

Ii(r) ≤ 2c1(τk−1 + τk + k−1)
N(q−1)

q+1 h(r)−
2

q+1 (−I ′2(r))
2

q+1 ∀ r ≤ rk−1. (3.54)

Solving this differential inequality, we obtain an estimate similar to (3.31 ). Using property (3.33 )
we arrive to

3∑

i=1

Ii(r) ≤ c4(τk−1 + τk + k−1)N ω(r)
2

q−1

r
4

q−1

exp

(
2ω(r)

(q − 1)r

)
∀ r ≤ rk−1. (3.55)

As in first round we express from (3.52 ) τk−1 as function τk−1(rk−1) (the analogue of (3.26 ))

τk−1 = 8r
1/2
k−1[(1 − ε0) exp(k − 1) + ln r−1

k−1 + ln c2]
1/2. (3.56)

Inserting this expression of τk−1 into (3.55 ) and then comparing the obtained inequality with
definition (3.53 ), we deduce an estimate similar to (3.35 ),

rk−1 ≤ bk−1, (3.57)

where bk−1 is solution of equation

c4

[
8b

1/2
k−1

(
(1 − ε0) exp(k − 1) + ln b−1

k + ln c2
)1/2

+ τk + k−1
]N

× ω(bk−1)
2

q−1

b
4

q−1

k−1

exp

(
2ω(bk−1)

(q − 1)bk−1

)
= 2M ε0

k−1 = 2 exp(ε0 exp(k − 1)). (3.58)

From (3.50 ), and due to definition (3.52 ), it follows

f(rk−1, τk−1 + τk + k−1) +
τ2
k−1

64rk−1
E2(rk−1, τk−1 + τk + k−1) +E1(rk−1, τk−1 + τk + k−1) ≤M ε0

k−1.

(3.59)
From (3.55 ), due to (3.56 ), (3.57 ), (3.58 ), it follows

I1(rk−1) + I2(rk−1) + I3(rk−1) ≤ 2M ε0

k−1. (3.60)

Summing (3.59 ), (3.60 ) and using property (3.44 ), we deduce new global a priori estimate (the
analogous of (3.45 )) which is the main starting information for the next round of computation

f(rk−1, τk−1 + τk + k−1) +

3∑

i=1

Ii(rk−1) +

2∑

i=1

Ei(rk−1, τk−1 + τk + k−1) ≤ cMk−2. (3.61)

We are ready now for the next round of computations, introducing the function

µ(t) = εr−1(τ − k−1 − τk − τk−1) ∀ τ > k−1 + τk + τk−1

instead of (3.46 ) and estimate (3.61 ) instead of (3.45 ). We realize j rounds of such computations.
As result we obtain

f

(
rk−j ,

j∑

l=0

τk−l + k−1

)
+

3∑

i=1

Ii(rk−j) +
2∑

i=1

Ei

(
rk−j ,

j∑

l=0

τk−l + k−1

)
≤ cMk−j−1, (3.62)
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which was our main aim.
Step 4. The control of rk−j ,

∑j
l=0 τk−l as j → k with arbitrary k ∈ N. It is clear that rk−j , τk−j

are defined by the conditions (see (3.52 ), (3.53 ))

c2r
−1
k−jMk−j exp

(
−

τ2
k−j

64rk−j

)
= M ε0

k−j , 0 < ε0 < e−1. (3.63)

rk−j = sup
{
r : I1(r) + I2(r) + I3(r) ≥ 2M ε0

k−j

}
. (3.64)

Similarly to (3.56 )–(3.58 ) we deduce that

τk−j = 8r
1/2
k−j

[
(1 − ε0)e

k−j + ln r−1
k−j + ln c2

]1/2

, (3.65)

rk−j ≤ bk−j , (3.66)

where bk−j satisfies

c4

[
8b

1/2
k−j

(
(1 − ε0)e

k−j + ln b−1
k−j + ln c2

)1/2

+

j−1∑

i=0

τk−i + k−1

]N

× ω(bk−j)
2

q−1

b
4

q−1

k−j

exp

(
2ω(bk−j)

(q − 1)bk−j

)
= 2M ε0

k−j = 2 exp(ε0e
k−j). (3.67)

In the first round of computations we have obtained the upper estimate (3.41 ) for τk. Let us
suppose by induction that the following estimate is true

τk−i ≤ c

[
ω

(
ω0

d1 exp(k − i)

)]1/2

∀ i ≤ j − 1. (3.68)

We have to prove that estimate (3.68 ) holds also for i = j. Obviously condition (3.67 ) is equivalent
to (see (3.36 ))

ln c4 +
2

q − 1
ln

(
ω(bk−j)

bk−j

)
+

2

q − 1
· ω(bk−j)

bk−j
+A

(j)
k = ln 2 + ε0e

k−j , (3.69)

where

A
(j)
k = N ln


b

N(q−1)−4
2(q−1)N

k−j

(
(1 − ε0)e

k−j + ln(b−1
k−j) + ln c2

)1/2

+

k−1 +
j−1∑
i=0

τk−i

b
2

(q−1)N

k−j


 .

Because of the induction assumption (3.68 )

j−1∑

i=0

τk−i ≤ c

j−1∑

i=0

[
ω

(
ω0

d1 exp(k − i)

)]1/2

≤ c

∫ 1

0

ω(s)1/2

s
ds := cL,

therefore
|A(j)

k | ≤ c (| ln bk−j | + (k − j) + lnL) . (3.70)
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From (3.69 ) due to (3.70 ) we derive easily

cek−j ≥ ω(bk−j)

bk−j
≥ d1e

k−j ∀ j : k − j ≥ k0 = k0(L), (3.71)

where k0 <∞ do not depend on k. From (3.71 ) it follows in particular

ln b−1
k−j ≤ c(k − j) ∀ j : k − j ≥ k0. (3.72)

Thanks to (3.66 ) and properties (3.71 ), (3.72 ), we derive from (3.65 ),

τk−j ≤ 8b
1/2
k−j

(
(1 − ε0)e

k−j + ln b−1
k−j + ln c2

)1/2

≤ cb
1/2
k−j exp

(
k − j

2

)
≤ c

d
1/2
1

[ω(bk−j)]
1/2 ∀ j : k − j ≥ k0(L). (3.73)

Using again estimate (3.71 ) and monotonicity of ω(s) we deduce from (3.73 )

τk−j ≤ c

[
ω

(
ω0

d1ek−j

)]1/2

∀ j : k − j ≥ k0(L). (3.74)

Thus, we have proved by induction estimate (3.68 ), for arbitrary k−j ≥ k0(L) with ri, τi satisfying
(3.66 ), (3.67 ) and (3.74 ).

Step 5. Completion of the proof. We fix now n > k0(L) and take j = k − n in (3.62 ). This leads
to

f

(
rn,

k−n∑

l=0

τk−l + k−1

)
+

3∑

i=1

Ii(rn)+

2∑

i=1

Ei

(
rn,

k−n∑

l=0

τk−l + k−1

)
≤ cMn−1 ∀n > k0(L). (3.75)

Next we have

k−n∑

l=0

τk−l ≤
∞∑

i=n

τi ≤ c
∞∑

i=n

[
ω

(
ω0

d1 exp i

)]1/2

≤ c

∫ ω0
d1 exp(n−1)

0

ω(s)1/2

s
ds→ 0 as n→ ∞. (3.76)

Therefore, for arbitrary small δ > 0, we can find and fix n = n(δ) < ∞ such that from (3.75 )
follows uniform with respect to k ∈ N a priori estimate,

sup
t>0

∫

|x|>δ

|uk(x, t)|2 dx+

∫ T

0

∫

|x|>δ

(
|∇xuk|2 + |uk|2

)
dxdt ≤ C = C(δ) <∞ ∀ k ∈ N. (3.77)

Since uk(x, 0) = 0 ∀ |x| > k−1 ∀ k ∈ N, it follows from (3.77 ) that u∞(x, 0) = 0 ∀x 6= 0,
which ends the proof. �

4 Regional initial blow-up for equation with

exponential absorption.

The local energy method we have used in the proof of Theorem 3.1 is based on the sharp interpo-
lation theorems for functional Sobolev spaces, which are natural tool for the study of solutions of
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equations with power nonlinearities. Here we propose the adaptation of mentroned method to the
equations with nonpower nonlinearities.

Thus, we consider the Cauchy problem
{
∂tu− ∆u+ h(t)(eu − 1) = 0 in Q∞

u(x, 0) = kδ0,
(4.1)

Theorem 4.1 Assume h(t) = e−eω(t)/t

where ω ∈ C([0,∞)) satisfies the same asumptions as in
Theorem 3.1. Then solution uk always exists and u∞ := limk→∞ uk has a point-wise singularity
at (0, 0).

Proof. We will consider the family uk(x, t) of solutions of regularized problems:

{
ut − ∆u+ h(t)(eu − 1) = 0 in QT ,

u(x, 0) = u0,k(x) = M
1/2
k k−N/2δk(x) ∀x ∈ R

N ,
(4.2)

where δk is nonnegative, continuous with compact support in Bk−1 , satisfies estimate (3.5 ) and
converges weakly to δ0 as k → ∞, {Mk} satisfies condition (3.2 ). Let us introduce the energy
functions (we omit index k in uk):

I1,0(r) =

∫

Qr

|∇xu|2 dxdt, Iq(r) = (q!)−1

∫

Qr

h(t)|u|q+1 dxdt, I3,0(r) =

∫

Qr

|u|2 dxdt. (4.3)

Multiplying (4.2 ) by u(x, t) exp

(
− t− r

1 + T − r

)
, integrating in Qr and using equality

s(es − 1) =

∞∑

q=1

sq+1

q!
,

we obtain easily

I1,0(r) +

∞∑

l=1

Il(r) + I3,0(r) ≤ c(q!)2/(q+1τN(q−1)/(q+1)h(r)−2/(q+1)(−I ′q(r))2/(q+1)

+ c

∫

Ω(τ)

|u(x, r)|2 dx ∀ τ > 0, ∀ r : 0 < r < T, ∀ q ∈ N. (4.4)

We introduce the additional energy functions

f(r, τ) from (3.10 ), E1,0(r, τ) =

∫

Qr(τ)

|Dxu|2 dxdt, E2,0(r, τ) =

∫

Qr(τ)

|u|2 dxdt. (4.5)

Instead of (3.21 ) we derive the following global a priori estimate:

∫

RN

|uk(x, r)|2 dx+

∫

Qr

(
|∇xu|2 + |uk|2 + h(t)

∞∑

l=1

|uk|l+1

l!

)
dxdt

≤ c ‖u0,k‖2
L2(RN ) ≤ cMk ∀ r < T. (4.6)

Using estimate (4.6 ) instead of (3.21 ) in a similar way as in the proof of Theorem 3.1, we obtain
the following inequality, analogous to (3.23 ),
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f(r, τ) + E1,0(r, τ) +
(τ − k−1)2

64r2
E2,0(r, τ)+

≤ c2Mkr
−1 exp

(
− (τ − k−1)2

64r

)
∀ τ ≥ τ̃

(k)
0 (r) = k−1 + 8

√
r. (4.7)

Using this estimate we deduce from (4.4 )

I1,0(r) +

∞∑

l=1

Il(r) + I3,0(r) ≤ c(q!)
2

q+1 τ
N(q−1)

q+1 h(r)−
2

q+1 (−I ′q(r))
2

q+1

+ c2Mkr
−1 exp

(
− (τ − k−1)2

64r

)
∀ τ ≥ τ̃

(k)
0 (r), ∀ q ∈ N. (4.8)

Next, we define the numbers τk, rk. Firstly, set

rk := sup

{
r : I1,0(r) +

∞∑

l=1

Il(r) + I3,0 ≥ 2M ε0

k

}
, 0 < ε0 < e−1. (4.9)

Then we fix the sequence {Mk} by (3.24 ) again and τk by inequalities (3.25 ), (3.26 ). Thanks to
these definitions we derive the following series of inequalities from relations (4.8 )

I1,0(r) +

∞∑

l=1

Il(r) + I3,0(r) ≤ 2c1(q!)
2

q+1 (τk + k−1)
N(q−1)

q+1 h(r)−
2

q+1 (−I ′q(r))
2

q+1 ∀ q ∈ N, ∀ r ≤ rk.

(4.10)
Solving these differential inequalities we obtain the estimates

I1,0(r) +

∞∑

l=1

Il(r) + I3,0(r) ≤ c3(τk + k−1)N (q!)
2

q−1H(r)−
2

q−1 ∀ r ≤ rk, ∀ q ∈ N, (4.11)

where H(r) is from (3.31 ). We have now to optimize estimate (4.11 ) with respect to parameter
q. By integration by parts, it is easy to check the following inequality

H(r) ≥ c
r2

ω(r)
exp

(
−ω(r)

r

)
h(r) ∀ r > 0, c > 0. (4.12)

Using Stirling formula q! ∼
(q
e

)q

and estimate (4.12 ), we deduce from (4.11 )

I1,0(r) +

∞∑

l=1

Il(r) + I3,0(r) ≤ c4(τ + k−1)NFq(r) ∀ r ≤ rk, (4.13)

where

Fq(r) = q2ω(r)
2

q−1 r−
4

q−1 exp

(
2

q − 1
· ω(r)

r

)
exp

[
2

q − 1
exp

(
ω(r)

r

)]
.

Fixing here the optimal value of the parameter q:

q = q̃ :=

[
2 exp

(
ω(r)

r

)]
,

where [a] denotes the enteger part of a, we obtain easily

Fq̃ ≤ c exp

(
2ω(r)

r

)
.
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Therefore it follows from (4.13 ),

I1,0(r) +

∞∑

l=1

Il(r) + I3,0(r) ≤ c5(τk + k−1)N exp

(
2ω(r)

r

)
∀ r ≤ rk. (4.14)

Comparing now definition (4.9 ) of rk and estimate (4.14 ), and using additionally the expression
(3.26 ) of τk, we obtain

rk ≤ bk, (4.15)

where bk is defined by the equation

c5

[
8b

1/2
k ((1 − ε0)e

k + ln b−1
k + ln c2)

1/2 + k−1
]N

exp

(
2ω(bk)

bk

)

= 2M ε0

k = 2 exp(ε0 expk), 0 < ε0 < e−1. (4.16)

By an analysis similar to Step 2 in the proof of Theorem 3.1, we obtain estimates (3.37 )–(3.40 )
for bk. Then we prove the validity of estimate (3.41 ) for τk. As a consequence of estimates (4.7 ),
(4.14 ), thanks to to definitions (3.26 ), (4.9 ) of τk, rk and the previous estimates of τk, rk, we
get

I1,0(r) +
∞∑

l=1

Il(r) + I3,0(r) ≤ 2M ε0

k ,

f(rk, τk + k−1) + E1,0(rk, τk + k−1) +
τ2
k

64r2k
E2,0(rk, τk + k−1) ≤M ε0

k .

Summing these inequalities, and using definition of {Mk} and property τk ≫ rk, we obtain an
analogue of estimate (3.45 ), namely,

f(rk, τk + k−1) + I1,0(rk) +

∞∑

l=1

Il(rk) + I3,0(rk) +E1,0(rk, τk + k−1) +E2,0(rk, τk + k−1) ≤ cMk−1.

(4.17)
Using (4.17 ) as global a priori estimate instead of (4.6 ) and providing a second round of compu-
tations similar to (3.46 )–(3.57 ) we derive a second global a priori estimate analogous to (3.61 ),

f(rk−1, τk−1 + τk + k−1) + I1,0(rk−1) +

∞∑

l=1

Il(rk−1) + I3,0(rk−1)

+ E1,0(rk−1, τk−1 + τk + k−1) + E2,0(rk−1, τk−1 + τk + k−1) ≤ cMk−2.

Repeating such rounds j-times we derive a corresponding analogue of relation (3.62 ). It is easy to
see that estimate (3.76 ) for constructed shifts τk−i remains valid. This fact, similar to what was
used in the proof of Theorem 3.1, yields to the conclusion. �

5 The porous media equation with absorption

In this section we consider the following problem dealing with fundamental solutions of the porous
media equation with time dependent absorption,

{
∂tu− ∆(|u|m−1u) + h(t)|u|q−1u = 0 in QT

u(x, 0) = kδ0.
(5.1)
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It is standard to assume that h ≥ 0 is a continuous function and m, q are positive real numbers.
By a solution we mean a function u ∈ L1

loc(Q
T ) such that um ∈ L1

loc(Q
T ), huq ∈ L1

loc(Q
T ) and

∫ ∫

QT

(
−u∂tφ− |u|m−1u∆φ+ h(t)|u|q−1uφ

)
dxdt = kφ(0, 0) (5.2)

for any φ ∈ C2,1
0 (RN × [0, T )). If h ≡ 0 and m > (N − 2)+/N this problem admits a solution for

any k > 0. When m > 1 this solution has the following form

Bk(x, t) = t−ℓ

(
Ck − (m− 1)ℓ

2mN

|x|2

t2ℓ/N

)1/(m−1)

+

, (5.3)

where

ℓ =
N

N(m− 1) + 2
and Ck = a(m,N)k2(m−1)ℓ/N . (5.4)

Since Bk is a supersolution for problem (5.1 ), a sufficient condition for existence (and uniqueness)
of uk is ∫ ∫

QT

Bq
k(x, t)h(t)dxdt <∞. (5.5)

By the change of variable y = tℓ/Nx this condition is independent of k > 0 and we have

Proposition 5.1 Assume m > 1, q > 0. If

∫ 1

0

h(t)tℓ−ℓqdt <∞, (5.6)

then problem (5.1 ) admits a unique positive solution u = uk. In the particular case where h(t) =
O(tα) (α ≥ 0), the condition is

α >
N(q −m) − 2

N(m− 1) + 2
. (5.7)

We recall that if q > 1 and m > (N − 2)+/N , any solution of the porous media equation with
absorption is bounded from above by the maximal solution Uh expressed by

Uh(t) =

(
(q − 1)

∫ t

0

h(s) ds

)−1/(q−1)

. (5.8)

Theorem 5.2 Assume q + 1 > 2m > 2 and h ∈ C((0,∞)) is nondecreasing, positive and satisfies
h(t) = O(t(q−m)/(m−1)) as t→ 0. Then for any k > 0 uk exists and limk→∞ uk := u∞ = Uh.

Proof. We first notice that

q + 1 > 2m > 2 =⇒ q > m > 1 and
q −m

m− 1
>
N(q −m) − 2

N(m− 1) + 2
.

Step 1. Case q < m + 2/N . In this range of value we know [14] that there exists a nonnegative
very singular solution v = v∞ to

∂tv − ∆vm + vq = 0 in QT , (5.9)
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and v∞ = limk→ vk, where the vk are solutions of the same equation with initial data kδ0. Fur-
thermore, v∞ is unique [6], radial with respect to x and has the following form

v∞(x, t) = t−1/(q−1)F (|x| /t(q−m)/2(q−1)),

where F solves




(Fm)′′ +

N − 1

η
(Fm)′ +

q −m

2(q − 1)
ηF ′ +

1

q − 1
F − F q = 0 in (0, )

F ′(0) = 0 and limη→∞ η2/(q−m)F (η) = 0.

(5.10)

Actually F has compact support in [0, ξ0] for some ξ0 > 0. Let γ = (q −m)/(m− 1), then for any
ǫ > 0, u = u∞ satisfies, for some c > 0,

∂tu− ∆um + cǫγuq ≥ 0 in Qǫ.

If we set wǫ(x, t) = aθv∞(x, at) with θ = 1/(m− 1)− and a = ǫ−1c−(q−1)/(q−m), then

∂twǫ − ∆wm
ǫ + cǫγwq

ǫ = 0 in QT .

By comparison u∞ ≥ wǫ in Qǫ. If we take in particular t = ǫ, it implies

u∞(x, t) ≥ c−1/(q−m)t−1/(m−1)v∞(x, c−(m−1)/(q−m)) = c−1t−1/(m−1)F (c(m−1)/2(q−1) |x|) (5.11)

If |x| < ξc = c−(m−1)/2(q−1)ξ0, we derive that limt→0 u∞(x, t) = ∞, locally uniformly in Bξc . This
implies u∞ = Uh.

Step 2. Case q ≥ m+2/N . We give an alternative proof valid for all q. We first observe that it is
sufficient to prove the result when h(t) is replaced by tγ . If we look for a family of transformations
u 7→ Tℓ(u) under the form

Tℓ(u)(x, t) = ℓαu(ℓβx, ℓt) ∀(x, t) ∈ Q∞, ∀ℓ > 0

which leaves the equation
∂tu− ∆|u|m−1u+ tγ |u|q−1u = 0 (5.12)

invariant, we find α = (1 + γ)/(q − 1) and β = (q −m− γ(m− 1))/2(q − 1). Due to the value of
γ, we have β = 0. Because of uniqueness and the value of the initial mass

Tℓ(uk) = uℓαk ∀ℓ > 0, ∀k > 0 =⇒ Tℓ(u∞) = u∞ ∀ℓ > 0. (5.13)

Therefore
ℓαu∞(x, ℓt) = u∞(x, t) ∀(x, t) ∈ Q∞, ∀ℓ > 0.

In particular, if we take ℓ = t−1,

u∞(x, t) = t−αu∞(x, 1) = t−αφ(x).

Plugging this decomposition into (5.12 ) yields to

−αt−α−1φ− t−αm∆φm + tγ−αqφq = 0,

where all the exponents of t coincide since

αm =
m

m− 1
, αq − γ =

m

m− 1
and α+ 1 =

m

m− 1
.
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Therefore φ is a positive and radial (as the uk are) solution of

−αφ− ∆φm + φq = 0 in R
N .

Setting ψ = φm yields to

−∆ψ − 1

m− 1
ψ1/m + ψq/m = 0 in R

N . (5.14)

Clearly ψ = ψ0 = (m− 1)−m/(q−1) is a solution. By a standard variation of the Keller-Osserman
estimate, any solution is bounded from above by ψ0. Putting ψ̃(x) = Aψ(a), it is easy to find
A > 0 and a > 0 such that

−∆ψ̃ − ψ̃1/m + ψ̃q/m = 0 in R
N , (5.15)

with 0 ≤ ψ̃ ≤ 1. Writting ψ̃ as a solution of an ODE, we derive

ψ̃(r) = ψ̃(0) +

∫ r

0

s1−n

∫ s

0

(ψ̃q/m − ψ̃1/m)σn−1ds ∀r > 0.

If ψ̃q/m is not constant with value 1, the right-hand side of the above inequality is decreasing with
respect to r, and the only possible nonnegative limit is 0, by La Salle principle. Thus

ψ̃′′ +
N − 1

r
ψ̃′ +

1

2
ψ̃1/m ≤ 0

for r ≥ r0, large enough. If N = 2, we set τ = ln r, Ψ(τ) = ψ̃(r) and get

Ψ′′ +
1

2
e2τΨ1/m ≤ 0

for τ ≥ ln r0. The concavity of Ψ yields a contradiction. If N ≥ 3, we set τ = rN−2/(N − 2) and
Ψ(τ) = rN−2ψ̃(r). Then Ψ satisfies

Ψ′′ + cNτ
(4−N)/(N−2)−1/mΨ1/m ≤ 0.

Again the concavity yields a contradiction. In any case we obtain that Ψ = 1, or, equivalently

ψ = ψ0 and finally, u∞ = t−1/(m−1)ψ
1/m
0 . �

Theorem 5.3 Assume q > m > 1 and h ∈ C((0,∞)) is nondecreasing, positive. If h(t) =
t(q−m)/(m−1)ω−1(t) with ω(t) → 0 as t→ 0, and

∫ 1

0

ωθ(s)
ds

s
<∞, (5.16)

where

θ =
m2 − 1

[N(m− 1) + 2(m+ 1)](q − 1)
,

then u∞ := limk→∞ uk has a point-wise singularity at (0, 0)
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Proof. The structure of the proof is similar to the one of Theorem 3.1. We study the asymptotic
behaviour as k → ∞ of solutions u = uk(x, t) of the regularized Cauchy problem





ut − ∆(|u|m−1u) + h(t)|u|q−1u = 0 in QT

u(x, 0) = u0,k(x) = M
1

m+1

k k−
mN
m+1 δk(x) x ∈ R

N ,
(5.17)

where δk is as in Theorem 3.1. Let us rewrite problem (5.17 ) in the form





(|v|p−1v)t − ∆v + h(t)|v|g−1v = 0, in QT

v = vk = |u|m−1u, p = 1/m, g = q/m

|v(x, 0)|p−1v(x, 0) = |v0,k|p−1v0,k := u0,k(x) = M
p

p+1

k k−
N

p+1 δk(x).

(5.18)

Without loss of generality we may suppose

‖δk(x)‖
p+1

p

L p+1
p

(RN ) =

∫

RN

|δk(x)|
p+1

p dx ≤ c0k
N
p ∀ k ∈ N. (5.19)

Now sequence {Mk} is such that

M
p

p+1

k k−
N

p+1 → ∞ as k → ∞. (5.20)

Step 1. The local energy framework. Consider the following energy functions

I1(τ) =

∫

Qr

|∇xv|2 dxdt, I2(τ) =

∫

Qr

h(t)|v|g+1 dxdt, I3(τ) =

∫

Qr

|v|p+1 dxdt. (5.21)

Analogously to (3.9 ) we deduce the inequality

∫

RN

|v(x, T )|p+1 dx+I1(r)+I2(r)+I3(r) ≤ cτ
N(g−p)

g+1 h(r)−
p+1
g+1 (−I ′2(r))

p+1
g+1 +c

∫

Ω(τ)

|v(x, r)|p+1 dx

∀ τ > 0, ∀ r : 0 < r < T. (5.22)

This inequality will control the spreading of energy with respect to the r-variable (the time direc-
tion). As to vanishing property of energy in variable τ , we will use the finite speed propagation of
support property for porous media equation with slow diffusion. In the domain Q(r)(τ) we will use
the energy function E1(r, τ) =

∫
Q(r)(τ) |∇xv|2 dxdt from (3.12 ). Since supp v(·, 0) = supp vk(·, 0) =

supp v0,k = {x : |x| < k−1}, multiplying equation (5.18 ) on v(x, t) and integrating in the domain
Q(r)(τ), τ ≥ k−1, we obtain after simple computations (see, for example [1, 4]) the following
differential inequality

∫

Ω(τ)

|v(x, r)|p+1 dx+ E1(r, τ) ≤ cr
(p+1)(1−θ1)

p+1−(1−θ1)(1−p)

(
− d

dτ
E1(r, τ)

) p+1
p+1−(1−θ1)(1−p)

, (5.23)

∀ τ ≥ k−1, ∀ r > 0 where θ1 =
N(1 − p) + (p+ 1)

N(1 − p) + 2(p+ 1)
, 1 − θ1 =

p+ 1

N(1 − p) + 2(p+ 1)
.

Solving this inequality and keeping in mind that E1(r, τ) ≥ 0 ∀ r > 0, ∀ τ > 0, we deduce easily

v(x, r) ≡ 0 ∀x : |x| > k−1 + c0r
1−θ1E1(r, k

−1)
(1−θ1)(1−p)

1+p := k−1 + c0χ(r), ∀ r > 0. (5.24)
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Here the constant c0 > 0 depends on the parameters of the problem under consideration, but do
not on r and k. Analogously to (3.25 ) we deduce the following global a priori estimate

∫

Q(r)

(|∇xv|2 + r−1|v|p+1 + h(t)|v|g+1) dxdt ≤ c ‖v0,k‖p+1
Lp+1(RN )

. (5.25)

Thus, due to (5.18 )–(5.20 ), it follows from (5.25 )

E1(r, 0) ≤ cMk ∀ r > 0. (5.26)

Next we come back to the inequality (5.22 ). Due to (5.24 ) it ensues from (5.22 ) the inequality

I1(r) + I2(r) + I3(r) ≤ c(k−1 + χ(r))
N(g−p)

g+1 h(r)−
p+1
g+1 (−I ′2(r))

p+1
g+1 ∀ r > 0. (5.27)

Remark that due to (5.26 ) we have

χ(r) ≤ c1r
1−θ1 M

(1−θ1)(1−p)
1+p

k . (5.28)

Step 2. The first round of computations. Now we have to define τk, rk. First we impose the
relation

τk ≥ c1r
1−θ1

k M
(1−θ1)(1−p)

1+p

k , c1 is from (5.28 ). (5.29)

Then (5.27 ) yields to

I(r) := I1(r) + I2(r) + I3(r) ≤ c(k−1 + τk)
N(g−p)

g+1 h(r)−
p+1
g+1 (−I ′(r))

p+1
g+1 ∀ r : 0 < r < rk. (5.30)

Solving this differential inequality we get the estimate

I(r) ≤ c(k−1 + τk)N

( ∫ r

0
h(s) ds

) p+1
g−p

∀ r : 0 < r < rk. (5.31)

Remember that the function h(s) has the form h(s) = s(g−1)/(1−p)ω(s)−1, therefore estimate (5.31 )
yields to

I(r) ≤ c2ω(r)
p+1
g−p (k−1 + τk)N

r
p+1
1−p

∀ r : 0 < r ≤ rk. (5.32)

Thus, as second relation, which defines our pair τk, rk, we suppose the condition

c2ω(rk)
p+1
g−p (k−1 + τk)N

r
p+1
1−p

k

≤ cMk−1, c is from (5.26 ). (5.33)

Moreover, we will find the pair τk, rk such that the following property holds

k−1 + τk ≤ 1. (5.34)

Then the next inequality is a sufficient condition for validity of (5.33 ):

c2ω(rk)
p+1
g−p r

− p+1
1−p

k ≤ cMk−1, c is from (5.26 ), (5.35)

and we can define rk by equality

rk :=
(c2
c

) 1−p
p+1

ω(rk)
1−p
g−pM

− 1−p
p+1

k−1 . (5.36)
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Now we have to choose the sequence {Mk}. Namely, we set

Mk := ek ∀ k ∈ N, (5.37)

and we define τk, in accordance with assumption (5.29 ), by

τk = c1r
1−θ1

k M
(1−θ1)(1−p)

1+p

k , c1 is from (5.28 ). (5.38)

Further, due to (5.36 ) an (5.37 ), it follows from (5.38 ),

τk = c1(r
p+1
k M1−p

k )
1

N(1−p)+2(p+1) = c1

[(c2
c

)1−p

ω(rk)
(1−p)(p+1)

g−p M
−(1−p)
k−1 M1−p

k

] 1
N(1−p)+2(p+1)

= c1

(ec2
c

) (1−θ1)(1−p)
1+p

ω(rk)S , (5.39)

where S = (1−θ1)(1−p)
g−p = (1−p)(p+1)

(g−p)[N(1−p)+2(p+1)] . From definition (5.36 ) and because of (5.37 ) and

(3.43 ), there holds

rk ≤
(c2
c

) 1−p
p+1

ω
1−p
g−p

0 exp
(
− 1 − p

p+ 1
(k − 1)

)
:= c3 exp

(
− 1 − p

p+ 1
k
)
, (5.40)

and rk → 0 as k → ∞. Therefore, since ω(s) → 0 as s → 0, it follows from (5.39 ) that τk → 0 as
k → ∞. Consequently we can suppose k so large that condition (5.34 ) is satisfied. Thus, we have
pair (τk, rk) for large k ∈ N.

Step 3. The second round of computations. As a starting global a priori estimate of solution we
will use now, instead of (5.25 ), (5.26 ), the following estimate

I1(rk) =

∫

{t≥rk,

x∈R
N}

|∇xv|2 dxdt ≤ I(rk) ≤ cMk−1, (5.41)

which follows from (5.32 ), due to definition (5.33 ), (5.36 ) of rk. Using property (5.24 ), estimate
(5.28 ) and property (5.29 ), it ensues from (5.41 )

E1(r, k
−1 + τk) ≤ I1(r) ≤ I1(rk) < cMk−1 ∀ r ≥ rk. (5.42)

Since v(x, rk) = 0 ∀x : |x| ≥ k−1 + τk we deduce similarly to (5.23 )

∫

Ω(τ)

|v(x, rk + r)|p+1 dx+ E1(rk + r, k−1 + τk + τ) ≤ cr
(p+1)(1−θ1)

(p+1)−(1−θ1)(1−p)

×
(
− d

dτ
E1(rk + r, k−1 + τk + τ)

) p+1
p+1−(1−θ1)(1−p) ∀ r > 0, ∀ τ > 0. (5.43)

Solving this differential inequality, we obtain

v(x, rk + r) ≡ 0 ∀x : |x| ≥ k−1 + τk + c0χ1(r), (5.44)

where χ1(r) := r1−θ1E1(rk + r, k−1 + τk)
(1−θ1)(1−p)

1+p ∀ r ≥ 0. But (5.42 ) implies

χ1(r) ≤ c1r
1−θ1M

(1−θ1)(1−p)
1+p

k−1 . (5.45)
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Now we define τk−1, rk−1. In the same way as (5.29 ) we impose

τk−1 ≥ c1r
1−θ1

k−1 M
(1−θ1)(1−p)

1+p

k−1 . (5.46)

Similarly to (5.30 )–(5.32 ) we deduce

I(r) ≤ c2ω(r)
p+1
g−p (k−1 + τk + τk−1)

N

r
p+1
1−p

∀ r : 0 < r ≤ rk + rk−1. (5.47)

The second relation for defining the pair τk−1, rk−1 is analogous to(5.33 )

c2ω(rk + rk−1)
p+1
g−p (k−1 + τk + τk−1)

N

(rk + rk−1)
p+1
1−p

≤ cMk−2, c is from (5.26 ). (5.48)

Supposing that
k−1 + τk + τk−1 ≤ 1, (5.49)

we can define rk−1 by the following analogue of (5.36 )

rk + rk−1 :=
(c2
c

) 1−p
p+1

ω(rk + rk−1)
1−p
g−pM

− 1−p
p+1

k−2 . (5.50)

And in accordance with (5.46 ) let us define τk−1 by

τk−1 = c1r
1−θ1

k−1 M
(1−θ1)(1−p)

1+p

k−1 . (5.51)

Due to (5.50 ) we have

τk−1 ≤ c1
[
(rk + rk−1)

p+1M1−p
k−1

] 1
N(1−p)+2(p+1)

≤ c1

[(c2
c

)1−p

ω(rk + rk−1)
(1−p)(p+1)

g−p M
−(1−p)
k−2 M1−p

k−1

] 1
N(1−p)+2(p+1)

= c1

(ec2
c

) (1−θ1)(1−p)
1+p

ω(rk + rk−1)
S ,

where S is from (5.39 ). Notice that, due to (5.47 ), (5.48 ), we have also

I1(rk + rk−1) ≤ I(rk + rk−1) ≤ cMk−2, (5.52)

and, analogously to (5.42 ),

E1(r, k
−1 + τk + τk−1) ≤ I1(r) ≤ I1(rk + rk−1) ≤ cMk−2 ∀ r ≥ rk + rk−1. (5.53)

Step 4. Completion of the proof. Estimates (5.52 ), (5.53 ) we can use instead of (5.41 ), (5.42 )
for third round of computations. After j such rounds we deduce that

I1

( j∑

i=0

rk−i

)
≤ I

( j∑

i=0

rk−i

)
≤ cMk−j , (5.54)

E1

(
r, k−1 +

j∑

i=0

τk−i

)
≤ I1(r) ≤ I1

( j∑

i=0

rk−i

)
≤ cMk−j ∀ r ≥

j∑

i=0

rk−i, (5.55)
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where

τk−i ≤ c1

(ec2
c

) (1−θ1)(1−p)

1+p

ω

( i∑

l=0

rk−l

)S

, (5.56)

with the same S as in (5.39 ), and

i∑

l=0

rk−l =
(c2
c

) 1−p
p+1

ω

( i∑

l=0

rk−l

) 1−p
g−p

M
− 1−p

p+1

k−i−1. (5.57)

Estimates (5.54 ) will remain true as long as the following analogue of relation (5.49 ) is valid

k−1 +

j∑

i=0

τk−i ≤ 1.

Now we will check this condition. Due to (3.32 ), it follows from (5.57 )

i∑

l=0

rk−l ≤
(c2
c

) 1−p
p+1

ω
1−p
g−p

0 M
− 1−p

p+1

k−i−1 := CM
− 1−p

p+1

k−i−1 = C exp
(
− 1 − p

p+ 1
(k − i− 1)

)
.

Therefore, from (5.56 ), it follows

τk−i ≤ c1

(ec2
c

) (1−θ1)(1−p)
1+p

ω
(
C exp

(
− (1−p)(k−i−1)

p+1

))S

:= C1

[
ω
(
C exp

(
− (1−p)(k−i−1)

p+1

))]S
.

Thus we have, using in particular the monotonicity of function ω(s),

j∑

i=0

τk−i ≤ C1

j∑

i=0

[
ω
(
C exp

(
− (1 − p)(k − i− 1)

p+ 1

))]S

≤ C1

∫ k

k−j−1

[
ω
(
C exp

(
− (1 − p)s

p+ 1

))]S
ds =

C1(p+ 1)

1 − p

∫ A2

A1

ω(s)S

s
ds,

A1 = C exp
(
− 1 − p

p+ 1
k
)
, A2 = C exp

[
− 1 − p

p+ 1
(k − j − 1)

]
. (5.58)

Due to condition (5.16 ) and estimate (5.58 ) we can find k0 ∈ N, which depends on parameters of
problem under consideration, but does not depend on k ∈ N, such that

k−k0∑

i=0

τk−i + k−1 ≤ 1 ∀ k ∈ N.

At end, our estimates (5.54 )–(5.57 ) are true for all j ≤ k−k0. Therefore the proof of Theorem 5.3
follows from estimates (5.54 )–(5.57 ), in the same way as Theorem 3.1 from estimates (3.75 )–
(3.77 ). �

6 The fast diffusion equation with absorption

When (1 − 2/N)+ < m < 1, it is known that the mere fast diffusion equation

∂tv − ∆vm = 0 in Q∞ (6.1)
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admits a particular fundamental positive solution with initial data kδ0 (k > 0) called the Barenblatt
-Zeld’dovich-Kompaneets solution, expressed by

Bk(x, t) = t−ℓ

(
Ck +

(1 −m)ℓ

2mN

|x|2

t2ℓ/N

)−1/(1−m)

, (6.2)

where ℓ and Ck are given in (5.4 ). The main feature of this expression is that limk→∞ Ck = 0,
therefore

lim
k→∞

Bk(x, t) = W (x, t) := C∗

(
t

|x|2

)1/1−m)

, (6.3)

where

C∗ =

(
(1 −m)3

2m(mN + 2 −N)

)1/(1−m)

.

This solution has a persisting singularity and is called a razor blade [18]. It has also the property
that

lim
t→0

W (x, t) = 0 ∀x 6= 0.

This phenomenon is at the origin of the work of Chasseigne and Vàzquez on extended solutions of
the fast diffusion equation [3]. Concerning problem (5.1 ), Proposition 5.1 is still valid provided
m > (1 + 2/N)+. We shall denote by u = uk the solutions of (5.1 ). Furthermore estimate (5.8
) holds. Combining this with the fact that the Bk are super solutions for the uk, we derive the
following

Theorem 6.1 Assume (1− 2/N)+ < m < 1 and h ∈ C(0,∞) is positive. Assume also that (5.6 )
holds. Then u∞ := limk→∞ uk has a point-wise singularity at (0, 0) and the following estimate is
verified

u∞(x, t) ≤ min




C∗t
−ℓ

(
|x|2

t2ℓ/N

)−1/(1−m)

,

(
(q − 1)

∫ t

0

h(s) ds

)−1/(q−1)



 (6.4)

Remark. The profile of u∞ near (x, t) = (0, 0) is completely unknown. In particular a very chaleng-
ing question could be to give precise estimates on the quantity min {W (x, t), Uh(t)} − u∞(x, t).

References

[1] Antontsev S. N., On the localization of solutions of nonlinear degenerate elliptic and parabolic
equations, Dokl. Akad. Nauk. SSSR, 260 (1981), 1289–1293 (translin. Soviet. Math. Dokl.
24 (1981)).

[2] Brezis H., Peletier L. A. and Terman D., A very singular solution of the heat equation with
absorption, Arch. Rat. Mech. Anal 95, 185-209 (1986). (1985).
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