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Abstract

Let h : [0,00) — [0,00) be continuous and nondecreasing, h(t) > 0 if ¢ > 0,
and m,q be positive real numbers. We investigate the behavior when k£ — oo
of the fundamental solutions u = wuy of dyu — Au™ + h(t)u? = 0 in Q x (0,7T)
satisfying ux(x,0) = kdp. The main question is wether the limit is still a solution
of the above equation with an isolated singularity at (0,0), or a solution of the
associated ordinary differential equation v’ + h(t)u? = 0 which blows-up at ¢ = 0.
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1 Introduction

Let m and ¢ positive parameters and h : [0,00) — [0,00) a nondecreasing continuous. If one
consider a reaction-diffusion equation such as

Ou — Au™ + h(t)u? =0 (1.1)

(u > 0 for simplicity) in a cylindrical domain QT = RY x (0,7) (N > 1), the behaviour of u
is subject to two competing features: the diffusion associated to the partial differential operator,
here —A, and the absorption which is represented by the term h(¢t)u?. When ¢ > 1 and h(t) > 0
for t > 0, the absorption term is strong enough in order positive solution to satisfy an universal

bound
-1/(g—1)

0<ute.t) <o) = ((a=1) [ sy as) (12)

for every (z,t) € Q7. In addition, the function U;, which appears above is a particular solution of
(1.1 ). The associated diffusion equation

Opw—Av™ =0 (1.3)
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admits fundamental solutions v = v; (k > 0) which satisfy v (z,0) = kdg if m > (N —2)4/N. If

T
/ / h(t)vl dzdt < 0o, Bpg:={|z| < R}, (1.4)
0 JBr

for any R € (0, 0c], it is shown that (1.1 ) admits fundamental solutions v = uy, in QT which satisfy
initial condition wug(z,0) = kdp. The maximum principle holds and therefore the mapping k — wuy
is increasing. If h > 0 on (0, 00) then due to universal bound(1.2 ) there exists U = limp— o0 Ug,
and U is a solution of (1.1 ) in QT. A natural question is whether u., admits a singularity only
at the origin (0,0) or at other points too. Actually, in the last case it will imply us, = U since the
following alternative occurs:

(i) either uo, = U. (complete initial blow-up);

(ii) or uso is a solution singular at (0,0) and such that lim; o u(z,t) = 0 for all x # 0. (single-point
initial blow-up).

This phenomenon is observed for the first time by Marcus and Véron. They considered the
semilinear equation

O — Au+ h(t)u? =0 (1.5)
and proved [8, Prop. 5.2]

Theorem 1.1 If h(t) = e/t (k > 0), then the complete initial blow-up occurs.

However they raised the question whether this type of degeneracy of the absorption is sharp
or not. The method of [8] relies on the construction of subsolutions associated to very singular
solutions of equations

Oru — Au + ¢ t®u? =0 (1.6)

for suitable a@ > 0 and ¢, > 0, and on the study of asymptotics of these solutions. One the main
result of present paper states that if the degeneracy of the absorption terms is lightly smaller
respectivelly to Th. 1.1, then localization occurs.

Theorem 1.2 If h(t) = exp(—w(t)/t), where w is continuous, nondecreasing and satisfies
1
/ @ds < 00, (1.7)
0o S

then uo has single-point initial blow-up at (0,0).

The method of the proof is totally different from the one of Marcus and Véron and based upon
local energy estimates in the spirit of the famous Saint-Venant ’s principle (see [5,12,13]). Using
appropriate test functions we prove by induction that the energy of the fundamental solutions uy

remains uniformly locally bounded in @T \ {(0,0)}.

In the case of equation
O — Au+ h(t)(e* —1)=0 (1.8)

the same type of phenomenon occurs, but at a different scale of degeneracy. We prove the following

Theorem 1.3 1) If h(t) = e=e! for some k > 0, then the complete initial blow-up occurs.

2) If h(t) = e—e for some w € C(0,00) positive, nondecreasing and satisfying (1.7 ), then s
has single-point initial blow-up at (0,0).



In this paper we also extend the study of equation (1.1 ) to the case m # 1. The situation
differs completely corresponding to m > 1, the porous media equation with slow diffusion, and
to (N —2)1/N < m < 1, the fast diffusion equation. Concerning the porous media equation, we
prove

Theorem 1.4 Ifq >m > 1 and h is nondecreasing and satisfies h(t) = O(t4=™)/(m=1)) g5t — 0,
then uso = Up,.

We give two proofs. The first one, valid only in the subscritical case 1 < m < ¢ <m + 2/N, is
based upon the construction of suitable subsolutions, as in the semilinear case. The second one,
based upon scaling transformations, is valid in all the cases ¢ + 1 > 2m > 2 where the wuj exists.
It reduces to proving that the equation

—AT — @Y™ g™ = in RY
admits only one positive solution, the constant 1. The localization counter part is as follows,

Theorem 1.5 Assumeq >m > 1, in Equation (1.1 ). If h(t) = t@=)/(m=Du,=1(1) with w(t) — 0
ast — 0, and

S

/0 we(s)E < 00 (1.9)

where
m2—1
T INm-D)+2(m+1)g-1)

then uo has single-point initial blow-up at 0,0).

Actually, the method is applicable to a much more general class of equations.

In the fast diffusion case there is always localization.

Theorem 1.6 Assume (N —2)y/N <m <1 and g > 1, in Equation (1.1 ). Then

; 1/1—m)
Uoo(x,t) < min ¢ Uy(t), C, (W) (1.10)
x

where

. _ (1—m)? 1/(1-m) |
2m(mN +2 - N

This type of problem has an elliptic counterpart which is initiated in [10] where the following
question is considered: suppose €2 is a C? bounded domain in RY, ¢ > 1 and h € C(0,00) is
positive. What is the limit, when k& — oo of the solutions (when they exist) u = uy of the following
problem

{ ~Dut h(p(@)u? =0 i © (1.11)

u = kdg in 99,
where p(z) = dist (z,09). Tt is proved in [10] that, if h(t) = e~ /%, then e (:= limy_ oo uy,) is the
maximal solution of the equation in 2, that is the function which satisfies

{ —Au+h(p(x))u? =0 in Q

_ (1.12)
lim 5y o u(z) = oo.



On the contrary, if h(t) =t*, fora>0and 1 < ¢ < (N+1+a)/(N — 1), it is proved in [11] that
Uso has an isolated singularity at 0, and vanishes everywhere outside 0. In a forthcoming article we
shall study this localization of singularity phenomenon for the complete nonlinear elliptic problem,
replacing the powers by more general functions, and the ordinary Laplacian by the p-Laplacian
operator.

Our paper is organized as follows: §1 Introduction. In §2 we study sufficient conditions of complete
initial blow-up for semilinear heat equation. In §3 we prove sharp sufficient condition of existence
of single point initial blow-up for heat equation with power nonlinear absorption. In §4 local energy
method from §3 is adapted to the heat equation with nonpower absorption nonlinearity. §5 deals
with porous media equation with power nonlinear absorption, §6 — the fast diffusion equation
with nonlinear absorption.

2 Complete initial blow-up for semilinear
heat equation

We recall the standard result concerning the existence of a fundamental solution u = u (k > 0)
to the following problem

(2.1)

Ou— Au+g(x,t,u) =0 in QT =RN x (0,7T)
u(z,0) = kdo.

If v is defined in QT, we denote by §(v) the function (z,t) +— g(x,t,v(z,t)). By a solution we
mean a function u € L} (@T) such that g(u) € L} (@T), which verifies

loc loc
//QT (—udid — ulAd + g(u)¢) dadt = k¢(0,0), (2.2)

for any ¢ € CZY(RN x [0,T) x R). We denote by E(z,t) = (4rt)~N/2¢~1#1"/4 the fundamental
solution of the heat equation in Q>°, by Br(a) an open ball of center a and radius R, and Br(0) =
Bpr. The following result is classical

Theorem 2.1 Let g € C(RY x[0,T] xR) such that g(z,t,7) > 0 on RN x [0, T] x Ry, and assume
that g = g1 + g2 where g1 and g2 are respectively nondecreasing and locally Lipschitz continuous
with respect to the r-variable functions. Let k > 0 be such that

/T/ g(x,t,kE(z,t))dxdt < cc. (2.3)
0 JBgr

for any R > 0. Then there exists a solution u = ug to problem (2.1 ). Furthermore, if go = 0,
then uy is unique.

Function g(z,t,r) = e*“/t|r|q71r, with x > 0 and ¢ > 1, satisfies (2.3 ). Thus the problem

O — Au4e *tuT y =0 in Q>
{ ) |ul Q (2.4

u(z,0) = kdo.

admits a unique solution. The next result is proved in [8], but we recall the proof both for the sake
of completeness and to present the key-lines of the method in a simple case.



Theorem 2.2 For k > 0, let uy, denote the solution of (2.4 ) in Q>°. Then uy 1 Us as k — oo,
where

t 1/(1-q)
Us(t) = <(q 1)/ eﬂ/5d5> , Vt>0. (2.5)
0
Proof. Case 1. 1 < g<1+2/N. For any € > 0, u;, = u satisfies
Ou — Au + e~ eyl >0 (2.6)

on Q°. Therefore if v = vy is the solution of

{ O —Av+e "1 =0 in Q> @7)
v(x,0) = ko,
there holds ug > v. Passage to the limit k — oo, yields
klingo U 1= Uoo > Voo = klirrgo v in Q°. (2.8)
If we write voo (1) = ef/€(a=1¢=1/(a=1) (2 /\/t), then f is radial and satisfies
"+ <¥+g f’+q_%f—fq:0 on (0,00),
F1(0) =0, lim, oo r?/97V f(r) = 0.
Furthermore the asymptotics of f is given in [2],
F(r) = Cr2/(@=D=Ne=r*/4(1 4 o(1))), asr — oo,
for some C' = C(N, q) > 0. Therefore
F(r) > C(r+1)2/(@=D=Ne=r*/4 gy > ¢ (2.9)
for some C' = C(N, q) > 0. If we take t = ¢, we derive from (2.8 )
Uso (2, 1) > /M= D=1/ (@) (3 /3/t) in RV, (2.10)
Let 0 < ¢ < 2y/k/(q — 1). Inequalities (2.9 ) and (2.10 ) imply
Uoo (2, 1) > Ct= 1@V ln/(a=D=E/D170 = gy e By (2.11)

Therefore lim; g uoo (2,t) = 00, Vz € By. We pick some point xy in By. Since for any k£ > 0,
the solution uys,, of (2.4 ) with initial value k., can be approximated by solutions with bounded
initial data and support in By (xo) (0 < 0 < £ —|zo|), the previous inequality implies

Uoo (T, 1) > Uso (T — g, T).
Reversing the role of 0 and x( yields to

Uoo (T, 1) = Uso (T — T, t).
If we iterate this process we derive

Uoo(T,1) = Uso(z —y,1), Yy RV, (2.12)



Since uys, is radial with respect to y, (2.12 ) implies that ue(x,t) is independent of - and therefore
it is solution of

2 e f/t =0 on (0,00)
(2.13)

limy ¢ 2(t) = 0.
Thus ue = Ug where Ug is defined by (2.5 ).

Case 2. ¢ > 1+ 2/N. Let a > 0 such that ¢ < geo = 1 +2(1 + a)/N. We write e~/ = th(t)
with h(t) = t~®e~*/t. The function h is increasing on (0, x/a] and we extend it by h(0) = 0. Let
0 < € < K/, then the solution u = uy, of (2.4 ) verifies

O — Au + ﬁ(e)tauq >0,

~ —1/(¢—1)
in RY x (0,¢]. As in Case 1, u is bounded from below on RY x (0, ¢] by (h(e)) Voo Where
VUso = v 18 is the very singular solution of
0w — Av+t%0? = 0. (2.14)
Then veo (,t) = t~(F0/(@=1) £ (|z| /+/T), and f, = f satisfies
N-—-1 1
P () e =0 o 0.00)
r 2 q—1
f1(0) =0, lim, o r2(F)/a=1) f(r) = 0.
The asymptotics of f, is given in [9]
falr) = CTQ(HO‘)/(‘]*”*Ne*TZM(l +0o(1)) asr — oo,
thus ~ )
fa(r) > C1 +7)20F)/(a=)=Ne=r"/4 vy c R
Consequently
u(x,t) > Celw/(a=D=E/N" vy e By, (2.15)

Taking again 0 < £ < 24/k/(q — 1), we derive
%ir%u(z,t) =00, Vz€ B

As in the Case 1, it yields t0 Uoo (7, 1) = Uoo (7 — 3, t) for any y € RY, and finally us.(z,t) = Us(t).
O

Next we consider Cauchy problem for diffusion equation with an exponential type absorption
term

O — Au+ h(t)e =0 in Q>
(2.16)
u(z,0) = kdo
where h € C'(R;) is nonnegative. Theorem 2.1 yields the following existence result:
Proposition 2.3 Assume h satisfies
}n%tN/? Inh(t) = —oc. (2.17)

Then for any k > 0 problem (2.16 ) admits a unique solution u = uy. Furthermore

ug(z,t) < Vg(t) :=—1In (/o h(s)ds> Y(z,t) € Q. (2.18)



Notice that estimate (2.18 ) is a consequence of the fact that Vg satisfies the associated O.D.E.
y +h(t)e?! =0 in (0, 00),

with infinite initial value. Our main result concerning nonexistence of localized singularities for
equation (2.16 ) is

Theorem 2.4 Let h(t) = e for some o > 0 and any t > 0. Then ug | Vs as k — oo.

Proof. Step 1. Construction of an approximate very singular solution. For n > 1 and ¢, > 0 to
be defined later on, let v = V,, be the very singular solution of

Orv — Av + cpt“m o™ = 0. (2.19)
The necessary and sufficient condition for the existence of a V;, is
n<1l+N(a,+1)/2.
This function is obtained in the form
Va(z,t) =t~ 0o/ =D p (2 /1),

where F' solves

1 1
AF 4 26 DF+ 29 p _oopn—y,
2 n—1
We fix . N
n+_0‘1" =1+ 5 < a, =2+ N)n-1)/2-1, (2.20)
and set

fn=c/"VE

Then f,, solves
1 N +2

We prove that f,, has an asymptotic expansion essentially independent of n, in the following form

Fa(€) = 81 + 1)e I = Vo (@, 1) > 60/ D2 N ([ 4 g)e e/ (2.21)

) 9 1/(n—1)

N+2. N+2.
Y — n— .
5/ 5 In

By the maximum principle 0 < f,, < 1 so that 0 < f < f for n/ > n. Thus

It order to see that, we put

then

Afa+ 36D+

N+2 - N+2 -
- SR >0,

- 1 -
which implies that fn is a subsolution of the equation for fn/ and therefore,

(n'=n)/(n=1)(n'-1)
~ ~ N +2

5 Fr- (2.22)



In the particular case n = n* = (N +4)/(N + 2), the equation falls into the scoop of Brezis-
Peletier-Terman study since it can also be written in the form

1 *
Afp + §§Dfn* + foe = fre =0.

n*—1
and their asymptotic expansion applies (with 2/(n* — 1) — N = 2) as |{| — oo:
Jur (€)= CIEP e /M 1 4 0(1) = fur (€) = 8u(I€ + 1)e /4 ve. (2.23)

Combining (2.22 ) with n = n* and n’ replaced by n, and (2.23 ), we get

(I€> + 1)e 1EF/4 v, (2.24)

5\ (=n7)/(n=1)(n"=1)
N+2

h@z&(———

Since n — (2/(N + 2)"=")/ (=D =1 ig hounded from below independently of n > n*, we get
(2.21).

Step 2. Some estimates from below for a related problem. In order to have v, < u in the range of
value of u, which is

u(t) < Vs(t) = —In (/Oth(s)ds> vt > 0, (2.25)

we need v = v, to be a subsolution near ¢ = 0 of the equation that u verifies. Furthermore this
can be done up to some bounded function. It is sufficient to have

ent® (2™ + 1) > h(t)e®, Vte (0,7,], = €0, Vs(t)] (2.26)
where 7, has to be defined. In particular, at the end points of the interval,

(i) ent™ > h(t)

I A h(t) (2.27)
(i4) cnt (1 (fot a(s)ds) * 1) & fot h(s) ds’

We write (2.26 ) in the form

e’ Cptn
1+ = h(t)’ (2.28)
and set -
e
o) = .
Then

(@) = e 142" —nan!

(14 2n)?
The sign of ¢’ is the same as the one of ¥(x) = 1 + ¥ — nz"~1, a function which decreasing then
increasing, is positive near 0, vanishes somewhere between 0 and 1 and again between n — 1 and
n. The first maximum of ¢ is less than e/2. This is not important in (2.28 ) since we can always
assume that the minimum of ¢xt®* /h(t) is larger than e/2. Therefore, it is sufficient to have

eVs® Cptom
1+VE(Et) — h(t)’

(2.29)



in order to have (2.28 ). This is exactly (2.27 )-ii. If we express h(¢) in the form
h(t) = =o' ()™,

then (2.27 )-ii is equivalent to
et (W™ () +1) > —w'(¢). (2.30)

Since
W'(t) +1> 2" (w(t) + 1),

we associate the following O. D. E. on R4

/

-n

Cnta" —_ 21771 ,
(n+1)"

the maximal solution of which is

1/(n—1) 1/(n—-1)
o) = L (— L ot/ -y _ L1 f~1-N/2.
2 \ep(n—1) 2 \ep(n—1)

If we write w in the form
w(t) = e*®,

with a(0) = 0o, o/ < 0, then (2.27 )-ii becomes
Cnta" (ena(t) + 1) > _a/(t)ea(t)’
and this inequality is ensured provided

cntane(n—l)oz(t) > —Oél(t) —c, > _a/(t)e(l—n)a(t)—an Int _ _ta/(t)e(l—n)(a(t)+2*1(N+2) lnt)’
(2.31)
by replacing ., by its value. Next we fix

alt) = ag(t) = % vt >0 (2.32)
where o > 0 is a parameter, thus
7ta/(t)e(17n)(a(t)+271(N+2) Int) _ e(lfn)a/tf(2’1(n71)(N+2)+1)lnt — o)

In order to have (2.31 ) it is sufficient to have the monotonicity of the function p and

on—1) nN+2)-N
12 2t

p(t) =

Then there exist v > 0, independent of k& and o such that p'(t) > 0 on (0,07]. Consequently,
inequality (2.31 ) is ensured on (0, €] C (0, 0] as soon as

Cn > ep(e) — e(lfn)a/57271(n(N+2)fN) lne. (233)

Step 3. Complete initial blow-up for a related problem. Assume now

h(t) = gt 2e5t =7

(2.34)
for some & > 0. For n > 2, we fix ¢ < &y and take ¢, = e”(). On (0, ] we have

ent® (em® £ 1) > —o/ (t)e™®),
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Therefore, if u = uy is the solution of (2.16 ) with h(t) given by (2.34 ), it satisfies u(t) < Vs(¢),
where Vg is given by (2.25 ), and

Ou — Au+ cpt® (v +1) >0 in Q°.
Therefore u is larger that the solution v = vy of
0w — Av + cpt® (v 4+ 1) =0 in Q°,
with ¥ (0) = k&g. Furthermore @y, > vy — ¢t 1 /(ay, + 1), where v = vy, solves
0w — Av + ¢t 0" =0 in QF,

with vy, (0) = k&g. If we let k — 0o, we derive from (2.21 ) and by replacing ¢,, = () by its precise
value e(l—n)a/e—Qfl(n(N-i—Q)—N) lne, that

tontl o (M(N42)—Nlne _ o)
Uoo (2,) > Vi (,1) — > 572 N2(jg? 4 et T
a, +1
on (0,¢]. In particular
o (n( )— ne \m‘z
Uoo (T, €) > 02 N2 (|g]? 4 e)et T e (2.35)
Taking |z|* < /4 yields to
o (n(N+2)—Nlne_ |o|?
1ir%e_2_N/2(|z|2 Jre)e?Jr%* 1 = oo.
€e—

I hllS
l M Uso €) =00 % S B .
CHOU (:C, ) ’ x \/3/2

As in the proof of Theorem 2.2, it implies u., = V.
Step 4. End of the proof. Since for any o > & > 0 there exists an interval (0, 6] on which

o ry—1_ o'/t _ o/t
&5t 260'15 e > e €

iy )

any solution of (2.16 ) with h(t) given by (2.34 ) is a subsolution in Q? of the same equation with
—c/

h(t)=e"¢ ", This implies the claim. O
3 Single point initial blow-up for semilinear

heat equation
We consider the following Cauchy problem
Ou—Au+h(t)|[ul Tu=0 inQ> (3.1)
u(z,0) = kdo. .

The first result dealing with the localization of the blow-up that we prove is the following.

Theorem 3.1 Assume h(t) = e"“*®/* where w € C([0,00)) is positive, nondecreasing function
which satisfies w(s) > s*° for some ag € [0,1) and any s > 0, and the following Dini like condition

holds: .
/ Vels) ds < oo. (3.2)
O S

Then uy always exists and oo := limg_,o0 g has a point-wise singularity at (0,0).
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Proof. The proof is based on the study of asymptotic properties as k — oo of solutions u = uy of
the regularized Cauchy problem

up — Au+ h(t)|u|?tu =0 in Q7,

(3.3)

u(z,0) = uop(z) = M;/Qk_N/Qék(x) Vr € RV,

where 6, € C(RY), suppdy C {|z| <k~'}, & — 6(z) weakly in the sense of measures as k — oo
and { My} is some sequence tending to oo as k — oo fast enough so that

M;/Qk:_N/QHooask:Hoo. (3.4)
Without loss of generality we will suppose that
||5k(x)||%2(RN) <cok VE€EN, c¢g=const. (3.5)

Our method of analysis is some variant of the local energy estimates method (also called Saint-
Venant principle), developed, particulary, in [12,13,15-17] (see also review in [5]). Let introduce
the families of subdomains

Q) =R¥n{lz| >7} V7>0,

7)=Q(7) x (0,7) Vre(0,T),

T)=Q(r) x (r,T) Vre (0,T).

Step 1. The local energy framework. We fix arbitrary k& € N and consider solution u = wug of

(3.3 ), but for convenience we will denote it by u. Firstly we deduce some integral vanishing
properties of solution v in the family of subdomains @, := RY x (r,T). Multiplying (3.3 ) by

t—
u(z,t) exp (—TT) and integrating in Q,, we get
—-r

1+

<2 exp (%) ) - /RN lu(z, T)|? da

+/ (|Dzul? 4+ h(t)|ulT) exp (

r

1 9 t—r
- ") duadt
+1+TT/QT|U| eXp( 1+Tr) *

= 271/ |u(z,7)|? do + 271/ |u(z,r)[*dz, (3.6)
Q(r) RNAQ(7)

t—r
—— | dzdt
1+T—r> *

where 7 > 0 is arbitrary parameter. Using Holder’s inequality, it is easy to check that

FESY
/ u(z, )| da < er - aFTR(r) " T / lu(z, )| () de | . (3.7)
RN\Q(7) RN\Q(7)

Here and further we will denote by ¢, ¢; different positive constants which do not depend on
parameters k, 7, r, but the precise value of which may change from one ocurrence to another. Let
us consider now the energy functions
Ii(r) = / |Dyul? dxdt, Ir(r) = / h(t)|u(z, )| dedt, I3(r) = / |u|? dzxdt. (3.8)
Q’r Q’V‘

T
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It is easy to check that

dl
_dk(r) :/ h(r)|u(z,r)|*"" do 2/ h(r)u(z,r)|* dx V7 >0.
dr RN RN\Q(r)

Therefore it follows from (3.6 ) and (3.7 )
/ lu(a, T) de + I (r) + Io(r) + Is(r) < o7 0 h(r) "1 (—I5(r) 77 + ¢ / u(, r)|? de
RN Q(1)

V>0, Vr:0<r<T. (3.9)

Next we introduce additional energy functions

f(r,T):/ luz, )2 dx, El(r,f):/ | Doul? dadt, Eg(m)z/ (uf2 dedt. (3.10)
Q(r) Qr(r) Qr(r)

Now we deduce some vanishing estimates of these energy functions. Let u be some nondecreasing
smooth function defined on (0,00), u(r) > 0 for 7 > 0 (a more precise definition will be fixed
later on). Then multiplying the equation (3.3 ) by u(x,t) exp(—u?(7)t) and integrating in domain
Q"(7) with 7 > k™! (remember that suppug C {|z| < k™'}) we deduce easily

2 (1) (1) =27 [ Jut )P exp(p () dat
Q(7)
[ (VauP o+ w2l exp(- (7)) deds
Q" (7)
<p(r)t / (|Vzu|2 + p? (1) |ul?) exp(—p?(T)t)dsdt VT >k~ (3.11)
oQ(7T)x(0,r)
Clearly there holds

dJ,r
Jurl) / (IVaul® + 5 (7)|uf?) exp(—pu?(r)t) dsd
dr a9 () x (0,r)

[ )P expl- () do
Qr(T)
2 [ (Vs 4 R 0luf?) expl- ()0 dad.
Qr(T)

Since p/(7) > 0, it follows from (3.11 ),

27 1) + () < i) [d%wﬂw L O Ol explp? ) | (312
If we suppose (
B 20/ (1) -1
L= 22 (3.13)

we derive from (3.12 )
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It is easy to check that this last inequality is equivalent to

M) ep (/ @ds) furlr) <~ (JW(T) exp (/ o) ds)) Vrs s kL

By integrating this inequality and using monotonicity of the function f, () we get

fur(T2) /T2 ?exp (/T @d ) dr+J, - (T2) exp < ) < Jur(m) VY >m > kL.

([ 524))

([ 20
fu,r(TQ)[eXp(/‘rm@d)_1:|+Jpr7-2 eXp(/ MT )<J,”(n) V1o >m > kL

it follows from last the relation
1

Since

(3.14)
Now we have to define (7). Let e > 0 and
wr)=err—k7Y Vr>k b (3.15)
One can easily verify that condition (3.13 ) is equivalent to
> kTl 4 2e71/21/2, (3.16)

Now from (3.14 ) follow two inequalities

20 —132
A(r) == / <|Vzu|2 + 5(7272k)|u|2) dxdt < A(m)
Q(72) r

€ ((TQ — k12 — (1 — k71)2) N e2(ry — k1)

X exp | —
P 4r r

V1o >1 >k~ 42720120 (3.17)

and

f(r,m) < A(1)

o (BT ] (i)

4r r

V1o >7m >k~ 427220 (3.18)

In particular, for ¢ = 8~! we obtain from (3.17 ) and (3.18 ),

— k12 — k12 2
/ (|Vzu|2 + ¥|u|2) dxdt < eexp ((7-7)> / (|Vgcu|2 + M) dxdt
Qr(r) 64r 64r QT(T(EK‘)) 2r

V7> 7)) =k +4v2yr, (3.19)

2 _p1)2 2 N
fornr) < e (_ - 64r : ) / ® (|Vzu|2 + %) dedt V7> 70 (r) =k 4 8V
Q7
i (3.20)
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In order to have an estimate from above of the last factor in the right-hand side of (3.19 ), (3.20 ),
we return to the equation satisfied by u, multiply it by the test function wg(z,t)exp (—t) and
integrate over the domain Q" = R¥ x (0,7). As result of standard computations we obtain, using
(35),

/ lu (z,7)|? de + / (IVour|® + [ug)® + h(t)|ue|?t") dadt
RN QT‘

< E||u07k|\%2(RN) <cMp —o0ask—oo, Vr<T. (3.21)

Due to (3.20 ), (3.21) it follows from (3.9)

/]RN |u(z, T)|> do + I, (r) + Ix(r) + I3(r)

N(g—1)

< enr M) T 1)+ o e (

Relationships (3.19 ), (3.20 ) due to (3.21 ) yield:

(r— k=12

— k)2 N
oz Es(r,7) <o Mr—Lexp (—(7-7)> V1> To(k) (r). (3.23)
T

f(r,7)+ Ey(r,7) + Y

Step 2. The first round of computations. Next we construct some sequences {7;}, {r;}, j =
k,k—1,...,1. First we explicit the choice of M, from condition (3.3 ), let namely
Mk =e° . (324)

Then we choose 73, 7 such that the following relation is true,

2
Ca r,;l exp (— Tk ) M, =M>", 0<g< e ! (3.25)

64Tk
where ¢ is from (3.22 ), (3.23 ). As consequence of (3.25 ) and (3.24 ) we get

1/2

T = 87",1/2 [(1- g0)e” +Inr; b +1n e (3.26)

In inequality (3.22 ) we fix 7 = 74 + k1, then due to definition (3.25 ) it follows from (3.22 ),

/ |u(z, T)|* da + I, (r) + Ix(r) + I3(r)
RN
(g— 2 2
<e(bH 4 Tk)Nﬁll)h(r)*m(—Ié(r))m + M Vr:0<r<ry (3.27)
Ii(r), Iz2(r), I3(r) are nonincreasing functions which satisfy, due to global a’ priori estimate (3.21 ),
1,(0) + I5(0) + I3(0) < cM;. (3.28)
Let us define the number 7 by
ri =sup{r: Iy(r) + Lo(r) + I3(r) > 2M;°}. (3.29)
Then it follows from (3.27 ) the following differential inequality

L(r) + L(r) + I(r) +/ u(z, T)|2 dz < 261 (T + k= 1) o5 h(r) 701 (L (r) T Vi < 1.

RN
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Solving it, we get

2

L(r) + Io(r) + I(r) < es(m + K~V H(r)"7T Vr <y, (3.31)

where

ey = [ (2 VY @y
(r)y= | h(s)ds and c3 = 1 (2¢1)

Next we will use more specific functions

h(t) = exp (—ﬂ) ,

t
where w(t) is nondecreasing and satisfies the following technical assumption
19 <w(t) <wg=const Vt:0<t<ty, 0<ap<l. (3.32)

It is easy to show by integration by parts the following relation

/oT exp ( ‘Wt(t)) "= (1 = i(;))a . WT(QT) op <%(T)) et

where 6(r) — 0 if » — 0. Therefore

h(r), €= const > 0. (3.33)

(T ((;“’(T) ) Vi <. (3.34)

Comparing (3.29 ) and estimate (3.34 ) we deduce that r satisfies
T < b, (3.35)

where by, is solution of equation

1 1 N __4_ 20(b
cq [Sb% (1 —e0)e® +Inb; " +1ne)® + k:_l} w(bk)%bk i exp (%)

=2M;° = 2exp(epe).

This equation may be rewritten in the form

2 ln(w(bk))+ 2 wib)

—1 bk Q71. bk

Incy +
q

N(g—1)—4

1 _ 2
+ Nln {81;;“% (1 —eo)expk+Inby ' +1Ince)® + 5710, V| =In2+epe” VEeN.
(3.36)
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Since s~ 'Ins — 0 as s — oo, it follows from equality (3.36 ) that

2 b
(14 cy(k))eoe® > Ay + _W( k)
q— 1 bk
N(g—1)—4

= Nln |85, DY (1 —gp)e? +Inb ' +1Incy)? + Kk~ 1y, Y@ D
k k k

2 w(bk)

— > (1 —7(k))eoe® VEkeN, (3.37)
qg—1 by

+

where 0 < v(k) < 1, v(k) — 0 as k — co. Keeping in mind condition (3.32 ), we obtain easily

(bk)
br,

S

> b7 Ay < c(|nbi| + k) VkeEN. (3.38)

Due to properties (3.38 ), it follows from (3.37)

b
cek > @ >die* VkeN, d >0. (3.39)
k

As a consequence of (3.39 ), (3.38 ) we obtain also
Inb,' <ck VEkeN. (3.40)

Now using estimate (3.39 ) we are able to obtain suitable upper estimate of 7. Thanks to (3.35 ),
(3.39 ) and (3.40 ) we deduce from (3.26 )

k E\ [ wibe) \Y? e
wsalffon (3) <o (3) (F005) = et
1

Using again estimate (3.39 ) and the monotonicity of the function w(s), we deduce from the above
relation

1/2
w<e {w <df§k>} . wo is from (3.32 ). (3.41)

Therefore, from inequalities (3.23 ) and (3.34 ), definitions (3.25 ), (3.29 ) and property (3.35 ),
we derive the following estimates

Li(re) + Io(ri) + I3(re) < 2M°  where 7y, is from (3.35 ), (3.29 ), (3.42)
72
fre,me + k™) + By (rp,me + k71 + 64];2 Es(ri, e+ k1) < MP°, (3.43)
k

where 7 is from (3.26 ), (3.41 ). Because g9 < e™!, it follows from definition (3.24 ) of sequence
M, that
3MZO <cMp_1 Yk> k/’o(C), (344)

where ¢ > 0 is arbitrary constant. Therefore, adding estimates (3.42 ) and (3.43 ), we obtain
thanks to (3.44 ) and the fact that 7, > r;, (which follows from (3.25 )), the inequality

3 2
Foreme+ k™) ) L) + Y Eilre, e+ k7Y < eMy—y Yk > ko(c). (3.45)



17

Step 3. The second round of computations. Next we introduce the terms rip_1, Tx—1. Firstly we
come back to inequality (3.14 ). Fixing here the function

pty=err—kT—m) Vr>kl4n (3.46)

instead of (3.15 ) and using estimates (3.16 )—(3.20 ), we obtain

/ R I ol k3 L i PO
Qr(T) ’ 64T2

< eexp (_ (r— k1 _Tk)Q) / (Wmu'Q Jul® ) dear (3:47)
Gdr Q (V)
V7> Tékil)(r) =kl b+ 4\/5\/F,

and

2 k-l )2
Fr7) <~ exp (ST =F_— ) / Tl + P2 gt
e—1 64r QT(Tékil)(T)) 2r

Vr> 7 =kl o 48y (3.48)

The integral term in the right-hand side of (3.47 ), (3.48 ) is estimated now by using estimate
(3.45 ) obtained in the first round of computation. So, we have

02
|V pul® + > dxdt < ( Ii(rk) s(re, T F )
/Qwré“)(r)) < 2r Z Z

Vk > ko(c), Vr>rg.  (3.49)

<e(2r) My

Using this estimate we deduce from (3.47 ) and (3.48 )

(1 — 7 — k™ 1)?

_ _ k/,fl 2
6472 Ey(r,7) < 027“71Mk—1 exp (_ (r =7 ) )
r

64r
vr > 7Yy, (3.50)

flr,7)+ Ey(r,7) +

This estimate is similar to estimate (3.23 ) from first round. Now we have to deduce the analogue
of estimate (3.31 ). For this we return to the starting relation (3.9 ), where we now estimate last
term in right-hand side by estimate (3.48 ), using additionally (3.49 ). As a result we have

3
g—1) 2 2
Zli(r) < clTNr(Hll h(r)~ & (=I)(r)) 7T + coMy_1r~ ' exp (

i=1

(1 — 7% — k™ 1)2
64r

Vr >, V7> 70 (), (3.51)

which is analogous of estimate (3.22 ) from first round. Next we define the numbers 7,1 and 7,_1
by inequalities analogous to (3.26 ) and (3.29 ),

-2
CQT,:1M;€_1 exp (— 64’;;1) M, 0<g< et (3.52)

Th—1 = sup{r : Iy(r) + Lo(r) + I3(r) > 2M° | }. (3.53)
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Now combining inequalities (3.30 ) and (3.44 ), and using definitions (3.52 ), (3.53 ), we obtain
the following differential inequality

3 _1 N(g—1) 2 , 2
D Li(r) <261 (rioy + 1+ KT T R(r)T T (<1 (r) T Ve < gy (3.54)

=1

Solving this differential inequality, we obtain an estimate similar to (3.31 ). Using property (3.33 )
we arrive to

> T w(r
ZL‘(T) <cy(mpor +m+EHY W(T£ exp (((]2 (r) ) Vor < rp_q. (3.55)

i=1 ramt
As in first round we express from (3.52 ) 75— as function 75— (rg—1) (the analogue of (3.26 ))
Th—1 = 87’;/_21[(1 —eo)exp(k— 1) +Inr ', +1In co]'/?. (3.56)

Inserting this expression of 7;—1 into (3.55 ) and then comparing the obtained inequality with
definition (3.53 ), we deduce an estimate similar to (3.35 ),

Th—1 < bg—1, (3.57)

where by_1 is solution of equation

N
C4 [Sb,lc/fl ((1 —ep)exp(k—1)+1n b,;l +1n 02) 1/2 + 7+ k_l}

b—1)7TT 20 (b
X (b 41) exp( w(be—1) > =2M;°, =2exp(eoexp(k —1)). (3.58)
b,j’ll (q - 1)bk—1

From (3.50 ), and due to definition (3.52 ), it follows

2

-
Fro—t, Toor + 7+ k1) + 641;71 Ey(ry1,The1 + 7+ k1) + By (rp—1, ooy + e+ k) < MO
k—1
(3.59)
From (3.55 ), due to (3.56 ), (3.57 ), (3.58 ), it follows
Il (rk—l) —|— IQ(Tk_l) + I3(Tk_1) S 2M;gl (360)

Summing (3.59 ), (3.60 ) and using property (3.44 ), we deduce new global a priori estimate (the
analogous of (3.45 )) which is the main starting information for the next round of computation

3 2
flri—1, oot + e+ 57 + ZL‘(WJ) + ZEi(qu,Tkﬂ + 7+ k) < eMy . (3.61)

i=1 i=1
We are ready now for the next round of computations, introducing the function
pt)=er M r =kt = —m1) VTS E M mel

instead of (3.46 ) and estimate (3.61 ) instead of (3.45 ). We realize j rounds of such computations.
As result we obtain

2

j 3 J
f <7"kijTkl + kl) + Zli(Tk*j) + ZEz <7’kja Zkal + kl) <cMp—j—1, (3.62)
1=0 im1 =0

i=1
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which was our main aim. ‘
Step 4. The control of ri—;,> 1_o Th—i as j — k with arbitrary k € N. Tt is clear that ry—;, T—;
are defined by the conditions (see (3.52 ), (3.53))

cor t My_jexp | — s =M., 0<egy<e L (3.63)
kg k= 64, k=i’
Thej = sup{r cL(r) + L(r) + I5(r) > 2M;ﬁj}. (3.64)
Similarly to (3.56 )—(3.58 ) we deduce that
, 1/2
Thej = 87“}1/3_ {(1 — go)ek_ﬂ + lnr;j +1In 02} , (3.65)
Th—j < bp—j, (3.66)

where by_; satisfies

j—1

) 1/2
C4 [81)}6/2]- ((1 — Eo)ek_] +1In b,;lj +In C2) + Z To—i + k1
i=0

bi—y) T 2uw(by_; ,
X w( Z Z) exp ((qw(léb;) ) = 2Mg‘lj = Qexp(goek—J)_ (3.67)
q—1 —j
ot

In the first round of computations we have obtained the upper estimate (3.41 ) for 7. Let us
suppose by induction that the following estimate is true

1/2
wo . .
i < -_— <j—1 .
Tk l_c[w (dlexp(ki))] Vi<y (3.68)

We have to prove that estimate (3.68 ) holds also for ¢ = j. Obviously condition (3.67 ) is equivalent
to (see (3.36))

2 w(bk—j) 2 wlk—y) | 46 k—j
1 1 . A =1n?2 J 3.69
nC4+q1n( b +q*1 b, + Ay n2+ege® 7, ( )
where
1 il
, N(g=1)-4 _ e kBT ZO Th—i
AP = Nl [0 0% ((1 — o)t FIn(bit,) + 1nc2) =0
bliqjl)N
—J

Because of the induction assumption (3.68 )

j—1 Jj—1 1/2 1 1/2
wo w(s)

- < — < —~—ds:=cL,

Yoo o (Gampmy)] <o) S

therefore _
AP < c(|nbg_j|+ (k—7)+1InL). (3.70)
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From (3.69 ) due to (3.70 ) we derive easily

w(bk—j)
bre;

cel—I >

>die"7 Vj:ik—3j>ko=ko(L), (3.71)

where ko < 0o do not depend on k. From (3.71 ) it follows in particular
bt <e(k—j) Vitk—j>ko (3.72)

Thanks to (3.66 ) and properties (3.71 ), (3.72 ), we derive from (3.65 ),

‘ 1/2
Th—j < 8b,1€/_2j ((1 —g0)ef 7 +1n b,;_lj +1In 02)

k—j c ) .
< cb}fj exp (Tj) < W[w(z)k_j)]l/2 Vj:k—j>ko(L). (3.73)
1

Using again estimate (3.71 ) and monotonicity of w(s) we deduce from (3.73 )

1/2
w . .
Th—j < C [w <—dle£_j>} Vij:k—7>ko(L). (3.74)

Thus, we have proved by induction estimate (3.68 ), for arbitrary k—j > ko(L) with r;, 7; satisfying
(3.66 ), (3.67 ) and (3.74 ).

Step 5. Completion of the proof. We fix now n > ko(L) and take j = k —n in (3.62 ). This leads
to

k—n 3 2 k—n
f <rn, > T+ k1> +> L)+ > E; (m S o+ k1> <eMpu_y Yn>ko(L). (3.75)
=0 =1 =1 =0

Next we have

k—n ) ) 1/2 ﬁ(ﬂnil) 1/2
Sy nsed w72 )] <o [T d b 00
1=0 i=n i=n 1

0

Therefore, for arbitrary small § > 0, we can find and fix n = n(d) < oo such that from (3.75)
follows uniform with respect to k € N a priori estimate,

T
sup/ |ug(z, t)|? d +/ / (IVour|® + ug)?) dedt < C = C(6) <oo VEEN. (3.77)
t>0 J|z|>6§ 0 |z]|>8

Since ux(z,0) = 0 V|z| > k=' Vk € N, it follows from (3.77 ) that us(z,0) = 0 Va # 0,
which ends the proof. O

4 Regional initial blow-up for equation with
exponential absorption.

The local energy method we have used in the proof of Theorem 3.1 is based on the sharp interpo-
lation theorems for functional Sobolev spaces, which are natural tool for the study of solutions of
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equations with power nonlinearities. Here we propose the adaptation of mentroned method to the
equations with nonpower nonlinearities.
Thus, we consider the Cauchy problem

Ou — Au+h(t)(e" —1)=0 in Q™ ()
u(z,0) = kdo, .

Theorem 4.1 Assume h(t) = =< here w € C(]0,00)) satisfies the same asumptions as in
Theorem 8.1. Then solution uy always exists and Uso := limg_.oc ur has a point-wise singularity
at (0,0).

Proof. We will consider the family ug(x,t) of solutions of regularized problems:

{ ur — Au+h(t)(e* —1) =0 in Q7T,
(

12 (4.2)
u(r,0) = ug p(z) = M,/ “k~N/25,(x) VYo e RN,

where ), is nonnegative, continuous with compact support in Bj-1, satisfies estimate (3.5 ) and
converges weakly to dg as k — oo, { My} satisfies condition (3.2 ). Let us introduce the energy
functions (we omit index k in ug):

IL()(T):/ |Vzu|2dasdt, I(r) = (q!)_l/ h(t)|u|q""1 dzdt, Iso(r)= / |u|2 dxdt. (4.3)
QT ™

T

t —
Multiplying (4.2 ) by u(x,t)exp (HTT)’ integrating in @, and using equality
—r
> gq+1
ser—1) =,
=1 ¢
we obtain easily
Lo(r) + ZIl + I30(r) < clg !)2/(q+17.N(qf1)/(q+1)h(r)f2/(q+1)(_I;(T))Z/(qﬂ)

+c/ lu(z,r)|*de V7 >0,Vr:0<r<T, VgeN. (4.4)
Q(r)
We introduce the additional energy functions
f(r,7) from (3.10 ), E4o(r,7) :/ |Dyul? dedt, Fao(r,T) :/ |u|? dadt. (4.5)
Qr (1) Qr (1)
Instead of (3.21 ) we derive the following global a priori estimate:

I+1
/N fup ()2 d +/ <|Vzu|2 +unl? + At Z ' ) ddt
R Qr =1

<c HUO,kH%Q(RN) <cM; Vr<T. (46)

Using estimate (4.6 ) instead of (3.21 ) in a similar way as in the proof of Theorem 3.1, we obtain
the following inequality, analogous to (3.23 ),
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T—k~1)2
f(r,7)+ Eyo(r,7) + (&T)EQ’O(T’ )+
_ k—l 2 .
< eoMyr~texp (—%) Y1 > Ték) (r) =k~ +8yr. (4.7)
T
Using this estimate we deduce from (4.4 )

2 N@-1 __2_ , 2

Lio(r) + Zfl + I3o(r) < e(g)) T 7 e T h(r) T (— I (1)) 7

— k1) _
+ coMyr~exp (—(7-7)> V7> Ték) (r), Vge N. (4.8)
Next, we define the numbers 75, r,. Firstly, set
T = sup {T:Ilyo(r)JrZIl(r)JrIgyo ZQMZO}, 0<ey<e (4.9)

Then we fix the sequence {M}} by (3.24 ) again and 73, by inequalities (3.25 ), (3.26 ). Thanks to
these definitions we derive the following series of inequalities from relations (4.8 )

2 1\ N=1) / 2
I o(r —|—le + I3 o(r) <2ci(q))ett(mp + k) aft h(r)” e ( Iy (r))® #1 VgeN, Vr < ry.

(4.10)
Solving these differential inequalities we obtain the estimates

Io(r +ZIl + Is0(r) < es(mp + k" )N()TTH(r) "1 Vr <y, Vg €EN, (4.11)

where H(r) is from (3.31 ). We have now to optimize estimate (4.11 ) with respect to parameter
q. By integration by parts, it is easy to check the following inequality

exp <@) h(r) Vr>0,¢>0. (4.12)

q
Using Stirling formula ¢! ~ (g) and estimate (4.12 ), we deduce from (4.11 )
e

Lo(r +le + Io(r) <ca(t +E"HNF(r) Vr<my, (4.13)

where

2 4 2 2
L (1) = Pw(r) BT~ 7T exp (_q = wir)) exp {q 2o (wir))] _
Fixing here the optimal value of the parameter g:

q=q:= |2exp wir) :
2en (7))

where [a] denotes the enteger part of a, we obtain easily

Fy < cexp (2410,

r



23

Therefore it follows from (4.13 ),
—1\N 2w(r)
I o(r +ZIZ +I30(r) <cs(my + k)" exp — Vr <rpg. (4.14)

Comparing now definition (4.9 ) of r;, and estimate (4.14 ), and using additionally the expression
(3.26 ) of 71, we obtain
k< b, (4.15)

where by, is defined by the equation

N 2w(b
s [Sb,lc/Q((l —eo)e" + bt +Ineg)'/? 4 kﬂ} exp ( w( k))

by,
=2M;° =2exp(coexpk), 0<eo<e '. (4.16)

By an analysis similar to Step 2 in the proof of Theorem 3.1, we obtain estimates (3.37 )—(3.40 )
for by. Then we prove the validity of estimate (3.41 ) for 7. As a consequence of estimates (4.7 ),
(4.14 ), thanks to to definitions (3.26 ), (4.9 ) of 7%, r; and the previous estimates of 7%, rg, we
get

I o(r +Zfz + I30(r) < 2M;°,

fore, e+ + By o(re, 7 + 671 +

olr 2E2 o(re, 76 + K1) < MO,
Summing these inequalities, and using definition of {Mj} and property 75 >> 7, we obtain an
analogue of estimate (3.45 ), namely,

flri, e+ k) + Lo (re) + ZIZ(Tk) +I3,0(rk) + Evo(re, T + k1) + Bao(r, i+ k71 < eMy—y.
=1

(4.17)

Using (4.17 ) as global a priori estimate instead of (4.6 ) and providing a second round of compu-

tations similar to (3.46 )—(3.57 ) we derive a second global a priori estimate analogous to (3.61 ),

Flrea, meo1 + e+ k1) + Lio(ree) + Zfz(qu) + I3,0(rk-1)
=1

+ B o(rk—1,Tho1 + Tk + ) + Bao(rr—1, Te1 + 76 + k1) < cMy_o.

Repeating such rounds j-times we derive a corresponding analogue of relation (3.62 ). It is easy to
see that estimate (3.76 ) for constructed shifts 7,_; remains valid. This fact, similar to what was
used in the proof of Theorem 3.1, yields to the conclusion. 0

5 The porous media equation with absorption

In this section we consider the following problem dealing with fundamental solutions of the porous
media equation with time dependent absorption,

{ Oru — A(Ju|™ ) + h(t)|u|?tu =0 in QT

u(z,0) = kdo. (5-1)
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It is standard to assume that A > 0 is a continuous function and m, g are positive real numbers.
By a solution we mean a function u € L}, _(QT) such that u™ € L} (QT), hu? € L}, (QT) and

loc loc loc
// (—udd — [u|" " 'uAd + h(t)|u|? ug) dzdt = ke(0,0) (5.2)
QT

for any ¢ € Cg"" (RN x [0,T)). If h = 0 and m > (N — 2); /N this problem admits a solution for
any k > 0. When m > 1 this solution has the following form

(m—1)¢ |30|2 Hm=
_ 44 —
By(z,t) =t (Ck — WW) ) (5.3)
where N
f=— " dC, = N)E2(m=1)¢/N A
Nm—112 and Cy = a(m, N) (5.4)

Since By, is a supersolution for problem (5.1 ), a sufficient condition for existence (and uniqueness)
of uy is

// Bil(z,t)h(t)dzdt < oo. (5.5)
QT

By the change of variable y = t*/"z this condition is independent of k& > 0 and we have

Proposition 5.1 Assumem >1, ¢ > 0. If
1
/ h(t)t*~dt < oo, (5.6)
0

then problem (5.1 ) admits a unique positive solution uw = uy. In the particular case where h(t) =
O(t*) (a > 0), the condition is
N(g—m)—2

T Nm-D+2

(5.7)

We recall that if ¢ > 1 and m > (N — 2); /N, any solution of the porous media equation with
absorption is bounded from above by the maximal solution U}, expressed by

)= (-1 [ n(s) i) o (538)

Theorem 5.2 Assume ¢+ 1> 2m > 2 and h € C((0,00)) is nondecreasing, positive and satisfies
h(t) = O(t(qu)/(mfl)) ast — 0. Then for any k > 0 ug exists and limg_ o0 Ug 1= Uoo = Up,.

Proof. We first notice that

g—m _ N(g—m)—2
1>2m>2=¢q¢>m>1 d .
qg+1>2m q>m an m—1>N(m—1)+2

Step 1. Case ¢ < m +2/N. In this range of value we know [14] that there exists a nonnegative
very singular solution v = v to

v —Av" +0v1=0 in Q7T, (5.9)
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and v, = limg_, v, where the vy are solutions of the same equation with initial data kdg. Fur-
thermore, vy, is unique [6], radial with respect to = and has the following form

Voo (2, 1) = fl/(qfl)F(|x| /t(qu)/Z(qfl))v

where F solves

N -1 q—m 1
Fm) + ——(F™) + F+ F-Ft=0 i (0,
(F) ) s ©) (5.10)

F'(0) =0 and lim, o n* (=™ F(n) = 0.

Actually F has compact support in [0, ] for some & > 0. Let v = (¢ —m)/(m — 1), then for any
€ > 0, u = uy, satisfies, for some ¢ > 0,

Ou — Au™ +ce’u? >0 in QF.
If we set we(x,t) = a®voo (2, at) with § = 1/(m —1)— and a = ¢~ 1c=(@=D/(a=™) then
Orwe — Aw! + ce’wl =0 in QT.

By comparison us, > we in Q€. If we take in particular ¢ = €, it implies

Uoo (2, 1) > cfl/(qu)fl/(mfl)voo(x’C*(mfl)/(qu)> - cf1fl/(mfl)F(C(mfl)/2(q71) lz]) (5.11)
If |z < & = ¢~ (m=D/2(a=D¢; we derive that lim; g us (2,t) = 00, locally uniformly in By, . This
implies uso = Up,.

Step 2. Case ¢ > m+2/N. We give an alternative proof valid for all q. We first observe that it is
sufficient to prove the result when h(t) is replaced by t7. If we look for a family of transformations
u +— Ty(u) under the form

Ty(u)(x,t) = Cu(lPz, 0t) Y(z,t) € Q®, YL >0

which leaves the equation
Oru — Alu|™ tu + 7 |ul?tu = 0 (5.12)

invariant, we find a = (14+7)/(¢—1) and 8 = (¢ — m — v(m — 1))/2(¢ — 1). Due to the value of
v, we have § = 0. Because of uniqueness and the value of the initial mass

To(ug) = tgor, V>0, Vk >0 = Ty(uoo) = tos V€ > 0. (5.13)

Therefore
U (2, 0) = uco(z,t)  V(z,t) € Q*, VL > 0.

In particular, if we take £ = ¢t~1,
Uoo (X, 1) =17 Yo (2, 1) = t7P(x).
Plugging this decomposition into (5.12 ) yields to
ot~ g — fTOMAGM 4 1 adgd — ()

where all the exponents of ¢ coincide since

and a—i—lzl.
m—1

m
am = ———

m
, g — 7y =
m—1 m —
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Therefore ¢ is a positive and radial (as the uy are) solution of
—ap— A"+ 1 =0 in RV,
Setting 1) = ¢™ yields to

1
— A — mwl/m +49™ =0 in RV, (5.14)

Clearly 1) = 1pg = (m — 1)~™/(@=1) is a solution. By a standard variation of the Keller-Osserman
estimate, any solution is bounded from above by ¥y. Putting (z) = Ay(a), it is easy to find
A >0 and a > 0 such that

—AYp —PpY™m 4 pt/m =0 in RN, (5.15)
with 0 < 7,/; < 1. Writting 1/; as a solution of an ODE, we derive
1;(7") = 1;(0) + /Tslfn/s(iﬁq/m — zﬁl/m)anflds vr > 0.
0 0
If 1/;‘1/ ™ is not constant with value 1, the right-hand side of the above inequality is decreasing with

respect to r, and the only possible nonnegative limit is 0, by La Salle principle. Thus

~ N-1

1/]//_'_ 1L/+%1/;1/m§0

r
for r > 7, large enough. If N = 2, we set 7 = Inr, ¥(7) = ¢)(r) and get
" 1 27 \q,1/m
for 7 > Inrg. The concavity of ¥ yields a contradiction. If N > 3, we set 7 = rN=2/(N — 2) and
U(7) = rN=24(r). Then ¥ satisfies

U+ e/ (N=2)=1/my1/m ~ o

Again the concavity yields a contradiction. In any case we obtain that ¥ = 1, or, equivalently
P = 1 and finally, us = t*l/(mfl)q/}é/m. !

Theorem 5.3 Assume ¢ > m > 1 and h € C((0,00)) is nondecreasing, positive. If h(t) =
tla=m)/(m=1),=1(t) with w(t) — 0 as t — 0, and

/1 we(s)é < 00, (5.16)
0 s

where
m2—1

[Nim—1)+2(m+1)](g—1)’

then s := limy 00 ug has a point-wise singularity at (0,0)

9:
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Proof. The structure of the proof is similar to the one of Theorem 3.1. We study the asymptotic
behaviour as k — oo of solutions u = ug(x,t) of the regularized Cauchy problem

g — A(|u|™ ) + h(t)|ult =0 in QT

1 N (5.17)
u(z,0) = uop(x) = M" P k™ T 5 (z) xRV,
where dy, is as in Theorem 3.1. Let us rewrite problem (5.17 ) in the form
(o[~ o)y — Av + h(t) |9 to =0, in QT
v=uvp = [ul""tu, p=1/m, g=q/m (5.18)
lo(z, 0)[P~Lo(z,0) = |vo k[P~ vo k := uok(x) = M k™ 747 63(2).
Without loss of generality we may suppose
el pt1 N
H5k(x)||L’;+1(RN) :/ |0k ()| P dx < cok'» VkeN. (5.19)
= RN
Now sequence { My} is such that
Mkp?k_% — oo as k— oo. (5.20)

Step 1. The local energy framework. Consider the following energy functions

zl(T)z/ IVl dadt, 12(T)=/ h(#)[o]9*Y dadt, zg(T)z/ Pt dedt. (5.21)

r T r

Analogously to (3.9 ) we deduce the inequality

(g—p) p+1

/ |v(gc,T)|p"’1 de+1 (r)+I(r)+15(r) < et = h(r)*ﬁ(—lé(r))% +c/ |v(gc,r)|p"’1 dx
RN Q(r)
V>0, Vr:0<r<T. (5.22)

This inequality will control the spreading of energy with respect to the r-variable (the time direc-
tion). As to vanishing property of energy in variable 7, we will use the finite speed propagation of
support property for porous media equation with slow diffusion. In the domain Q(T)(T) we will use
the energy function E1(r, 7) = [, (5 [Vav|® dadt from (3.12 ). Since supp v(-, 0) = supp vk (-, 0) =
suppvox = {z : |z| < k~1}, multiplying equation (5.18 ) on v(z,t) and integrating in the domain
Q) (1), 7 > k™!, we obtain after simple computations (see, for example [1,4]) the following
differential inequality

d )Wmv (5.23)

(p+1)(1—01)
€z, T x+ byi(r,7) < CTPHP* 1-01 (2 1(r, 7
v Mlgr + F < -0 1-p) E
Q(7) dr

_ N(1—-p)+(p+1) p+1
Vr>k', Vr>0 where 6; = N .
T " T T NI =) 2+ 1) TN -p)+2(p+1)

Solving this inequality and keeping in mind that Ey(r,7) > 0Vr > 0, V7 > 0, we deduce easily

(1-61)(1—p)

() =0 Va:|z| >k +eort "B (r k™Y 1t =k 4 eox(r), VYr>0. (5.24)
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Here the constant ¢y > 0 depends on the parameters of the problem under consideration, but do
not on r and k. Analogously to (3.25 ) we deduce the following global a priori estimate

/( )(|Vzu|2 4+ r P 4 h(t) o9 1) dadt < cho,kHT;l(RN). (5.25)
Qr

Thus, due to (5.18 )—(5.20 ), it follows from (5.25 )
Eq(r,0) < cMy, Vr > 0. (5.26)

Next we come back to the inequality (5.22 ). Due to (5.24 ) it ensues from (5.22 ) the inequality

L(r) + Lo(r) + Is(r) < e(k™" + x(r) o7 h(r) ™55 (= I3(r) 55 ¥r >0, (5.27)
Remark that due to (5.26 ) we have
a-6p)d=p)
x(r) <er' =0 M, T (5.28)

Step 2. The first round of computations. Now we have to define 7, ry. First we impose the

relation
(1-01)(1-p)

> ary M, ¢p is from (5.28 ). (5.29)
Then (5.27 ) yields to

(g—p)

I(r) == L(r) + Io(r) + Is(r) < (k™ 4 7) 55 h(r)" 50 (=I' (1) 5 Vr:0<r<re. (5.30)

Solving this differential inequality we get the estimate

kfl N
I(r) < c(—Jer)p_ﬂ Vr:0<r<rg. (5.31)

(for h(s) ds) o

Remember that the function h(s) has the form h(s) = s(9~1/(1=P)y(s)~1 therefore estimate (5.31 )
yields to

p+1
9—p k/,—l N
1(ry < 22k ) Vr0<r <y (5.32)

ri-r

Thus, as second relation, which defines our pair 7%, 7%, we suppose the condition

c2w(rk)% (k=1 4+ )N
Pl

1-p
Tk

< cMg_1, cisfrom (5.26 ). (5.33)

Moreover, we will find the pair 7, rg such that the following property holds
E 47 < 1. (5.34)

Then the next inequality is a sufficient condition for validity of (5.33 ):

p+1 — P+l

CQW(T}Q)ﬁrk 1-p S CMkfla C iS from (526 ), (535)

and we can define r; by equality

€2\ pFI 1p, —57k
- (_) w(rg) s M, (5.36)
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Now we have to choose the sequence {M}}. Namely, we set
M :=e*  VEkeN, (5.37)

and we define 7%, in accordance with assumption (5.29 ), by

(1-61)(1-p)

me=cary M, P ¢ s from (5.28). (5.38)

Further, due to (5.36 ) an (5.37 ), it follows from (5.38 ),

- 1—-p)(p+1 ﬁ
Th = cl(rz-i-lM;—P)N(lfp)1+2(p+1) =c {(0_2)1 pw(rk)( g),(zf )Ml;flfp)M;—p} N({-p)+2(p+1)
c
eco (1*9111(1)1*13)
= (7) w(re)®, (5.39)
where S = (179;2(;’?’) = (g_p)[(]bzfz%ﬁ_g)(pﬂ)]. From definition (5.36 ) and because of (5.37 ) and
(3.43 ), there holds
1-p 4
C2\ pFI 5> 1-p 1-p
(&) o (120 ) (-1, e

rk_(c) wg eXp( p—i—l( ) 3 €Xp ] (5.40)

and rp — 0 as k — oo. Therefore, since w(s) — 0 as s — 0, it follows from (5.39 ) that 7, — 0 as
k — oco. Consequently we can suppose k so large that condition (5.34 ) is satisfied. Thus, we have
pair (7, i) for large k € N.

Step 3. The second round of computations. As a starting global a priori estimate of solution we
will use now, instead of (5.25 ), (5.26 ), the following estimate

L) = s, |Vov|? dedt < I(ry) < cMy_1, (5.41)

z€RN}

which follows from (5.32 ), due to definition (5.33 ), (5.36 ) of . Using property (5.24 ), estimate
(5.28 ) and property (5.29 ), it ensues from (5.41 )

Eq(r, Et 4 Tr) < Li(r) < Ii(rg) < cMp—q Vr>rg. (5.42)

Since v(z,r;) =0 Va: |z| > k! + 71, we deduce similarly to (5.23 )

11 1 (p+1)(1—-67)
lo(z,ri +7)|P" de + Ev(rg + 1,k + 1+ 7) < er FD-0-000)
Q(7)

p+1
)) pFI—(1—-61)(1—p)

d
X (— — B+ kT Vr>0,V7T>0. (5.43)

dr
Solving this differential inequality, we obtain
v(x,rp +7)=0 Ya:|z| >kt + 7+ coxa(r), (5.44)

a-6p0=p)

where x1(r) := 11" B (r, + 7, k7L + 7)) tt»  Vr > 0. But (5.42 ) implies

(1-61)(1—-p)

x1(r) < clrlfeleial . (5.45)



Now we define 7,_1, rx—1. In the same way as (5.29 ) we impose

g - Gzen(-p)
Tk—1 Z Clri:lle,11+p
Similarly to (5.30 )—(5.32 ) we deduce
CQW(T)% (k=Y 4+ 7 4+ 1)V
I(r) < — — Vr:0<r<rp+rp_.

ri-p
The second relation for defining the pair 7,_1, r,—1 is analogous to(5.33 )

(k4 T+ )Y
(TkﬁLkal)%

cow(r + Th—1)

Supposing that
K™l 1+ mir < 1,

we can define r;_1 by the following analogue of (5.36 )

1-p 1—p
C2\ pF1 1-p — ="
Tk +Tk—1 1= (?) w(rk +rg—1)9r Mk—p;l'

And in accordance with (5.46 ) let us define 73,1 by

e (1-61)(1—p)
— —u1 1+p
Te—1=C1T,_1 M4

Due to (5.50 ) we have

S T
Tk—1 < €1 [(Tk + rk_l)erlM;:if] NO=-p)+2(p+D)

1— _ 1
Co p A-p)(p+1) _ _(1_ 1—p] NO=p)+2(p+1D)
<o [(—) wlry +rp_1) o ML pglop
C

(1-61)(1-p)
€Co

- 01(7) T w4 o),

where S is from (5.39 ). Notice that, due to (5.47 ), (5.48 ), we have also
Li(rg +1g—1) < I(rg + 1g—1) < eMj—o,

and, analogously to (5.42 ),

Ei(r k™ e+ 1) S L(r) S L(rp +rim1) < cMy_o Vr>r, 4+ re_1.

< cMg_o, cisfrom (5.26 ).
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(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

Step 4. Completion of the proof. Estimates (5.52 ), (5.53 ) we can use instead of (5.41 ), (5.42)

for third round of computations. After j such rounds we deduce that

J J
I (Zrk—i) < I(Zrk—i) < cMy_j,
i=0 i=0

J J J
Ey (ﬁk_l + ZTk—i) <IL(r) < I1(Z?‘k—i) <eMij V=) me
=0

i=0 =0

(5.54)

(5.55)
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where
a-01)a-p) i

S
Thi < C1 (6—22) e W<Zrkl) , (5.56)

1=0
with the same S as in (5.39 ), and
i c lp i ;72 1-p
2\ pF1 — 7%
a=(= _ M, P 5.57
S = (2) P Sn) 5357

=0 =0

Estimates (5.54 ) will remain true as long as the following analogue of relation (5.49 ) is valid

Now we will check this condition. Due to (3.32 ), it follows from (5.57 )
i 19 1p  _1p _1p 1—
Zrk_l < (0—2) Hwog’p M, "™ =CM, "' =Cexp ( — —p(k _—— 1))
P c p+1

Therefore, from (5.56 ), it follows
i za(2) T (oo (- ) 6o (com (- Snt))]"

c

Thus we have, using in particular the monotonicity of function w(s),

(e (- EE))

M-

J
Z Th—i < C1
=0

i=0 p+1
k Az S
(I =p)s\\1P C1(p+1)/ w(s)
SC’l/kjl{w(Cexp< il ))} ds = 1=p Ju s ds,
A =Cexp(— 2Pp), A :Cexp[fﬂ(kz—j—l)} (5.58)
1 pr1) A b1 G2

Due to condition (5.16 ) and estimate (5.58 ) we can find ko € N, which depends on parameters of
problem under consideration, but does not depend on k € N, such that

k—ko
Z i +k'<1  VkeN.
1=0

At end, our estimates (5.54 )—(5.57 ) are true for all j < k—kq. Therefore the proof of Theorem 5.3
follows from estimates (5.54 )—(5.57 ), in the same way as Theorem 3.1 from estimates (3.75 )—
(3.77). 0
6 The fast diffusion equation with absorption

When (1 —2/N);+ <m < 1, it is known that the mere fast diffusion equation

Ov—Av"™ =0 in Q% (6.1)
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admits a particular fundamental positive solution with initial data kdy (k > 0) called the Barenblatt
-Zeld’dovich-Kompaneets solution, expressed by

—1/(1—m
(1— m)e |:c|2> [z

By(z,t) =t~* (Ck + N 2N (6.2)

where ¢ and Cj are given in (5.4 ). The main feature of this expression is that limy_,, Cx = 0,
therefore

1/1—m)
t
klim By(x,t) = W(x,t) := C, <W> , (6.3)
— 00 €T

where

0= (—mm?® NP
2m(mN +2— N)

This solution has a persisting singularity and is called a razor blade [18]. It has also the property
that
}in(l) W(xz,t) =0 Vz #£0.

This phenomenon is at the origin of the work of Chasseigne and Vazquez on extended solutions of
the fast diffusion equation [3]. Concerning problem (5.1 ), Proposition 5.1 is still valid provided
m > (1 4+ 2/N)y. We shall denote by u = uy, the solutions of (5.1 ). Furthermore estimate (5.8
) holds. Combining this with the fact that the By are super solutions for the wuy, we derive the
following

Theorem 6.1 Assume (1—-2/N)y <m <1 and h € C(0,00) is positive. Assume also that (5.6 )
holds. Then ueo := limg_00 ug has a point-wise singularity at (0,0) and the following estimate is
verified

o ) A t y
Uoo(, 1) < min { C,.t~° <t24/N> , ((q — 1)/0 h(s) ds> (6.4)

Remark. The profile of us near (z,¢) = (0,0) is completely unknown. In particular a very chaleng-
ing question could be to give precise estimates on the quantity min {W (z,t), Up(t)} — ueo(x, t).
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