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Abstract

We introduce orderings ≪C,D

F
between total functions f, g : N → N

which refine the pointwise “up to a constant” ordering ≤ct and also
insure that f(x) is often much less than g(x). With such ≪C,D

F
’s,

we prove a strong hierarchy theorem for Kolmogorov complexities ob-
tained with jump oracles and/orMax or Min of partial recursive func-
tions.
We introduce a notion of second order conditional Kolmogorov com-
plexity which yields a uniform bound for the “up to a constant” com-
parisons involved in the hierarchy theorem.

1 Introduction

1.1 Comparing total functions N → N

Notation 1.1. Equality, inequality and strict inequality up to a constant
between total functions I → N, where I is any set, are denoted as follows:

f ≤ct g ⇔ ∃c ∈ N ∀x ∈ I f(x) ≤ g(x) + c

f =ct g ⇔ f ≤ct g ∧ g ≤ct f

⇔ ∃c ∈ N ∀x ∈ I |f(x) − g(x)| ≤ c

f <ct g ⇔ f ≤ct g ∧ ¬(g ≤ct f)

⇔ f ≤ct g ∧ ∀c ∈ N ∃x ∈ I g(x) > f(x) + c

Total functions f, g : N → N can be compared in diverse ways. The sim-
plest one is pointwise comparison via the partial ordering relation ∀x f(x) <
g(x). In case functions are considered up to an additive constant, for in-
stance with Kolmogorov complexity, pointwise comparison has to be re-
placed by the ≤ct preordering or the <ct ordering.
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Observe that the <ct ordering is an infinite intersection:

f <ct g ⇔ f ≤ct g ∧ ∀c ∈ N f <io g − c

where <io (io stands for “infinitely often”) is the non transitive relation
f <io g ⇔ {x : f(x) < g(x)} is infinite

Relation <io can be much refined via localization: instead of merely de-
manding {x : f(x) < g(x)} to be infinite, one can ask it to have infinite
intersection with every infinite set in a family C of sets.
In case C is the family of all subsets of N, this gives the relation

{x : f(x) < g(x)} is cofinite
which is a partial ordering relation.
In case C is the family of r.e. sets, this is related to the idea of coimmunity.
An instance of such a relation appears in a classical result about Kolmogorov
complexity K, due to Barzdins (cf. [9] Thm.2.7.1 iii, p.167, or Zvonkin &
Levin, [17] p.92.), which states that, for any total recursive function φ which
tends to +∞, the set {x : K(x) < φ(x)} meets every infinite r.e. set.

In practice, for simple classes C, an infinite subset of X ∩ {x : f(x) < g(x)},
for X infinite in C, can always be found in a not too complex class D. Which
leads to consider the relation OftLessC,D such that

f OftLessC,D g ⇔ ∀X ∈ C ∃Y ∈ D (X is infinite ⇒

Y is infinite ∧ Y ⊆ {x : f(x) < g(x)})

If C = D then this relation is transitive, hence is a strict partial ordering.
However, in case C 6= D, transitivity may fail (for instance, a counterexample
is obtained via Lemma 8.10).

The key observation for the paper is as follows:

For any C,D, the relation f ≤ct g ∧ ∀c (f OftLessC,D g− c) is transitive,
hence is a partial strict ordering refining <ct. In other words, considering
OftLessC,D up to any constant and mixing it with ≤ct always leads to an
ordering.

If F is a family of total functions N → N which tend to +∞ and F is closed
by translations (i.e. φ ∈ F implies max(0, φ − c) ∈ F), then the above
observation also applies to the relation f ≤ct g ∧ ∀φ ∈ F f OftLessC,D φ◦g,
i.e. the relation

f ≤ct g ∧ ∀φ ∈ F ∀X ∈ C ∃Y ∈ D
(X is infinite ⇒ Y is infinite ∧ Y ⊆ {x : f(x) < g(x)})

which is also a partial strict ordering refining the ordering <ct.

Enriching this relation with the requirement that a code for an infinite subset
Y of X ∩ {x : f(x) < φ(g(x))} can be effectively computed from codes for
φ and X, we get the relation OftLessC,DF which is the main concern of this
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paper.

In §2 we review some needed elements of oracular computability. This is
done in terms of partial computable functionals so as to get uniformity in
the oracle.

In §3 we recall Xiang Li’s notion of constructive immunity and introduce
the related notions of (C,D)-density and constructive density.

In §4 we introduce the relation OftLessC,DF and its variant OftLessC,DF↑
(where only total monotone increasing functions in F are considered) and
prove that their intersections ≪C,D

F and ≪C,D
F↑ with ≤ct are strict orderings

refining the ordering <ct.

1.2 Second order Kolmogorov complexity

In relation with the partial computable functional approach to oracular com-
putability (cf. §2), we develop in §5 a functional version K(x ||A) of Kol-
mogorov complexity. This amounts to a simple, seemingly unnoticed, fact:
Oracular Kolmogorov complexity KA can be obtained by instantiating to A
the second order parameter of a variant of conditional Kolmogorov complex-
ity in which the condition is a set of integers rather than an integer. The
oracle is thus viewed as a second order conditional parameter.
The usual proof of the invariance theorem goes through. This second-order
conditional complexity allows for a uniform choice of oracular Kolmogorov
complexities (this is detailed in §7) since, for any A,

K(x ||A) =ct K
A(x)

i.e. ∀A ∃c ∀x |KA(x) −K(x ||A)| ≤ c.

A typical benefit of the functional version of K is as follows. Usual proper-
ties with K involving equality or inequality “up to a constant” go through
oracles. Let cA be the involved constant for the oracle A version. For a
single equality or inequality involving KA, it may be possible to modify KA

(by an additive constant) so that cA = 0. But this is no more possible for
several equalities or inequalities since the needed modifications of KA may
– a priori – be incompatible.
Thus, for a system of equalities or inequalities, there is no a priori A-
computable bound of the involved constant cA for the oracle A version.
However, in case (which is also usual) such properties also go through the
functional version, the constant bound involved in the functional version is
valid for any oracle. In other words, whereas the oracular version a priori
allows no A-computable bound of the constant, the functional version does
allow a constant bound.
This fact is applied in §8.6 to get sharper results.
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In §6 we recall the variants Kmax,Kmin of Kolmogorov complexity intro-
duced in our paper [5] and we extend them to functional versions. The pre-
cise relation between such functional versions and the oracular Kmax,Kmin
is detailed in §7.

1.3 A strong hierarchy theorem for Kolmogorov complexi-
ties

In §8.1 we prove of a version of Barzdins’ result cited in §1.1 (cf. also §3.1)
with as much effectivity as possible which involves an ordering relation in-

troduced in §4 and can be stated as K ≪
Σ0

1,Σ
0
1

PR log. Also, the functional
versions of Kolmogorov complexity and the functional approach to oracular
computability allow to get a functional version of this result, hence to get
effectivity relative to the oracle.

We extend this result in §8.2, 8.3, 8.4 and prove that K,Kmax,Kmin can be
compared via the above OftLess and ≪ relations, with more complex
classes C,D, namely C = Σ0

1 ∪ Π0
1 and D = ∃<φ(Σ0

1 ∧ Π0
1) or the variants

in which Π0
1 is constrained with a “recursively bounded growth” condition

(cf. Def.8.7). Also, the class F can be extended to MinPR, i.e. the class of
infima of partial recursive sequences of functions.

The above class D is a subclass of ∆0
2 which can be obtained via bounded

existential quantification over boolean combinations of Σ0
1 relations. In §8.5,

we show that such syntactical complexities naturally appear when compar-
ing K,Kmax,Kmin.

Finally, in §8.6 we prove the main application of the ≪C,D
F and ≪C,D

F↑ order-
ings, which is a strong hierarchy theorem for the Kolmogorov complexities
K,Kmax,Kmin and their oracular versions using the successive jumps.

2 Partial computable functionals and oracular re-

cursion theory

2.1 Notations

Notation 2.1.
1. [Basic sets] X,Y denote products of non empty finite families of spaces
of the form N or Z or Σ∗ where Σ is some finite alphabet.

2.[Partial recursive functions] Let A ⊆ N. We denote PRX→Y (resp.
PRX→Y,A) the family of partial recursive (resp. A-recursive) functions be-
tween basic sets X and Y.

3.[Bijections between basic spaces] For any basic spaces X,Y and Z we
fix some particular total recursive bijection from X × Y to Z and denote
〈x, y〉

X×Y,Z, or simply 〈x, y〉, the image in Z of the pair (x, y).
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2.2 Some classical results from recursion theory

We shall use the following classical results from computability theory (cf.
Odifreddi’s book [11] p.372–374, 288–292, or Shoenfield’s book [15]).

Proposition 2.2.
1. (Post’s Theorem, 1948 [13]) A set is Σ0

n+1 (resp. ∆0
n+1) if and only if it

is recursively enumerable (r.e.) (resp. recursive) in oracle ∅(n).

2. (Post, 1944 [12]) For any oracle A, every infinite A-r.e. set X contains
an infinite set Y which is recursive in A. Moreover, one can recursively go
from an r.e. code for X to r.e. codes for such a Y and its complement.

In particular, every infinite Σ0
n+1 set X contains an infinite ∆0

n+1 subset Y .
Also, one can recursively go from a Σ0

n+1-code for X to Σ0
n+1-codes for such

a Y and its complement.

3. Recall that an A-r.e. set X ⊂ N is maximal if it is coinfinite and for any
A-r.e. set Y ⊇ X either N \ Y is finite or Y \X is finite.
(Friedberg, 1958 [6]) There exists maximal A-r.e. sets.

Remark 2.3.
1. Since every Π0

n set is Σ0
n+1, point 2 of the above proposition yields

that every infinite Π0
n set contains an infinite ∆0

n+1 subset. This cannot be
improved: the complement of any maximal recursively enumerable set is an
infinite Π0

1 set which does not contain any infinite recursive set.

2. Any total function ψ with graph in Σ0
n is in fact ∅(n−1)-recursive and has

graph in ∆0
n since y 6= ψ(x) ⇔ ∃z 6= y z = ψ(x).

2.3 Partial computable functionals

Def.2.4 is classical, cf. Rogers [14] p.361, or Odifreddi [11] p.178.

Definition 2.4. A (partial) functional F : X × P (N) → Y is partial com-
putable if there exists an oracle Turing machine M such that, given A ∈
P (N) as oracle and x ∈ X as input,

- M halts and accepts if and only if F(A, x) is defined,
- if M halts and accepts then its output is F(A, x).

The family of partial computable functionals X × P (N) → Y is denoted
PCX×P (N)→Y.

The notion of acceptable enumeration of partial recursive functions (cf.
Rogers [14] Ex. 2.10 p.41, or Odifrreddi [11], p.215) extends to functionals.

Definition 2.5. We denote X,Y,Z some basic sets (cf. Notation 2.1).

1. An enumeration (Φi)i∈N of partial computable functionals X×P (N) → Y

is acceptable if

6



i. (i, x, A) 7→ Φi(x, A) is a partial computable functional.

ii. Every partial computable functional X × P (N) → Y is enumerated:

∀Ψ ∈ PCX×P (N)→Y ∃i Φi = Ψ

iii. the parametrization (also called s-m-n) property holds: for every basic
set Z, there exists a total recursive function sZ

X
: N×Z → N such that

∀i ∀z ∈ Z ∀x ∈ X ∀A ⊆ N Φi(〈z, x〉, A) = ΦsZ

X
(i,z)(x, A)

where 〈z, x〉 is the image of the pair (z, x) by some fixed total recursive
bijection Z × X → X (cf. Notation 2.1).

2. An enumeration (Wi)i∈N of Σ0
1 subsets of X× P (N) is acceptable if there

exists an acceptable enumeration (Φi)i∈N of partial recursive functionals such
that Wi is the domain of Φi.
In particular, (Wi)i∈N is Σ0

1 as a subset of N × X × P (N).

Proposition 2.6. There exists an acceptable enumeration of partial com-
putable functionals X × P (N) → Y.

2.4 Uniform relativization

When dealing with oracles A, it is often possible to get results involving
recursive transfer functions rather than A-recursive ones. To do so, we must
consider enumerations of A-r.e. sets and partial A-recursive functions which
are obtained from enumerations of partial computable functionals by fixing
the second order argument A. Such enumerations will be called uniform
enumerations.
This amounts to consider relative computability as a concept dependent
on the prior notion of partial computable functional, though, historically,
relative computability came first, cf. Hinman’s book [7] 5.15 p.68.

Proposition 2.7.
Let (Φi)i∈N be an acceptable enumeration of partial computable functionals
X × P (N) → Y.
For A ⊆ N, define ϕAi : X → Y and WA

i ⊆ X from Φi and Wi by fixing the
second order argument as follows:

ϕAi (x) = Φi(x, A) WA
i = domain(ϕAi ) = {x : (x, A) ∈ Wi}

Then the sequences (ϕAi )i∈N and (WA
i )i∈N are acceptable enumerations of

the family PRX→Y,A) of partial A-recursive functions X → Y and that of
A-r.e. subsets of X.
Such acceptable enumerations are called uniform enumerations.
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Rogers’ theorem (cf. Odifreddi [11] p.219) extends to partial computable
funtionals, hence to uniform enumerations.

Theorem 2.8.
1. (Rogers’ theorem) If (Ψi)i∈N and (Φi)i∈N are both acceptable enumer-
ations of partial computable functionals X × P (N) → Y , then there exists
some recursive bijection θ : N → N such that Ψi = Φθ(i) for all i ∈ N.

2. If (ψAi )i∈N and (ϕAi )i∈N are uniform enumerations of partial A-recursive
functions then there exists some recursive bijection θ : N → N such that
ψAi = ϕA

θ(i) for all i ∈ N.

Uniform enumerations allow for effective (as opposed to A-effective) clo-
sure results for a lot of operations on partial A-recursive functions and A-r.e.
sets which correspond to closure properties of partial computable function-
als admitting sets and partial functions as arguments, cf. Hinman [7] §II.2,
II.4.

2.5 Acceptable enumerations of some subclasses of ∆0
2

Comparison of K and Kmin,Kmax in the hierarchy theorem 8.14 involves
particular ∆0

2 sets described in Def.2.12 below. First, we fix a notion of
bounded quantification pertinent for our applications.

Definition 2.9.
1. We consider on each basic set a norm such that

- ||x|| = |x| if x ∈ N or Z,
- ||x|| = length(x) if x ∈ Σ∗ where Σ is a finite alphabet,
- ||(x1, ..., xk)|| = max(||x1||, ..., ||x1||).

2. Suppose µ : N → N is a total function (resp. µ : N × P (N) → N is
a total functional) which is monotone increasing (resp. with respect to its
first argument). Let X is a basic set.
For R ⊆ X × ({0, 1}∗)m and R ⊆ X × ({0, 1}∗)m × P (N), we let

∃≤µR = {x : ∃~u (|u1|, . . . , |um| ≤ µ(||x||) ∧ R(~u, x))}

∃≤µR = {(x, A) : ∃~u (|u1|, . . . , |um| ≤ µ(||x||) ∧ R(~u, x, A))}

If C ⊆ P (X) (resp. C ⊆ P (X × P (N)), we denote ∃≤µC the subclass of
subsets of X (resp. X × P (N)) consisting of all sets ∃≤µR where R is in C.

Note 2.10. In view of applications to Kolmogorov complexity, we choose
bounded quantifications over binary words (where the bound applies to the
length). Of course, going from µ to 2µ, we can reduce to bounded quantifi-
cations over N.

As is well known, bounded quantification does not increase syntactical
complexity of ∆0

2 sets.
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Proposition 2.11. If µ : N → N has Σ0
2 graph then ∃≤µ∆0

2 ⊆ ∆0
2, be it for

relations in X or in X × P (N).

Proof. In case µ(x) = x this is just the commutation of a bounded quantifi-
cation with an unbounded one. In general, we have

∃~u (~u ≤ µ(||x||) ∧ R(x,~u))
⇔ ∃y (y = µ(||x||) ∧ ∃~u (~u ≤ y ∧ R(x,~u)))
⇔ ∀y (y = µ(||x||) ⇒ ∃~u (~u ≤ y ∧ R(x,~u)))

which are respectively ∃ (Σ0
2∧∆0

2), hence Σ0
2, and ∀ (Π0

2∨∆0
2), hence Π0

2.

Definition 2.12.
Let C be a syntactical class among

Σ0
1 , Π0

1 , Σ0
1 ∨ Π0

1 , ∃≤µ(Σ0
1 ∧ Π0

1)

1. Let C[X] be the family of subsets of X which are C-definable. An accept-

able enumeration (W
C[X]
i )i∈N of C[X] is an enumeration obtained from accept-

able enumerations (W
X×({0,1}∗)m

i )i∈N of r.e. subsets of the X × ({0, 1}∗)m’s
as follows:

W
Π0

1[X]
i = X \WX

i

W
Σ0

1∧Π0
1[X]

i = WX

j ∩ (X \WX

k ) where i = 〈j, k〉

W
Σ0

1∨Π0
1[X]

i = WX

j ∪ (X \WX

k ) where i = 〈j, k〉

W
∃≤µ(Σ0

1∧Π0
1)[X]

i = ∃≤µW
(Σ0

1∧Π0
1)[X×({0,1}∗)m]

j where i = 〈j,m〉

2. Let C[X × P (N)] be the family of subsets of X × P (N) which are C-

definable. An acceptable enumeration (W
C[X]
i )i∈N of C[X × P (N)] is defined

similarly from acceptable enumerations (W
X×({0,1}∗)m×P (N)
i )i∈N of Σ0

1 sub-
sets of the X × ({0, 1}∗)m’s.

3. Let A ⊆ N and CA be the A-oracle syntactical class associated to C.

An enumeration (W
CA[X]
i )i∈N of CA[X] is uniform if it is obtained from an

acceptable enumeration (W
C[X×P (N)]
i )i∈N of C[X×P (N)] by fixing the second

order argument. I.e. W
CA[X]
i = {x ∈ X : (x, A) ∈ W

C[X×P (N)]
i }.

2.6 The min and max operators

The following definitions and results collect material from [5, 4].

Definition 2.13. Let X be some basic set. We denote min and max the
operators which map partial functions ϕ : X×N → N and partial functionals
Φ : X × P (N) × N → N onto partial functions minϕ,maxϕ : D → N and
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functionals minΦ,max Φ : D → N such that

(minϕ)(x) = min{ϕ(x, t) : t ∈ N ∧ ϕ(x, t) is defined}

(maxϕ)(x) = max{ϕ(x, t) : t ∈ N ∧ ϕ(x, t) is defined}

(min Φ)(x, A) = min{Φ(x, A, t) : t ∈ N ∧ φ(x, t) is defined}

(max Φ)(x, A) = max{Φ(x, A, t) : t ∈ N ∧ φ(x, t) is defined}

with the convention that min ∅ and max ∅ and the max of an infinite set are
undefined.

2. We let

MinX→N

PR = {minϕ : ϕ ∈ PRX×N→N}

MinX→N

PRA = {minϕ : ϕ ∈ PRX×N→N,A}

Min
X×P (N)→N

PC = {min Φ : Φ ∈ PCP (N)×X×N→N}

The classes MaxX→N

PR , MaxX→N

PRA and Max
X×P (N)→N

PC are defined similarly
from the max operator.

Note 2.14.
1. Simple examples of functions in MinPR are Kolmogorov complexities K
and H. Examples of functions in MaxPR are the Busy Beaver function and
the (partial) function giving the cardinal of Wn (if finite).

2. The functional K( || ), defined in §5, is in Min
P (N)×N→N

PC .

Let’s mention an easy result as concerns the syntactical complexity of
these functions.

Proposition 2.15. Any function in MinX→N

PR ∪MaxX→N

PR has Σ0
1∧Π0

1 graph.
The result extends to functionals and also relativizes.

Proof. Observe that y = (minϕ)(x) can be written

(∃t y = ϕ(x, t)) ∧ (∀t ∀s (ϕ(x, t) converges in s steps ⇒ y ≤ ϕ(x, t)))

Idem for y = (maxϕ)(x) with ≥ in place of ≤.

We shall use the following straightforward corollary of the above Propo-
sition.

Proposition 2.16. All functions in MinPR and MaxPR are partial recur-
sive in ∅′.

An enumeration theorem holds for the families introduced in Def.2.13.

10



Proposition 2.17. There exists an acceptable enumeration (φi)i∈N of MinX→N

PR

(where acceptable means that the analogs of conditions i–iii of Def.2.5 hold.
In particular, the function (i, x) 7→ φi(x) is itself in MinN×X→N

PR ).

Idem with the class MaxX→N

PR and the functional classes Min
X×P (N)→N

PC and

Min
X×P (N)→N

PC .

The following simple result about MinPR and MaxPR will be useful.

Proposition 2.18.
1. If φ ∈MinX→N

PR and f : Y → X is in PRY→X then φ ◦ f ∈MinY→N

PR .
Idem with MaxPR in place of MinPR.

2. If ψ ∈ MinN→N

PR is monotone increasing and φ ∈ MinX→N

PR then ψ ◦ φ ∈
MinX→N

PR .

Proof. 1. Let φ(x) = mint ϕ(x, t) where ϕ is partial recursive. Then φ(f(y)) =
mint ϕ(f(y), t) is in MinY→N

PR since ϕ(f(y), t) is in PRY→N.

2. Let φ(x) = mint ϕ(x, t) and ψ(x) = minu θ(x, u) where ϕ, θ are partial
recursive. Since ψ is monotone increasing, letting (π1, π2) : N → N

2 be the
inverse of Cantor bijection, we have

ψ(φ(x)) = ψ(mintϕ(x, t))

= mint(ψ(ϕ(x, t)))

= mint(minuθ(ϕ(x, t), u))

= minvθ(ϕ(x, π1(v)), π2(v))

which is in MinX→N

PR since θ(ϕ(x, π1(v)), π2(v)) is partial recursive.

3 Coimmunity and density

3.1 Constructive coimmunity and constructive density

A classical result about Kolmogorov complexity K, due to Barzdins (cf. [9]
Thm.2.7.1 iii, p.167, or Zvonkin & Levin, [17] p.92.), states that if ϕ is total
recursive and tends to +∞ then

{x : K(x) < ϕ(x)}
is an r.e. set which meets every infinite r.e. set, i.e. {x : K(x) < ϕ(x)}∩Wi

is an infinite r.e. set whenever Wi is infinite.
(The case ϕ is monotone increasing is due to Kolmogorov, cf. [17] p.90, or
[9] Thm.2.3.1 iii, p.119–120).
In particular, K has no total recursive unbounded lower bound.

In §8 we extend in various ways this result to sets which are no more r.e.
sets and involve Kolmogorov complexities Kmin or Kmax. We also consider
effectiveness of such properties in a sense related to the notion of constructive
immunity, first considered in Xiang Li, 1983 [10] (cf. Odifreddi’s book [11]
p.267).
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Definition 3.1. Let (Wi)i∈N be an acceptable enumeration of recursively
enumerable subsets of some basic set X.

1i. (Dekker, 1958). A set X ⊆ X is immune if it is infinite and contains no
infinite r.e. set.

1ii. (Xiang Li, 1983 [10]). A set X ⊆ X is constructively immune if it is
infinite and there exists some partial recursive function ϕ : N → X such that

∀i (Wi is infinite ⇒ ϕ(i) is defined ∧ ϕ(i) ∈Wi \X)

2i. A set Z ⊆ X is Σ0
1-dense if it contains an infinite r.e. subset of any

infinite r.e. set included in X.

2ii. A set Z ⊆ X is constructively Σ0
1-dense if there exists some total

recursive function λ such that

∀i (Wi is infinite ⇒ Wλ(i) is an infinite subset of Z ∩Wi)

Note 3.2. Rogers’Thm.2.8 insures that the above notion of constructive
immunity and Σ0

1-density do not depend on the chosen enumeration of r.e.
sets.

Proposition 3.3. Z ⊆ X is constructively immune if and only if it is infinite
and its complement is constructively Σ0

1-dense.

Proof. ⇐. Let ϕ(i) be the point which appears first in the enumeration of
Wλ(i) (of course, ϕ(i) is undefined in case Wλ(i) is empty).

⇒. Define a partial recursive function µ(i, n) which satisfies:
- µ(i, 0) = ϕ(i)
- µ(i, n+ 1) = ϕ(in) where in is such that Win = Wi \ {µ(i,m) : m ≤ n}

Using the parametrization theorem, let λ be total recursive so that Wλ(i) =
{µ(i,m) : m ∈ N}. If Wi is infinite then all µ(i,m)’s are defined and distinct
and belong to Wi ∩ Z. Thus, Wλ(i) is an infinite subset of Wi ∩ Z.

In case Z is r.e., constructive Σ0
1-density amounts to say that Z ∩Wi is

infinite whenever Wi is infinite.

Barzdin’s result gives an instance of a constructively Σ0
1-dense r.e. set. Other

examples are maximal r.e. sets.

Proposition 3.4. Any maximal r.e. set Z is constructively Σ0
1-dense.

Proof. Let Z ⊆ X be r.e. where X is some basic set. We prove that for every
infinite r.e. set Wi ⊆ X the intersection Z ∩Wi is also infinite.
In fact, suppose Z ∩Wi is finite. Then Wi \ Z is an infinite r.e. set disjoint
from Z. Thus, Z ′ = Z ∪ Wi is an r.e. set containing Z such that the

12



difference Z ′ \ Z = Wi \ Z is infinite. Since Z is maximal this implies that
Z ′ is cofinite. Thus,

X \ Z = (X \ Z ′) ∪ (Wi \ (Z ∩Wi)) = A ∪ (Wi \B)

where A,B are finite sets. Hence X \ Z is r.e. and, consequently Z is
recursive. A contradiction.

3.2 Uniform constructive density

In order to deal with Kolmogorov complexitiesK∅′ ,K∅′′ , . . . and theirMin/Max
versions, we shall consider constructive density for Σ0

n sets. This will be done
through relativization of Σ0

1-density with respect to jump oracle ∅(n−1).

There is two natural ways to relativize Σ0
1-density to an oracle A :

(∗) Consider the WA
i ’s and ask for λ A-recursive.

(∗∗) Consider the WA
i ’s and ask for λ recursive.

The second way, which is the stronger one, will be the one pertinent for
applications to Kolmogorov complexities. Of course, to deal with (∗∗), we
must consider uniform enumerations of A-r.e. sets and partial A-recursive
functions (cf. Prop.2.7), i.e. we have to consider the notion of constructive
density with functionals. This will, in fact, give a strong version of (∗∗) in
which λ is a total recursive function which does not depend on A.

Definition 3.5.
1. Let Z ⊆ X × P (N). For A ⊆ N, let’s denote ZA = {x ∈ X : (x, A) ∈ Z}.
Consider an acceptable enumeration (Wi)i∈N of Σ0

1 subsets of X×P (N) (cf.
Def.2.5) and let WA

i = {x : (x, A) ∈ Wi}.
Z is constructively Σ0

1-dense if there exists some total recursive function λ
such that, for all i ∈ N and all A ∈ P (N),

(∗) ∀i ∈ N ∀A ∈ P (N) (WA
i is infinite

⇒ WA
λ(i) is an infinite subset of WA

i ∩ ZA)

2. Z ⊆ X is constructively uniformly Σ0,A
1 -dense if there exists some con-

structively Σ0
1-dense set Z ⊆ X × P (N) such that Z = ZA.

In particular, there exists some total recursive function λ such that

(∗∗) ∀i ∈ N (WA
i is infinite ⇒ WA

λ(i)is an infinite subset of WA
i

When A = ∅(n−1) we shall also say that Z is constructively uniformly Σ0
n-

dense.

Note 3.6. Thm.2.8 insures that the above notion of constructive uniform
Σ0,A

1 -density does not depend on the chosen enumeration of A-r.e. sets, as
long as it is uniform, cf. Prop.2.7.
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Remark 3.7. Using Point 2 of Prop.2.2, one can suppose that if WA
i is

infinite then WA
λ(i) is A-recursive and an A-r.e. code for its complement is

given by another total recursive function λ′.

Note 3.8. In the vein of what we mentioned at the start of §3.1, if ϕ :
N → N is total A-recursive and tends to +∞ then Lemma.8.1 insures that
{x : KA(x) < ϕ(x)} is an A-r.e. set which is uniformly constructively Σ0,A

1 -
dense. In case ϕ(x) <ct log(x), this set is coinfinite since it excludes integers
with incompressible binary representations.

Remark 3.9. Immunity can also be relativized according to the different
policies (∗) and (∗∗). Also, Prop.3.3 admits straightforward extensions to
the functional setting and the uniform relativized one.

Finally, let’s observe that Prop.3.4 relativizes in the uniform sense.

Proposition 3.10. Any maximal A-r.e. set Z is uniformly constructively
Σ0,A

1 -dense.

Proof. Let Z = {x : (x, A) ∈ Z} where Z ⊆ X × P (N) is Σ0
1. There is a

total recursive function θ such that, for all A and i, Z ∩ Wi = Wθ(i). In

particular, Z ∩WA
i = WA

θ(i) and the argument of Prop.3.4 goes through.

3.3 Constructive (C,D)-density

Comparison of K and Kmin,Kmax in the hierarchy theorem 8.14 leads to a
particular version of constructive density applied to Σ0

1 and to Π0
1 sets and

involving subclasses ∃≤µ(Σ0
1 ∧ Π0

1) of ∆0
2 sets described in Def.2.9 below.

We now introduce some central notions of this paper.

Definition 3.11. Let X be a basic set.
1i. Let S,T be families of subsets of X. A set Z ⊆ X is (S,T )-dense if for
every infinite set X ∈ S the intersection Z ∩X contains an infinite subset
Y which is in T .

ii. Let S,T be families of subsets of X × P (N). A set Z ⊆ X × P (N) is
(S,T )-dense if for every X ∈ S there exists Y ∈ T such that, for every A,
letting XA = {x : (x, A) ∈ X},

XA is infinite ⇒ YA is infinite and included in XA ∩ ZA

2. Let C,D be syntactical classes as in Def.2.12.

i. Z is constructively (C,D)-dense if it is (C[X],D[X])-dense in the sense of
1i above and, moreover, a D-code for Y can be recursively obtained from
a C-code for X. In other words, there exists some total recursive function
λ : N → N such that, for all i

W
C[X]
i is infinite ⇒ W

D[X]
λ(i) is infinite and included in W

C[X]
i ∩ Z

14



ii. A set Z ⊆ X × P (N) is constructively (C,D)-dense if it is (C[X],D[X])-
dense in the sense of 1ii above and, moreover, an D-code for Y can be
recursively obtained from a C-code for X . In other words, there exists some
total recursive function λ : N → N such that, for all i

(WA
i )C[X×P (N)] is infinite

⇒ (WA
λ(i))

D[X×P (N)] is infinite and included in (WA
i )C[X×P (N)] ∩ ZA)

Note 3.12.
1. Clearly, (constructive) (Σ0

1,Σ
0
1)-density is exactly (constructive) Σ0

1-
density in the sense of Def.3.5.

2. See Lemmas 8.6, 8.8 for examples of constructive (Σ0
1,∃

≤µ(Σ0
1 ∧ Π0

1))-
density and (Π0

1,∃
≤µ(Σ0

1 ∧ Π0
1))-density.

Let’s state a simple result about (C,D)-density.

Proposition 3.13.
1. The family of (constructively) (C,D)-dense subsets of X (resp. X×P (N))
is superset closed.

2. Let Z1, Z2 ⊆ X. If Z1 is (constructively) (C,D)-dense and Z2 is (con-
structively) (D, E)-dense then Z1 ∩ Z2 is (constructively) (C, E)-dense.
Idem for Z1,Z2 ⊆ X × P (N).

Proof. Point 1 is obvious. As for point 2, let X be an infinite set in C[X].
Using (C,D)-density of Z1 we (recursively) get (a code for) an infinite X1 ⊆
X ∩Z1 in D. Then, using (D, E)-density of Z2, we (recursively) get (a code
for) an infinite X2 ⊆ X1 ∩ Z2 ⊆ X ∩ (Z1 ∩ Z2) in E .
For Z1,Z2,X ⊆ X × P (N), fix the second order argument A and argue
similarly with ZA

1 ,Z
A
2 ,X

A.

4 The OftLess relations and the ≪ orderings

In this § we introduce the central notions of this paper to compare the
growth of total functions f, g : N → N.

4.1 Relations OftLessC,DF , OftLessC,DF↑ on maps N → N

Definition 4.1. Let C,D be syntactical classes (cf. Def.2.12) and F be
a countable family of functions N → N and (φi)i∈N be a (non necessarily
injective) enumeration of F (in §8, F will be PR or MinPR, cf. Def.2.13).

We let f OftLessC,DF g (resp. f OftLessC,DF↑ g ) be the relation between
total functions f, g : N → N defined by the following conditions:
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i. For every total (resp. and monotone increasing) function φ : N → N in
F which tends to +∞, the set {x : f(x) < φ(g(x))} is constructively
(C,D)-dense.

ii. The constructive (C,D)-density in condition i is uniform in φ : There
exists some total recursive λ : N

2 → N such that, for all i, j,

φi is total (resp. and monotone increasing) and tends to +∞
∧ W C

j is infinite

⇒ WD
λ(i,j) is an infinite subset of W C

j ∩ {x : f(x) < φi(g(x))}

Remark 4.2.
1. The notation OftLess stresses the fact that f is often much smaller than
g : consider functions φ which are much smaller than the identity function,
e.g. max(0, z − c), ⌊z/c⌋, ⌊log(z)⌋, log∗(z),. . .

2. OftLessC,DF carries the contents, reformulated in terms of uniform con-
structive (C,D)-density, of Barzdins result cited above, and that of adequate
variants that we shall prove about Kmax and Kmin (cf. Lemmas 8.1, 8.6,
8.8).

3. Suppose F contains all translation functions z 7→ max(0, z − c). If
f OftLessC,DF↑ g (a fortiori if f OftLessC,DF g) then g is necessarily un-
bounded. Else, if c is a bound for g, consider φ(z) = max(0, z − c) to get a
contradiction.

4. OftLessC,DF↑ is an extension of OftLessC,DF which has much better
properties (cf. Thm.4.4).

4.2 Monotonicity versus recursive lower bound

In case F = PR, the monotonicity condition can be put in another equiva-
lent form.

Proposition 4.3. Relation f OftLessC,DPR↑ g holds if and only if conditions
i, ii in Def.4.1 hold for every total functions φ, φi : N → N which recursively
tend to +∞, i.e. there are recursive growth modulus ξ, ξi : N → N such that

∀N ∀n ≥ ξ(N) φ(n) ≥ N , ∀N ∀n ≥ ξi(N) φi(n) ≥ N

Proof. ⇒ . If φ is total recursive and monotone increasing and tends to +∞
then it tends recursively to +∞ : a possible recursive growth modulus is

ξ(N) = least x such that φ(x) ≥ N

⇐ . Observe that any total φ ∈ PR which tends recursively to +∞ has a
total recursive minorant ψ which also tends to +∞, namely

ψ(0) = ϕ(0) , ψ(N + 1) = ϕ(ξ(1 + ψ(N)))

where ξ is a recursive growth modulus of ϕ.
Of course, if true for ψ, conditions i, ii are also true for φ.

16



4.3 Transitivity

It is clear that if C 6= D then OftLessC,DF and OftLessC,DF↑ may not be
transitive, hence may not be orderings. However, we have the following
result.

Theorem 4.4 (Transitivity theorem).
1. Let B, C,D be syntactical classes and F ,G be countable classes of func-
tions containing the identity function Id : N → N. Then,

i. e OftLessB,CF f OftLessC,DG g =⇒ e OftLessB,DG g

ii. e OftLessB,CF↑ f OftLessC,DG↑ g =⇒





e OftLessB,DG↑ g

e OftLessB,DF↑ g

In case F is recursively closed by negative translation of the output, i.e.
φ ∈ F ⇒ ∀c max(0, φ − c) ∈ F

and there exists a total recursive function θ : N
2 → N such that

max(0, φi − c) = φθ(i,c)
then

iii. e ≤ct f OftLessC,DF g =⇒ e OftLessC,DF g

In case F is recursively closed by negative translation of the output and also
by negative translation of the input, i.e.

φ ∈ F ⇒ ∀c x 7→ φ(max(0, x− c)) ∈ F
and there exists a total recursive function ζ : N

2 → N such that, for all x,
φi(max(0, x − c)) = φζ(i,c)(x)

then

iv. e ≤ct f OftLessC,DF↑ g ≤ct h =⇒ e OftLessC,DF↑ h

2. Case C = D. Relations OftLessC,CF and OftLessC,CF↑ are strict orderings.

Proof. 1i. Suppose e OftLessB,CF f OftLessC,DG g. Observe that

{x : e(x) < f(x)} ∩ {x : f(x) < φ(g(x))} ⊆ {x : e(x) < φ(g(x))}

Since Id ∈ F , the sets on the left are respectively constructively (B, C)-
dense and (C,D)-dense, uniformly in φ. Applying Prop.3.13, we see that
{x : e(x) < φ(g(x))} is constructively (B,D)-dense, whence e OftLessB,DG g.

1ii. The above argument also gives e OftLessB,DG↑ g. To get e OftLessB,DF↑ g,
argue as above and observe that

{x : e(x) < φ(f(x))} ∩ {x : f(x) < g(x)} ⊆ {x : e(x) < φ(g(x))}
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whenever φ is monotone increasing.

1iii. Let c be such that e(x) ≤ f(x) + c for all x.
If φ ∈ F is total and tends to +∞, so is its negative output translation

φ̂c(z) = max{0, φ(z) − c}

Suppose f(x) < φ̂c(g(x)). Then φ̂c(g(x)) > 0 so that

φ̂c(g(x)) = φ(g(x)) − c
f(x) < φ(g(x)) − c

e(x) ≤ f(x) + c < φ(g(x))
This proves the following inclusion

{x : f(x) < φ̂c(g(x))} ⊆ {x : e(x) < φ(g(x)} (1)

Relation f OftLessC,DF g insures that {x : f(x) < φ̂c(g(x))} is constructively
(C,D)-dense. Inclusion (1) implies that the same is true with {x : e(x) <
φ(g(x))}. Since a code for φ̂c is recursively obtained from a code for φ, this
proves e OftLessC,DF g.

1iv. Let c be now such that e(x) ≤ f(x) + c and g(x) ≤ h(x) + c for all x.
If φ ∈ F is total, monotone increasing and tends to +∞, so is its negative
input and output translation

φ̃c(z) = max{0, φ(max(0, z − c)) − c}

Suppose f(x) < φ̃c(g(x)). Then φ̃c(g(x)) > 0 so that

φ̃c(g(x)) = φ(max(0, g(x) − c) − c
f(x) < φ(max(0, g(x) − c) − c

e(x) ≤ f(x) + c < φ(max(0, g(x) − c)

Now, g(x) ≤ h(x) + c and φ is monotone increasing, hence

e(x) < φ(max(0, g(x) − c) ≤ φ(max(0, h(x)) = φ(h(x))

This proves inclusion

{x : f(x) < φ̃c(g(x))} ⊆ {x : e(x) < φ(h(x)} (2)

Relation f OftLessC,DF↑ g insures that {x : f(x) < φ̃c(g(x))} is constructively
(D, E)-dense. Inclusion (2) implies that the same is true with {x : e(x) <
φ(h(x))}. Since a code for φ̃c is recursively obtained from a code for φ, this
proves e OftLessC,DF↑ h.

2. Transitivity of OftLessC,CF and OftLessC,CF↑ is an obvious consequence of
1i–ii. As for irreflexivity, arguing with φ = Id (which is in F), we see that
f(x) < φ(f(x)) is impossible, so that f OftLessC,CF f and f OftLessD,CF↑ f are

always false. Thus, OftLessC,CF and OftLessC,CF↑ are strict orderings.
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4.4 Orderings ≪C,D
F , ≪C,D

F↑ on maps N → N

Points iii-iv of the above theorem show that taking intersection with the
“up to a constant” ordering ≤ct transforms the relations OftLessC,DF and

OftLessC,DF↑ into strict orderings ≪C,D
F and ≪C,D

F↑ .

Definition 4.5. ≪C,D
F and ≪C,D

F↑ are the intersections of the OftLessC,DF

and OftLessC,DF↑ relations with the ≤ct ordering on total maps N → N.

Theorem 4.6 ( ≪C,D
F and ≪C,D

F↑ are strict orderings).
Let A,B, C,D be syntactical classes and let F ,G be countable classes of func-
tions N → N which contain Id and which are recursively closed by output
and input translation (cf. Thm.4.4) relative to some enumerations of F ,G.
Then

i. e ≪B,C
F f ≪C,D

G g ⇒ e ≪B,D
G g

ii. e ≪B,C
F↑ f ≪C,D

G↑ g ⇒





e ≪B,D
F↑ g

e ≪B,D
G↑ g

iii. e ≤ct f ≪C,D
G g ⇒ e ≪C,D

G g

iv. e ≤ct f ≪C,D
G↑ g ≤ct h ⇒ e ≪C,D

G↑ h

In particular, properties iii and iv can be applied with ≤ct replaced by ≪A,B
F

or ≪A,B
F↑ .

Relations ≪C,D
F and ≪C,D

F↑ are strict orderings such that

v. f ≪C,D
F g ⇒ f ≪C,D

F↑ g ⇒ f <ct g

Proof. Conditions i–iv are straightforward consequences of the similar con-
ditions in Thm.4.4.

Condition i–ii yields transitivity of ≪C,D
F and ≪C,D

F↑ .

Implication f ≪C,D
F g ⇒ f ≪C,D

F↑ g is trivial. Let’s prove that ≪C,D
F re-

fines <ct (and not merely ≤ct).
Suppose f ≪C,D

F g. Then f ≤ct g. Also, letting ψ(z) = max(0, z − c),
we see that {x : f(x) < ψ(g(x)} = {x : f(x) < g(x) − c} is infinite, hence
the condition ∀x g(x) ≤ f(x) + c is impossible, whatever be c. Thus,
f <ct g.

The above theorem shows that composition of the orderings ≪C,D
F and

≪C,D
F↑ is remarkably flexible. In particular,
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Corollary 4.7. If 1 ≤ i ≤ n and 1 ≤ j < k ≤ m ≤ n then

f0 ≪D1,E1

F1↑
. . . ≪Dn,En

Fn↑
fn ⇒ f0 ≪Di,Ei

Fi↑
fn

f0 ≪C1,C2

F2↑
. . . ≪

Cn−1,Cn

Fn↑
fn ⇒ f0 ≪

Cj,Cm

Fk↑
fn

4.5 Left composition and ≪C,D
F

Def.4.1, 4.5 compare total functions f, g : N → N via the associated sets
{x : f(x) < φ(g(x))} for φ ∈ F . One could also compare f, g via the sets
{x : φ(f(x)) < g(x)} for φ ∈ F . Similar properties could be derived.

Though we shall not use it in the sequel, there is a property of ≪C,D
F and

≪C,D
F↑ which is interesting on its own and gives an alternative definition of

≪C,D
F and ≪C,D

F↑ where the inequality f(x) < φ(g(x)) gets a symmetric form
ψ(f(x)) < φ(g(x)) involving functions ψ, φ on both sides of the inequality.
We prove it in case F is PR or MinPR.

Proposition 4.8. Let C,D be syntactical classes and F be PR or MinPR.
Let ψ : N → N be a total recursive function. Then

f ≪C,D
F g ⇒ ψ ◦ f ≪C,D

F g

f ≪C,D
F↑ g ⇒ ψ ◦ f ≪C,D

F↑ g

Moreover, the constructive density afferent to the relations ψ ◦ f ≪C,D
F g

and ψ ◦ f ≪C,D
F↑ g is uniform in ψ.

Proof. 1. Let φ : N → N be a total function in F which tend to +∞. We
prove that {x : ψ(f(x)) < φ(g(x))} is constructively (C,D)-dense.
Set ψ′(z) = max(z,max{ψ(u) : u ≤ z}). Then ψ′ ≥ Id is total recursive,
monotone increasing and unbounded. Since ψ ≤ ψ′, we have

{x : ψ′(f(x)) < φ(g(x))} ⊆ {x : ψ(f(x)) < φ(g(x))} (3)

2. Define α, ζ : N → N as follows:

α(z) = largest u such that ψ′(u) ≤ φ(z)

ζ(z) = smallest s such that ψ′ is constant on [s, α(z)]

Since φ(z) and ψ′(z) tend to +∞ so do α(z) and ζ. Also,

∀u < ζ(z) ψ′(u) < ψ′(ζ(z)) = ψ′(α(z)) ≤ φ(z) (4)

Finally, α and ζ are in F . If F = PR, this is trivial. If F = MinPR
and φ(x) = mint φt(x) then observe that α(x) = mint αt(x) and ζ(x) =
mint ζt(x) (where αt, ζt are defined from ψ, φt as are α, ζ from ψ, φ).
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3. Condition (4) applied to z = g(x), u = f(x) insures

f(x) < ζ(g(x)) ⇒ ψ′(f(x)) < φ(g(x))

whence

{x : f(x) < ζ(g(x))} ⊆ {x : ψ′(f(x)) < φ(g(x))} (5)

Condition f OftLessC,DF g applied to ζ insures that {x : f(x) < ζ(g(x))} is
constructively (C,D)-dense. Using inclusions (5) and (3), we see that so is
{x : ψ(f(x)) < φ(g(x))}.

4. In case f OftLessC,DF↑ g, then φ is monotone increasing. Since ψ is also

monotone increasing, so are α, ζ and we get ψ ◦ f OftLessC,DF g.

5. Finally, observe that all the construction is uniform in ψ and φ.

5 Functional Kolmogorov complexity

The purpose of this section is to reconsider the oracular version of Kol-
mogorov complexity. We shall view the oracle as a parameter in a second
order variant of conditional Kolmogorov complexity.

5.1 Kolmogorov complexity of a functional

Definition 5.1. Let X be a basic set.
The Kolmogorov complexity KF : X × P (N) → N associated to a partial
functional F : {0, 1}∗ × P (N) → X is defined as follows:

KF (x ||A) = smallest |p| such that (F (p, A) = x)

Note 5.2.
1. Forgetting the A, we get the classical notion KF (x) with F : {0, 1}∗ → X.
Freezing the A also leads to the classical oracular notion. This is the con-
tents of the next obvious proposition and of Thm.7.1 below.

2. The double bar || is used so as to get no confusion with usual conditional
Kolmogorov complexity where the condition is a first-order object.

3. The above definition can obviously be extended to conditional Kol-
mogorov complexity KF (x | y ||A) where F : {0, 1}∗ × Y × P (N) → X.

Proposition 5.3. Let F be as in Def.5.1. For A ∈ P (N), denote
FA : {0, 1}∗ → X

the function such that FA(p) = F (p, A). Then, for all x ∈ X,

KFA(x) = KF (x ||A)
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5.2 Functional invariance theorem

The usual proof of the invariance theorem (Kolmogorov, 1965 [8]) extends
easily when considering partial computable functionals {0, 1}∗ × P (N) → N

in place of partial recursive functions {0, 1}∗ → N, leading to what we call
functional Kolmogorov complexity and denote K(x ||A).

Theorem 5.4 (Functional Invariance Theorem).
1. Let F be the family of partial computable functionals {0, 1}∗×P (N) → X.
When F varies in F , there is a least KF up to an additive constant:

∃F ∈ F ∀G ∈ F KF ≤ct KG

Such an F is said to be optimal in F . We let K( || ) be KF where F is some
fixed optimal functional.

2. Let (Fk)k∈N be a partial computable enumeration of PC{0,1}∗×P (N)→X.
Let U : {0, 1}∗ × P (N) → X be such that

U(0k1p, A) = Fk(p, A) U(0k) = 0

Then U is optimal in PC{0,1}∗×P (N)→X.

Proof. It clearly suffices to prove Point 2. The usual proof of the classical
invariance theorem gives indeed the functional version stated above.

KFk
(x ||A) = min{|p| : Fk(p, A) = x}

= min{|p| : U(0k1p, A) = x}

= min{|0k1p| − k − 1 : U(0k1p, A) = x}

≥ min{|q| − k − 1 : U(q, A) = x}

= min{|q| : U(q, A) = x} − k − 1

= KU (x ||A) − k − 1

Whence KU ≤ KFk
+ k + 1 and therefore KU ≤ct KFk

.

Remark 5.5.
1. Obviously, KF (x ||A) does depend on A. For example, if x ∈ N is
incompressible then KF (x || ∅) =ct log(x) whereas KF (x || {x}) =ct 0.
The contents of the functional invariance theorem is that, for some F ’s (the
optimal ones) the number

max{KF (x ||A) −KG(x ||A) : x ∈ N, A ∈ P (N)}
is finite for any given G.

2. For the functional invariance theorem, we only have to suppose the
enumeration (Fk)k ∈ N to be partial computable as a functional N×{0, 1}∗×
P (N) → X. There is no need that it be acceptable (cf. Def.2.5).
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As for the usual Kolmogorov complexity, computable approximation
from above is possible.

Proposition 5.6. There exists a total computable functional

(x, t, A) ∈ X × P (N) × N 7→ Kt(x ||A)

which is decreasing with respect to t and such that, for all x, A,

K(x ||A) = min{Kt(x ||A) : t ∈ N}

Proof. Letting K = KU where K ∈ PC{0,1}∗→N, set

B(x, t, A) = {|p| : |p| ≤ t ∧ U(p, A) = x ∧ U(p, A) halts in ≤ t steps}

T (x, A) = smallest t such that B(x, t, A) 6= ∅

Kt(x ||A) = smallest |p| ∈ B(x, t, A) ∪B(x, T (x, A), A)

6 The Min/Max hierarchy of Kolmogorov com-

plexities

Infinite computations in relation with Kolmogorov complexity were first
considered in Chaitin, 1976 [3] and Solovay, 1977 [16]. Becher & Daicz &
Chaitin, 2001 [1], introduced a variant H∞ of the prefix version of Kol-
mogorov complexity by allowing programs leading to possibly infinite com-
putations but finite output (i.e. remove the sole halting condition). This
variant satisfies H∅′ <ct H

∞ <ct H (cf. [1, 2]).
In [5], 2004, we introduced a machine-free definition Kmax of the usual (non
prefix) Kolmogorov version K∞, together with a dual version Kmin. The
proof in [2] of the above inequalities extends easily to the K setting for
Kmax. However, a different argument is required in order to get the Kmin
version (cf. [5]).

6.1 Min/Max Kolmogorov complexities

The following definitions and theorems collects material from [5]. The clas-
sical way to define Kolmogorov complexity extends directly to these classes.

Theorem 6.1 (Min/Max Invariance theorem).

1. Let F be Min
{0,1}∗→N

PR or Max
{0,1}∗→N

PR (cf. Def.2.13). When φ varies in
F there is a least Kφ, up to an additive constant (cf. Notation 2.1):

∃φ ∈Min
{0,1}∗→N

PR ∀ψ ∈Min
{0,1}∗→N

PR Kφ ≤ct Kψ

∃φ ∈Max
{0,1}∗→N

PR ∀ψ ∈Max
{0,1}∗→N

PRA Kφ ≤ct Kψ
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Such φ’s are said to optimal in F .
We let
- Kmin denote Kφ where φ is any function optimal in Min

{0,1}∗→N

PR ,

- Kmax denote Kφ where φ is any function optimal in Max
{0,1}∗→N

PR .

2. Suppose (φk)k∈N is an enumeration of Min
{0,1}∗→N

PR such that the function

(k, p) 7→ φk(p) is in Min
N×{0,1}∗→N

PR . Let Umin be such that

Umin(0
k1p) = φk(p) Umin(0

k) = φk(λ)

Then Umin is optimal in Min
{0,1}∗→N

PR .

Idem with Max
{0,1}∗→N

PR .

3. Relativizing to an oracle A ⊆ N, one similarly defines KA
min and KA

max
and the analog of Point 2 also holds.

Remark 6.2 ([5]). There exists optimal functions for Max
{0,1}∗→N

PR of the
form max f where f : {0, 1}∗ × N → N is total recursive.

This is false for Min
{0,1}∗→N

PR .

Relativizing to the successive jumps oracles, we get an infinite family of
Kolmogorov complexities for which holds a hierarchy theorem.

Theorem 6.3 (The Min/Max Kolmogorov hierarchy, [5]).

log >ct K >ct
Kmin
Kmax

>ct K
∅′ >ct

K∅′

min

K∅′
max

>ct K
∅′′ >ct

K∅′′

min

K∅′′
max

>ct K
∅′′′ ...

Strict inequalities K >ct Kmax >ct K
∅′ >ct K

∅′
max >ct K

∅′′ were first
proved by Becher & Chaitin, 2001–2002 [1] (for the prefix variants).

The main application of the ≪C,D
F and ≪C,D

F↑ orderings introduced in §4
is a strong improvement of this hierarchy theorem, cf. Thm.8.14.

Finally, we shall need the following result (cf. [5], or [1] as concerns Kmax).

Theorem 6.4. K,Kmin,Kmax are recursive in ∅′.

6.2 Functional Min/Max Kolmogorov complexities

The Invariance Theorems for MaxPR and MinPR (cf. Thm.6.1) admit
functional versions, the proofs of which are exactly the same as that in
Thm.5.4.

Theorem 6.5 (Min/Max Functional Invariance Theorem).

1. When F : {0, 1}∗ × P (N) → N varies over Min
{0,1}∗×P (N)→N

PC or over

Max
{0,1}∗×P (N)→N

PC , there is a least KF up to an additive constant:

∃F ∈Min
P (N)×{0,1}∗→N

PC ∀G ∈Min
P (N)×{0,1}∗→N

PC KF ≤ct KG

∃F ∈Max
P (N)×{0,1}∗→N

PC ∀G ∈Max
P (N)×{0,1}∗→N

PC KF ≤ct KG
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Such an F is said to be optimal in Min
P (N)×{0,1}∗→N

PC or in Max
P (N)×{0,1}∗→N

PC .
We let Kmin( || ) = KF and Kmax( || ) = KF be some fixed such optimal
functionals.

2. Let (Fk)k∈N be an enumeration of Min
P (N)×{0,1}∗→N

PC which is itself in

Min
N×P (N)×{0,1}∗→N

PC . Let Umin be such that

Umin(0k1p, A) = Fk(p, A) Umin(0k) = 0

Then Umin is optimal in Min
{0,1}∗→N

PC .
One defines similarly Umax which is optimal in MaxPC .

Remark 6.6.
1. Using the technique of [5], we see that there exists optimal functionals
for MaxPC of the form maxF where F : {0, 1}∗ × N × P (N) → N is total
recursive. This is false for MinPC .

2. The inclusions PC ⊆MaxPC ∩MinPC imply that Kmin( || ) ≤ct K( || )
and Kmax( || ) ≤ct K( || ). Also, as is well-known, K( || ) ≤ct log. We can
choose Kmin,Kmax so that the constant is 0, i.e. for all x and A,

Kmin(x ||A) ≤ K(x ||A) ≤ log , Kmax(x ||A) ≤ K(x ||A) ≤ log

3. In fact, the Min/Max hierarchy Theorem 6.3 extends to the functional
setting. In §8.6 we shall prove a much stronger result, cf. Thm.8.14.

7 Functional versus oracular

Functional Kolmogorov complexities allow for a uniform choice of oracular
Kolmogorov complexities. The benefit of such a uniform choice was devel-
oped in §1.2 and is illustrated in the hierarchy theorem in §8.6.

Theorem 7.1. Denote KA,KA
min,K

A
max : X → N the Kolmogorov com-

plexities associated to the families PRA of partial A-recursive functions and
the families Min

PRA ,Max
PRA obtained by application of the min and max

operators to PRA,X×N→N. For all A ⊆ N, we have

KA =ct K( ||A) , KA
min =ct Kmin( ||A) , KA

max =ct Kmax( ||A)

i.e. ∀ A ∈ P (N) ∃cA ∀x





|KA(x) −K(x ||A)| ≤ cA
|KA

min(x) −Kmin(x ||A)|) ≤ cA
|KA

max(x) −Kmax(x ||A)|) ≤ cA

Proof. 1. We let (Fk)k∈N and U be as in Point 2 of Thm.5.4 and let FAk (x) =
Fk(x, A) and UA(x) = U(x, A). The sequence (FAk )k∈N is an enumeration of
the family PRA,{0,1}

∗→N of partial A-recursive functions {0, 1}∗ → X, which
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is partial A-recursive as a function N × {0, 1}∗ → X. Since UA(0k1p) =
FAk (p), the classical invariance theorem, in its relativized version, insures
that UA is optimal in PRA,{0,1}

∗→N, whence KA =ct KUA .
Now, U is optimal in PCP (N)×{0,1}∗→N, whence K( || ) =ct KU ( || ).
Prop.5.3 insures KUA(x) = KU (x||A), whence KA =ct K( ||A).

2. The Min and Max cases are similar.

8 Refining the oracular Min/Max hierarchy with
the ≪,≪↑ orderings

8.1 Barzdins’ theorem in a uniform setting

The next lemma is essentially Barzdins’ result cited in §3.1. In order (point
2) to get a relativized result with θ recursive rather than merely A-recursive,
we shall look at the oracle A as a parameter and use uniform Kolmogorov
complexity, cf. §5.2, §7.

Lemma 8.1.
1. If ϕ : N → N is total recursive and tends to +∞ then {x : K(x) < ϕ(x)}
is an r.e. set which is constructively Σ0

1-dense.
Moreover, this result is uniform in ϕ. In fact, let (ϕi)i∈N and (Wi)i∈N

be acceptable enumerations of partial recursive functions N → N and r.e.
subsets of N, there are total recursive functions ξ : N → N and θ : N

2 → N

such that

i. ∀i {x ∈ domain(ϕi) : K(x) < ϕi(x)} = Wξ(i)

ii. ∀i, j (ϕi is unbounded on domain(ϕi) ∩Wj

⇒ (Wθ(i,j) is infinite ∧ Wθ(i,j) ⊆Wj ∩ {x : K(x) < ϕi(x)}))

2. Consider second order Kolmogorov complexity K(x ||A) and an acceptable
enumeration (Φi)i∈N of partial computable functionals N×P (N) → N. Using
Thm.7.1 and Prop.2.7, we shall consider K(x ||A) as uniform Kolmogorov
relativization KA(x) and Φi(x, A) as a uniform oracle A partial recursive
function ϕAi (x). We also denote WA

i = domain(ϕAi ).
Point 1 relativizes uniformly, i.e., the above total recursive functions ξ :
N → N and θ : N

2 → N can be taken so as to satisfy all possible relativized
conditions, i.e.

i. ∀i ∀A {x ∈ domain(ϕAi ) : KA(x) < ϕAi (x)} = WA
ξ(i)

ii. ∀i, j ∀A (ϕAi is unbounded on domain(ϕAi ) ∩WA
j

⇒ (WA
θ(i,j) is infinite ∧ WA

θ(i,j) ⊆WA
j ∩ {x : KA(x) < ϕAi (x)}))
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Note 8.2. Lemma 8.1 is optimal in the sense that there is no possible
(Π0

1, E)-density result for {x : K(x) < ϕ(x)} since this set has Π0
1 comple-

ment.

Proof. Point 1i. Let K = KU where U ∈ PR{0,1}∗→N. Then

K(x) < ϕi(x) ⇔ ∃p (|p| < ϕi(x) ∧ U(p) = x)

which is a Σ0
1 condition. Therefore {(i, x) : K(x) < ϕi(x)} is r.e. and the

parametrization theorem yields the desired total recursive function ξ.

Point 1ii.
In order to prove constructive Σ0

1-density uniformly in ϕ, we first define a
partial recursive function α : N

2 × {0, 1}∗ → N such that

if there exists some x ∈Wj such that ϕi(x) ≥ 2 |p| then α(i, j, p)
is such an x, else α(i, j, p) is undefined.

Then we shall use the facts that

K ≤ct Kp7→α(i,j,p) , Kp7→α(i,j,p)(α(i, j, p)) ≤ct |p|

to get an inequality K(α(i, j, p)) ≤ct |p| from which K(α(i, j, p)) < ϕi(p)
can be deduced.

a. The formal definition of α as a partial recursive function is as follows.
Denote Wj,t the finite subset of Wj obtained after t steps of its standard
enumeration. Let Zt : N

2 × {0, 1}∗ → P (N) be such that

Zt(i, j, p) = {x ∈Wj,t : ϕi(x) halts in ≤ t steps and is > 2 |p|}

Clearly, {(t, i, j, p) : Zt(i, j, p) 6= ∅} is a recursive subset of N
3 × {0, 1}∗.

Thus, we can define the partial recursive function α as follows:

domain(α) = {(i, j, p) : ∃t Zt(i, j, p) 6= ∅}

α(i, j, p) = the first element in Zt(i, j, p)

where t is least such that Zt(i, j, p) 6= ∅

Let (ψi)i∈N be an acceptable enumeration of PR{0,1}∗→N. Since α is partial
recursive, there exists a total recursive function η : N

2 → N such that
α(i, j, p) = ψη(i,j)(p) for all i, j, p. Finally, we let θ be a total recursive
function such that

Wθ(i,j) = ψη(i,j)({p : |p| > η(i, j) ∧ (i, j, p) ∈ domain(ψη(i,j))})

Since α and ψη(i,j) take values in Wj, we have Wθ(i,j) ⊆Wj for all i, j.

b. Let U : {0, 1}∗ → N be such that U(0k1p) = ψk(p) and U(0k) = ψk(λ)
(where λ is the empty word). The usual invariance theorem insures that U
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is optimal. Thus, we can (and shall) suppose that K = KU .
Since α(i, j, p) = ψη(i,j)(p), we have α(i, j, p) = U(0η(i,j)1p). Thus, for any
(i, j, p) ∈ domain(α),

K(α(i, j, p)) = KU (U(0η(i,j)1p)) ≤ |0η(i,j)1p| = |p| + η(i, j) + 1

c. Suppose now that ϕi is unbounded on domain(ϕi)∩Wj. Then, for all p,
the set Zt(i, j, p) is non empty for t big enough, so that α(i, j, p) = ψη(i,j)(p)
is defined for all p. Also, due to the definition of Zt, we see that α(i, j, p)
tends to +∞ with the length of p. In particular, Wθ(i,j) is infinite.
From the definition of α, we see that ϕi(α(i, j, p)) > 2|p|. Using b, we see
that for all |p| > η(i, j), we have K(α(i, j, p)) ≤ 2 p < ϕ(α(i, j, p)).
This proves that Wθ(i,j) is included in {x : K(x) < ϕi(x)}.
Thus, Wθ(i,j) is an infinite r.e. set included in Wj ∩ {x : K(x) < ϕi(x)}.

Point 2i. Let K( || ) = KU where U ∈ PCP (N)×{0,1}∗→N. Then

KA(x) < ϕAi (x) ⇔ ∃p (|p| < ϕAi x ∧ U(p, A) = x)

which is a Σ0
1 condition. Therefore {(i, x,A) : KA(x) < ϕAi (x)} is Σ0

1 and
the parametrization property (cf. Def.2.5) yields the desired total recursive
function ξ.

Point 2ii. The proof is similar to that of Point 1ii. Just add everywhere
a second order argument A varying in P (N) and use the parametrization
property of Def.2.5. Thus, α is now a partial computable functional

α : N
2 × {0, 1}∗ × P (N) → N

The enumeration (ψi)i∈N now becomes an enumeration (Ψi)i∈N of the partial
computable functionals {0, 1}∗ × P (N) → N. The total recursive functions
η, θ are now such that α(i, j, p, A) = Ψη(i,j)(p, A) and

WA
θ(i,j) = {Ψη(i,j)(p, A) : p such that (i, j, p, A) ∈ domain(α) ∧ |p| > η(i, j)}

The arguments in b,c above go through with the superscript A everywhere
and with U (cf. proof of Point 2i above) in place of U .

Remark 8.3.
1. Lemma 8.1 still holds for φ ∈ MaxPR in place of ϕ ∈ PR. However,
this does not really add: an easy argument shows that if φ ∈ MaxPR and
Wj ⊆ domain(φ) is infinite then there exists an infinite Wk ⊆Wj and ϕi ∈
PR such that Wk ⊆ domain(ϕi) and ϕi(x) ≤ φ(x) for all x ∈ domain(ϕi).
Moreover, k and i can be given by total recursive functions depending on j
and a code for φ in MaxPR.
This also holds uniformly: replace ϕ by a functional Φ ∈ PC .

2. Of course, Lemma 8.1 cannot hold for φ ∈ MinPR since K is itself in
MinPR.
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8.2 Comparing K and Kmax à la Barzdins

In this subsection and the next one, we now come to central results of the
paper, namely,

- K can be compared to Kmax,Kmin via the ≪ and ≪↑ orderings,
- Kmax,Kmin can be compared via the OftLess↑ relation.

Notation 8.4. We shall write X is (C1∪C2,D)-dense to mean X is (C1,D)-
dense and (C2,D)-dense.

Remark 8.5. Let C1 ∨ C2 be the family of sets R1 ∪R2 where R1 ∈ C1 and
R2 ∈ C2.
If C1, C2 both contain the empty set (which is usually the case), then C1∪C2 ⊆
C1∨C2, and therefore (C1∨C2,D)-density (resp. constructive density) always
implies (C1 ∪ C2,D)-density (resp. constructive density).
Conversely, every infinite set in C1 ∨ C2 contains an infinite subset in C1

or in C2, so that (C1 ∪ C2,D)-density implies — hence is equivalent to —
(C1 ∨ C2,D)-density. However, this is no more true as concerns constructive
density: if R1 ∪ R2 is infinite one cannot decide (from codes) which one of
R1 and R2 is infinite.

Lemma 8.6.
1. Suppose φ : N → N is a total function in MinPR which is monotone
and tends to +∞. Then the set {x : Kmax(x) < φ(K(x))} is constructively
(Σ0

1 ∪ Π0
1,∃

≤φ(Σ0
1 ∧ Π0

1))-dense (cf. Def.3.11 Point 3).
Moreover, this result is uniform in φ. In fact, let (φi)i∈N and (Wi)i∈N be
acceptable enumerations of MinPR and r.e. subsets of N. There are total
recursive functions θ0, θ1 : N

2 → N such that, for all i, j, k, with the notations
of Def.2.12, if φi ∈MinPR is total, monotone and tends to +∞ then

Wj is infinite ⇒ W
∃≤φi(Σ0

1∧Π0
1)

θ0(i,j)
is an infinite subset of

Wj ∩ {x : Kmax(x) < φ(K(x))}

N \Wk is infinite ⇒ W
∃≤φi(Σ0

1∧Π0
1)

θ1(i,k)
is an infinite subset of

(N \Wk) ∩ {x : Kmax(x) < φ(K(x))}

2. Consider Kolmogorov relativizations KA,KA
max obtained from second

order Kolmogorov complexities K,Kmax (cf. Thm.7.1) and enumerations
(φAi )i∈N and (WA

i )i∈N of MinAPR and A-r.e. sets which come from acceptable

enumerations of functionals in Min
N×P (N)→N

PC and of Σ0
1 subsets of N×P (N)

(cf. Prop.2.7). We shall also use notations from Def.2.12.
Point 1 relativizes uniformly, i.e., the above total recursive functions θ0, θ1 :
N

2 → N can be taken so as to satisfy all possible relativized conditions. I.e.,
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if φAi ∈MinAPR is total, monotone and tends to +∞ then

WA
j is infinite ⇒ W

∃≤φA
i (Σ0,A

1 ∧Π0,A
1 )

θ0(i,j) ) is an infinite subset of

WA
j ∩ {x : KA

max(x) < φA(KA(x))}

N \WA
k is infinite ⇒ W

∃≤φA
i (Σ0,A

1 ∧Π0,A
1 )

θ1(i,k) is an infinite subset of

(N \WA
k ) ∩ {x : KA

max(x) < φA(KA(x))}

Proof. 1. The strategy.
We essentially keep the strategy of the proof of Lemma 8.1. The idea is, for
given i, j, to construct a MaxPR function α : N

2×{0, 1}∗ such that α(i, j, p)
is in Wj (or in N\Wj) and ϕi(K(α(i, j, p))) > 2 |p|. Then to use inequalities

Kmax ≤ct Kp7→α(i,j,p) , Kp7→α(i,j,p)(α(i, j, p)) ≤ct |p|

to get an inequality Kmax(α(i, j, p)) ≤ct |p| from which Kmax(α(i, j, p)) <
ϕi(K(α(i, j, p))) can be deduced.

As we have to deal with Σ0
1 sets and with Π0

1 sets, i.e. sets of the form Wj

or N \Wk, we shall define two such functions α, namely α0, α1.
In order to get these functions in MaxPR, we define partial recursive func-
tions a0, a1 : N

2 × {0, 1}∗ × N → N and set max a0 = α0 and max a1 = α1.

2. Approximation of φi from above.
Let φi(x) = mint ϕi(x, t) where (ϕi)i∈N is an acceptable enumeration of
PRN×N→N.
Using the parametrization theorem, let ξ : N → N be a total recursive func-
tion such that ϕξ(i) has domain {x : ∃u ϕi(x, t) does halt} × N and satisfies

ϕξ(i)(x, 0) = ϕi(x, u) where u is least such that ϕi(x, u) does halt

ϕξ(i)(x, t+ 1) = min({ϕξ(i)(x, 0)} ∪ {ϕi(x, v) : v ≤ t and

ϕi(x, v) halts in ≤ t steps})

Observe that ϕξ(i)(x, t) is decreasing in t and φi(x) = mint ϕξ(i)(x, t), so that
ϕξ(i)(x, t) is a partial recursive approximation of φi(x) from above.
Also, for any given i, x, either φi(x) is undefined and ϕξ(i)(x, t) is defined
for no t or φi(x) is defined and ϕξ(i)(x, t) is defined for all t.

3. Functions aǫ and αǫ.
Denote Wj,t the finite subset of Wj obtained after t steps of its standard
enumeration. Denote Kt(x) some total, recursive approximation of K(x)
from above which is decreasing in t (cf. Prop.5.6).
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We define a0, a1 as follows:

a0(i, j, p, 0) = the element which appears first in the standard

enumeration of Wj (hence undefined if Wj is empty)

a0(i, j, p, t + 1) =





a0(i, j, p, t) if ϕξ(i)(K
t(a0(i, j, p, t)), t) > 2 |p|

x if ϕξ(i)(K
t(a0(i, j, p, t)), t) ≤ 2 |p|

and x is the next element which
appears in the standard enumeration
of Wi and satisfies x > a0(i, j, p, t)

undefined if ϕξ(i)(K
t(a0(i, j, p, t)), t) is undefined

and

a1(i, k, p, 0) = 0

a1(i, k, p, t + 1) =





a1(i, k, p, t) if ϕξ(i)(K
t(a1(i, j, p, t)), t) > 2 |p|

and a1(i, k, p, t) /∈Wk,t

a1(i, k, p, t) + 1 if ϕξ(i)(K
t(a1(i, j, p, t)), t) ≤ 2 |p|

or (ϕξ(i)(K
t(a1(i, j, p, t)), t) > 2 |p|

and a1(i, k, p, t) ∈Wk,t)
undefined if ϕξ(i)(K

t(a1(i, k, p, t)), t) is undefined

Claim. Suppose φi ∈ MinPR is total monotone increasing and tends to
+∞.
a. If Wj is infinite then (p, t) 7→ a0(i, j, p, t) and p 7→ α0(i, j, p) are total
functions and

∀p (α0(i, j, p) ∈Wj ∧ φi(K(α0(i, j, p))) > 2 |p|)

b. Function a1 is always total. If N \Wk is infinite then p 7→ α1(i, k, p) is
a total function and

∀p (α1(i, k, p) /∈Wk ∧ φi(K(α1(i, k, p))) > 2 |p|)

Proof of Claim.
As seen in 2 above, if φi is total so is ϕξ(i). This insures the total character
of a0 (resp. a1).
Fix some p. Since ϕξ(i)(x, t) ≥ φi(x), φi is monotone increasing and K,φi
are total and tend to +∞, for all large enough x and all t, we have

ϕξ(i)(K
t(x), t) ≥ φi(K

t(x)) ≥ φi(K(x)) > 2 |p|

SupposeWj is infinite. Then there are elements inWj which satisfy φi(K(x)) >
2 |p|. Let x0(i, j, p) be such an element which appears first in the stan-
dard enumeration of Wj. It is easy to see that, for all t large enough, we
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have a0(i, j, p, t) = x0(i, j, p). Thus, α0(i, j, p) = x0(i, j, p) is defined and
α0(i, j, p) ∈Wj ∩ {φi(K(x)) > 2 |p|}. Which proves Point a of the Claim.

Suppose N \Wk is infinite. Then there are elements in N \Wk which satisfy
φi(K(x)) > 2 |p|. Let x1(i, k, p) be the least such element. It is easy to see
that, for all t large enough (namely, for t such thatWk∩[0, x1(i, k, p)[⊆ Wk,t),
we have a1(i, k, p, t) = x1(i, k, p). Thus, α1(i, k, p) = x1(i, k, p) is defined
and α1(i, k, p) ∈ (N\Wk)∩{φi(K(x)) > 2 |p|}. Which proves Point b of the
Claim. 2 (Claim)

4. Functions ηǫ, θǫ.
Let (ψn)n∈N be an acceptable enumeration of partial recursive functions
{0, 1}∗ × N → N. Since a0, a1 : N

2 × {0, 1}∗ × N → N are partial recur-
sive, the parametrization property insures that there exists total recursive
functions η0, η1 : N

2 → N such that, for all i, j, k, p, t and ǫ = 0, 1,

aǫ(i, j, p, t) = ψηǫ(i,j)(p, t)

Taking the max over t, and letting αǫ = max aǫ, we get, for all i, j, p,

αǫ(i, j, p, t) = (maxψηǫ(i,j))(p)

For all i, j, k, set

Yǫ(i, j) = {αǫ(i, j, p) : (i, j, p) ∈ domain(αǫ) ∧ |p| > ηǫ(i, j)}

Using the Claim and inequality K(y) ≤ y (which we always can suppose),
observe that

y ∈ Yǫ(i, j) ⇔ ∃p (2 |p| < φi(K(y)) ∧ |p| > ηǫ(i, j) ∧ y = αǫ(i, j, p))

⇔ ∃p (|p| < φi(y) ∧ |p| > ηǫ(i, j) ∧ y = αǫ(i, j, p))

Using Prop.2.15, we see that this is ∃≤φi(Σ0
1 ∧Π0

1) in i, j, y (cf. Def.2.9).
We let θ0, θ1 : N

2 → N be total recursive functions such that

W
∃≤φi(Σ0

1∧Π0
1)[N]

θǫ(i,j)
= Yǫ(i, j)

5. Point 1 of the Lemma.
Let U : {0, 1}∗ × N → N be such that U(0n1p, t) = ψn(p, t) and U(0n, t) =
ψn(λ, t) (where λ is the empty word). Taking the max over t, we get
(maxU)(0n1p) = (maxψn)(p) and (maxU)(0n) = (maxψn)(λ). Since the

maxψn’s enumerate Max
{0,1}∗→N

PR , the invariance theorem 6.1 insures that

maxU is optimal in Max
{0,1}∗→N

PR . Thus, we can (and shall) suppose that
Kmax = K(maxU).

Since αǫ(i, j, p) = (maxψηǫ(i,j))(p) = (maxU)(0ηǫ(i,j)1p), we get

Kmax(αǫ(i, j, p)) = K(maxU)((maxU)(0ηǫ(i,j)1p)

≤ ηǫ(i, j) + 1 + |p|

≤ 2 |p| in case |p| > ηǫ(i, j)
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Suppose φi is total, monotone and tends to +∞ and Wj (resp. N \Wk) is
infinite. Using the last inequality and that from the above Claim relative to
ǫ = 0 (resp. ǫ = 1), we see that, for |p| > ηǫ(i, j), we have

K(maxU)(αǫ(i, j, p)) ≤ 2 |p| < φi(K(αǫ(i, j, p))

Which proves thatW
∃≤φi(Σ0

1∧Π0
1)[N]

θǫ(i,j,k)
is included in {x : Kmax(x) < φi(K(x))}.

Using the Claim again, this set is also included in Wj (resp. (N \Wk). This
finishes the proof of Point 1 of the Lemma.

6. Point 2 of the Lemma.
The proof is similar to that of Point 1. Just add everywhere a second or-
der argument A varying in P (N) and use the parametrization property of
Def.2.5. Thus, a0, a1 are now partial computable functionals

N
2 × {0, 1}∗ × P (N) × N → N

The enumeration (ψn)n∈N now becomes an enumeration (Ψn)n∈N of the par-
tial computable functionals {0, 1}∗ × P (N) → N. The total recursive func-
tions ηǫ, θǫ are now such that

aǫ(i, j, p, A, t) = Ψηǫ(i,j)(p, A, t)

αǫ(i, j, p, A) = (max Ψηǫ(i,j))(p, A)

WA
θǫ(i,j,j)

= {αǫ(i, j, p, A) : (i, j, p, A) ∈ domain(αǫ) ∧ |p| > ηǫ(i, j)}

and U has to be changed to U ∈ PCP (N)×{0,1}∗→N such that K( || ) = KU .
The arguments for the proof of Point 1 above go through with the superscript
A everywhere.

8.3 Comparing K and Kmin à la Barzdins

We shall need the following notion to get an analog of Lemma 8.6 with Kmin.

Definition 8.7. The growth function of an infinite set X ⊆ N is defined as

growthX(n) = (n+ 1)-th point of X

The infinite set X has recursively bounded growth if growthX ≤ ψ for some
total recursive function ψ : N → N.

Lemma 8.8.

1. Let’s denote Π̃0,A
1 the family of infinite Π0,A

n subsets of N with A-recursively
bounded growth.
Suppose φ : N → N is a total function in MinPR which is monotone and
tends to +∞. Then the set {x : Kmin(x) < φ(K(x))} is constructively

(Σ0
1 ∪ Π̃0

1,∃
≤φ(Σ0

1 ∧ Π0
1))-dense (cf. Def.3.11 Point 3).

Moreover, this result is uniform in φ and in a recursive ψ bound for the Π0
1
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set. In fact, let (φi)i∈N, (ψm)m∈N and (Wi)i∈N be acceptable enumerations
of MinPR, PR and of r.e. subsets of N. There are total recursive functions
θ0 : N

2 → N and θ1 : N
3 → N such that, for all i, j,m, k, with the notations

of Def.2.12, if φi ∈ MinPR and ψm ∈ PR are total, monotone and tend to
+∞ then

Wj is infinite ⇒ W
∃≤φi(Σ0

1∧Π0
1)

θ0(i,j)
is an infinite subset of

Wj ∩ {x : Kmin(x) < φi(K(x))}

N \Wk is infinite and ψm ≥ growthN\Wk

⇒ W
∃≤φi(Σ0

1∧Π0
1)

θ1(i,k,m) is an infinite subset of

(N \Wk) ∩ {x : Kmin(x) < φi(K(x))}

2. Consider Kolmogorov relativizations KA,KA
min and enumerations (φAi )i∈N

and (ψAm)m∈N and (WA
i )i∈N of MinAPR, PRA and A-r.e. sets as in Point 2

of Lemma 8.6.
Point 1 relativizes uniformly, i.e., the above total recursive functions θ0, θ1 :
N

2 → N can be taken so as to satisfy all possible relativized conditions. I.e.,
if φAi , ψ

A
m are total, monotone and tend to +∞ then

WA
j is infinite ⇒ W

∃≤φA
i (Σ0,A

1 ∧Π0,A
1 )

θ0(i,j) is an infinite subset of

WA
j ∩ {x : KA

min(x) < φAi (KA(x))}

N \WA
k is infinite and ψAm ≥ growth

N\WA
k

⇒ W
∃≤φA

i (Σ0,A
1 ∧Π0,A

1 )

θ1(i,k,m) is an infinite subset of

(N \WA
k ) ∩ {x : KA

min(x) < φA(KA(x))}

Proof. 1. The strategy. The proof follows that of Lemma 8.6 except that
now αǫ is equal to min aǫ and that a1 and α1 also depend on the index m
of the recursive majorant ψm of the growth function of the Π0

1 set.
Since α0 (resp. α1) has to be in MinPR, i.e. is to be recursively approx-
imated from above, we have to force that, for given i, j, k,m, p, the first
defined a0(i, j, p, t) (resp. a1(i, k,m, p, t)) majorizes an element x of Wj

(resp. N \Wk) which is such that Kmin(x) < φi(K(x)).
To insure this, we choose a0(i, j, p, 0) (resp. a1(i, k,m, p, 0)) so that the
interval [0, aǫ(i, j, p, 0)[ (resp. [0, aǫ(i, k,m, p, 0)[) contains at least 22|p|+1

points in {x : Kmin(x) < φi(K(x))}.

2. We shall use the partial recursive approximation from above ϕξ(i)(x, t) of
φi(x) defined in point 2 of the proof of Lemma 8.6.

3. Functions aǫ and αǫ.
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Let Z0(i, j, p) be the set of 22|p|+1 distinct elements which appear first in the
standard enumeration of Wi. We define a0 as follows:

a0(i, j, p, 0) = the largest element of Z0(i, j, p)

a0(i, j, p, t + 1) =





a0(i, j, p, t) if ϕξ(i)(K
t(a0(i, j, p, t)), t) > 2 |p|

x if ϕξ(i)(K
t(a0(i, j, p, t)), t) ≤ 2 |p|

and x is the largest element of
Z0(i, j, p) ∩ [0, a0(i, j, p, t)[

undefined if ϕξ(i)(K
t(a0(i, j, p, t)), t) is undefined

We now define a1, using the recursive majorant ψm.

a1(i, k,m, p, 0) = ψm(22|p|+1)

Let u = ϕξ(i)(K
t(a1(i, k,m, p, t)), t)

a1(i, k,m, p, t + 1) =





a1(i, k,m, p, t) if u > 2 |p|
and a1(i, k,m, p, t) /∈Wk,t

a1(i, k,m, p, t) − 1 if u ≤ 2 |p| or (u > 2 |p|
and a1(i, k,m, p, t) ∈Wk,t)

undefined if u is undefined

Clearly, a0 and a1 are partial recursive.

Claim. Suppose φi ∈ MinPR is total monotone increasing and tends to
+∞.
a. If Wj is infinite then (p, t) 7→ a0(i, j, p, t) and p 7→ α0(i, j, p) are total
functions and

∀p (α0(i, j, p) ∈Wj ∧ φi(K(α0(i, j, p))) > 2 |p|)

b. Function a1 is total. If N \Wk is infinite and ψm is a total recursive
function such that ψm ≥ growthN\Wk

then p 7→ α1(i, k,m, p) is a total
function and

∀p (α1(i, k,m, p) /∈Wk ∧ φi(K(α1(i, k,m, p))) > 2 |p|)

Proof of Claim.
As seen in the proof of Lemma 8.6, if φi is total then so are ϕξ(i) and a0, a1.
Also, for any fixed p, for all large enough x and all t, we have

ϕξ(i)(K
t(x), t) ≥ φi(K

t(x)) ≥ φi(K(x)) > 2 |p|

Suppose Wj is infinite. Then Z0(i, j, p) contains exactly 22|p|+1 elements.

Let Kmin = KU where U ∈ Min
{0,1}∗→N

PR . Since there are 22|p|+1 − 1 words
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with length ≤ 2 |p|, there is necessarily some element of x ∈ Z0(i, j, p) which
is not in U({q : |q| ≤ 2 |p|}), hence is such that Kmin(x) = KU (x) > 2 |p|.
Let x0(i, j, p) be the largest such element. It is easy to see that, for all t
large enough, we have a0(i, j, p, t) = x0(i, j, p). Thus, α0(i, j, p) = x0(i, j, p)
is defined and α0(i, j, p) ∈ Wj ∩ {φi(K(x)) > 2 |p|}. Which proves Point a
of the Claim.

Suppose N \Wk is infinite and ψm is a total recursive function such that
ψm ≥ growthN\Wk

. Then there are 22|p|+1 elements of N \Wk which are

≤ ψm(22|p|+1). As above, there is necessarily some such element x which is
not in U({q : |q| ≤ 2 |p|}), hence is such that Kmin(x) = KU (x) > 2 |p|.
Let x1(i, k,m, p) be the largest such element. It is easy to see that, for all t
large enough (namely, for t such that Wk∩ [0, x1(i, k,m, p)[⊆ Wk,t), we have
a1(i, j,m, p, t) = x1(i, j,m, p). Thus, α1(i, k,m, p) = x1(i, k,m, p) is defined
and α1(i, k,m, p) ∈ (N \Wk) ∩ {φi(K(x)) > 2 |p|}. Which proves Point b of
the Claim. 2 (Claim)

We conclude the proof of the Lemma as that of Lemma 8.6 with analogous
points 4,5,6 : the sole modification is to replace everywhere Kmax by Kmin
and the max operator by the min one.

8.4 Comparing Kmin and Kmax à la Barzdins

We shall need the following result from [5] (Thm 7.15).

Proposition 8.9. K ≤ct 2Kmin +Kmax.

Using Prop.8.9, Lemmas 8.6, 8.8 yield the following corollary.

Lemma 8.10.
1. Let’s denote Π̃0

1 the family of infinite Π0
1 subsets of N with recursively

bounded growth.
Suppose φ : N → N is a total function in MinPR which is monotone and
tends to +∞. Then

i. {x : Kmax(x) < φ(Kmin(x))} is constructively (Σ0
1∪Π0

1,∃
≤φ(Σ0

1∧Π0
1))-

dense.

ii. {x : Kmin(x) < φ(Kmax(x))} is constructively (Σ0
1∪Π̃0

1,∃
≤φ(Σ0

1∧Π0
1))-

dense

Moreover, this result is uniform in φ and, for ii, in a recursive bound for
the Π0

1 set, in the sense detailed in Lemmas 8.6,8.8.

2. Consider Kolmogorov relativizations KA,KA
min,K

A
max and enumerations

(φAi )i∈N and (ψAm)m∈N and (WA
i )i∈N of MinAPR, PRA and A-r.e. sets as in

Point 2 of Lemmas 8.6, 8.8.
Then Point 1 relativizes uniformly in the sense detailed in Lemmas 8.6,8.8.
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Proof. Let φ ∈MinPR be total, monotone increasing and unbounded. Set

θ(x) = min{
x

4
, φ(max(0, ⌊

x− c

2
⌋))}

Then θ is also a total, monotone increasing and unbounded function in
MinPR. Also, one can recursively go from a code for φ to one for θ. Using
Lemmas 8.6, 8.8, it suffices to prove that, for all x,

Kmin(x) < θ(K(x)) ⇒ Kmin(x) < φ(Kmax(x))

Kmax(x) < θ(K(x)) ⇒ Kmax(x) < φ(Kmin(x))

We prove the first implication, the second one being similar.
Applying Prop.8.9, let c be such that, for all x,

K(x) < 2Kmin(x) +Kmax(x) + c

Suppose Kmin(x) < θ(K(x)). Then Kmin(x) < 1
4 K(x), so that

K(x) < 2Kmin(x) +Kmax(x) + c ≤
K(x)

2
+Kmax(x) + c

and K(x) < 2 (Kmax(x) + c).
Therefore, Kmin(x) < θ(K(x)) ≤ θ(2 (Kmax(x) + c)) ≤ φ(Kmax(x)).

8.5 Syntactical complexity

Whereas {x : K(x) < φ(x)} is r.e. whenever φ is partial recursive (cf.
Lemma 8.1), the complexity of the sets considered in Lemmas 8.6, 8.8, 8.10
to compare K,Kmax,Kmin is much higher and does involve bounded quan-
tifications over boolean combinations of Σ0

1 sets as is the case in the density
results obtained in these lemmas.

Proposition 8.11. Let φ be a total function in MinPR. The sets

{x : Kmax(x) < φ(K(x))} {x : Kmax(x) < φ(Kmin(x))}
{x : Kmin(x) < φ(K(x))} {x : Kmin(x) < φ(Kmax(x))}

are all definable by formulas of the form

∃≤log ∀≤log (A ∧B ∧ C)

where A,B,C are Σ0
1∨Π0

1. In particular, theses sets are ∆0
2 (cf. Prop.2.11).

Proof. Without loss of generality, we can suppose thatKmax(x) andKmin(x)
are both ≤ log(x) for all x. Let U : N → N and V,W,ϕ : N

2 → N be partial
recursive functions such that K = KU and Kmin = Kα and Kmax = Kβ and
φ(x) = mint ϕ(x, t) where α(x) = mint V (x, t) and β(x) = mintW (x, t).
Following a usual convention, we shall write ∃p|p|≤x... and ∀p|p|≤x... in place
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of ∃p (|p| ≤ x ∧ ...) and ∀p (|p| ≤ x ⇒ ...).
Then Kmax(x) < φ(K(x)) if and only if

∃p1
|p1|≤log(x) ∃p2

|p2|≤log(x) ∀q1
|q1|<|p1| ∀q2

|q2|<|p2|

[U(p1) = x ∧ U(q1) 6= x

∧ ∃t V (p2, t) = x ∧ ∀t (V (p2, t) is undefined or ≤ x)

∧ (∀t (V (q2, t) is undefined or 6= x) ∨ ∃t V (q2, t) > x)

∧ ∀t (ϕ(|p1|, t) is undefined or |p2| < ϕ(|p1|, t))]

Which is a formula of the form stated in the Proposition. All three other
cases are similar.

Bounded quantifications over boolean combinations of Σ0
1 sets are also

involved for the set of integers with K,Kmax,Kmin incompressible binary
representations.

Proposition 8.12. The set

I = {x : min(K(x),Kmax(x),Kmin(x)) ≥ ⌊log(x)⌋ − 1}

is infinite and is definable by a formula of the form

∀≤log (A ∧B)

where A,B are Σ0
1 ∨ Π0

1. In particular, this set is ∆0
2.

Proof. Without loss of generality we shall suppose that K ≤ Kmax and
K ≤ Kmin. The usual argument to get incompressible integers works: there
are

∑
i<n 2i = 2n − 1 programs p with length < n, hence at most 2 (2n − 1)

integers x such that Kmax(x) < n or Kmin(x) < n. Thus, for every n, there
exists an integer x ≤ 2n+1 − 1 such that Kmax(x),Kmin(x) ≥ n. Observe
that such an x is necessarily in I since log(x) ≤ log(2n+1 − 1) < n + 1.
Which shows that I is infinite.

We let V,W be as in the proof of Prop.8.11. Then x ∈ I can be written

∀p|p|<⌊log(x)⌋−1 [(∀t (V (p, t) is undefined or 6= x) ∨ ∃t V (p, t) > x)

∧ (∀t (W (p, t) is undefined or 6= x) ∨ ∃t W (p, t) < x)]

Which is a formula of the form stated in the Proposition. All three other
cases are similar.

Remark 8.13. In case φ is small enough (say φ(z) ≤ z − 1), the set I is
obviously disjoint from all fours sets considered in Prop.8.11.
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8.6 The hierarchy theorem

We can now prove the central application of the OftLess↑ relation and
the ≪ and ≪↑ orderings. Namely, a strong hierarchy theorem for
K,Kmax,Kmin and their oracular versions using the successive jumps ora-
cles.
Whereas Thm.6.3 involves the sole <ct ordering, the refinment obtained in
Thm.8.14 below involves a chain of more and more complex orderings which
all refine <ct and are relevant of Thm.4.6 and Cor.4.7.

Theorem 8.14 (The hierarchy theorem). Let Bn be the subclass of ∆0
n

subsets of N consisting of sets definable by formulas of the form ∃≤µ(Σ0
n∧Π0

n)

where µ : N → N is a total function which is recursive in ∅(n−1). Let Π̃0
n be

the set of Π0
n sets with ∅(n)-recursively bounded growth (cf. Def.8.7).

Then

1. log ≫
Σ0

1,Σ
0
1

PR K ≫
Σ0

1∪Π0
1,B1

MinPR↑ Kmax ≫
Σ0

2,Σ
0
2

PR∅′
K∅′ ...

... ≫
Σ0

n,Σ
0
n

PR∅(n−1) K∅(n−1)
≫

Σ0
n∪Π0

n,Bn

Min
PR∅(n−1) ↑

K∅(n−1)

max ≫
Σ0

n+1,Σ
0
n+1

PR∅(n) K∅(n)
...

2. log ≫
Σ0

1,Σ
0
1

PR K ≫
Σ0

1∪Π̃0
1,B1

MinPR↑ Kmin ≫
Σ0

2,Σ
0
2

PR∅′
K∅′ ...

... ≫
Σ0

n,Σ
0
n

PR∅(n−1) K∅(n−1)
≫

Σ0
n∪Π̃0

n,Bn

Min
PR∅(n−1) ↑

K∅(n−1)

min ≫
Σ0

n+1,Σ
0
n+1

PR∅(n) K∅(n)
...

3. There is a constant c such that all >ct inequalities in 1 and 2 (which are
inherent to the ≫ and ≫↑ orderings) are > inequalities up to c.

4. Though Kmax and Kmin are ≤ct incomparable, we have

K∅(n−1)

max OftLess
Σ0

n∪Π0
n,Bn

Min
PR∅(n−1) ↑

K∅(n−1)

min

K∅(n−1)

min OftLess
Σ0

n∪Π0,≤rec∅
(n−1)

n ,Bn

Min
PR∅(n−1) ↑

K∅(n−1)

max

Proof. 1. ≤ct inequalities. Inequality log ≥ct K is well-known. The inclu-
sions (cf. Prop.2.16)

PR∅(n)
⊆Min∅

(n)

PR ⊆ PR∅(n+1)
, PR∅(n)

⊆Max∅
(n)

PR ⊆ PR∅(n+1)

yield inequalities

K∅(n)
≥ct K

∅(n)

min ≥ct K
∅(n+1)

, K∅(n)
≥ct K

∅(n)

max ≥ct K
∅(n+1)

.

2. Inequalities ... ≫ K∅(i)
. Lemma 8.1 with A = ∅ and ϕ ◦ log in place of

ϕ yields inequality log ≫
Σ0

1,Σ
0
1

PR K.
Since KA

max is recursive in A′ (cf. Thm.6.4), Lemma 8.1 with A = ∅(n−1)

and ϕ ◦K∅(n−1)

max in place of ϕ yields inequality K∅(n−1)

max ≫
Σ0

n+1,Σ
0
n+1

PR∅(n) K∅(n)
.

Idem with Kmin.
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3. Inequalities K∅(i)
≫ .... Direct application of Lemmas 8.6, 8.8.

4. Point 3 of the theorem. This is the benefit of the uniform oracular prop-
erty obtained in Lemmas 8.1, 8.6, 8.8, 8.10.

5. Finally, the OftLess relations (Point 4 of the theorem) are direct appli-
cation of Lemma 8.10.

Remark 8.15. The scattered character of comparisons with respect to the
≪ orderings is unavoidable since all complexities K,Kmax,Kmin, ...,K

∅(n)

are equal up to a constant on the infinite set of integers with K∅(n)
incom-

pressible binary representations.
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